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Oleksiy Roslyak and Joseph L. Birman
Physics Department, The City College, CUNY, Convent Avenue at 138 Street, New York, New York 10031, USA
(Received 2 January 2007; revised manuscript received 10 March 2007; published 6 June 2007)

In the present work, we discuss resonant hybridization of the 1S quadrupole Wannier-Mott exciton (WE) in
a Cu,O quantum well with the Frenkel dipole exciton in an adjacent layer of organic DCM2:CA:PA. The
coupling between excitons is due to interaction between the gradient of electric field induced by the DCM2
Frenkel exciton (FE) and the quadrupole moment of the 1§ transition in the cuprous oxide. The specific choice
of the organic allows us to use the mechanism of “solid state solvation” [C. Madigan and V. Bulovic, Phys.
Rev. Lett. 91, 247403 (2003)] to dynamically tune the WE and FE into resonance for =3.3 ns (comparable
with the big lifetime of the WE) of the “slow” phase of the solvation. The quadrupole-dipole hybrid utilizes the
big oscillator strength of the FE, along with the big lifetime of the quadrupole exciton, unlike dipole-dipole
hybrid exciton which utilizes the big oscillator strength of the FE and big radius of the dipole allowed WE. Due
to the strong spatial dispersion and big mass of the quadrupole WE, the hybridization is not masked by the
kinetic energy or the radiative broadening. The lower branch of the hybrid dispersion exhibits a pronounced
minimum and may be used in applications. Also, we investigate and report noticeable change in the coupling
due to an induced “Stark effect” from the strong local electric field of the FE. We investigated the fine energy

structure of the quantum well confined ortho and para excitons in cuprous oxide.
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I. INTRODUCTION

Nanometer-sized organic and inorganic semiconductor
structures have recently been attracting much attention. In
these low-dimensional systems, there are pronounced quan-
tum confinement effects on the electronic and optical prop-
erties. Synthesizing composite organic-inorganic semicon-
ductors is of major importance not only in the development
of novel nanostructure materials for electronics, optics, and
transport, but also for basic understanding of their size-
dependent physical properties. Recently, a new type of el-
ementary state which can be generated by optical excitation
was discussed by Agranovich et al.! This is a hybrid exciton
which can be obtained from the resonant mixing of Frenkel
exciton (FE) and Wannier-Mott exciton (WE) in organic-
inorganic quantum wells by means of dipole-dipole interac-
tion across the interface. Many properties of this hybrid were
predicted. Other realizations for the hybrid have been pro-
posed. Examples are hybrid excitons in an inorganic semi-
conducting quantum dot covered by an organic layer’> and
quantum dot—dendrimer system.? The energy of the hybrid
exciton, as well as the Green’s function matrix elements for
different quantum dot—dendrimer systems, has been calcu-
lated.

In the model of Agranovich et al., the decisive role in
implementing the formation of the hybrid state is played by
the dipole-dipole coupling between semiconductor WE and
organic FE. It is assumed that there is no direct wave func-
tion overlap between the excitons on each side of the well.
The interaction energy takes the form P(r)-E(r), where P(r)
is the polarization field due to the organic dipoles of the FE
interacting with the electric field E(r) in the semiconductor
from WE. In the work reported here, we modified this model
to consider the quadrupole exciton “yellow” 1S level in
Cu,0, which is well known from many studies on bulk
Cu,0O. This immediately puts our attention on a different
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interaction term, which is now Qiqjg’Ej,k. Here, the quadru-
pole field couples to a spatially varying (or k dependent)
electric field. This coupling is the basis of the present work.*
In this paper, we examine the new hybrid exciton which
occurs in a Cu,0O-organic heterostructure. Although the os-
cillator strength of the quadrupole transition is 3 orders of
magnitude smaller than that of the corresponding dipole
case, we show here how this can be compensated by the
strong spatial dispersion of the transition.

In Sec. II, generalizing the work® on dipole-dipole hybrid
excitons, formed in adjacent layers of organic-inorganic het-
erostructures, we will introduce here a modification. The sys-
tem we will analyze in this paper makes use of dipole for-
bidden, quadrupole 1S exciton in Cu,0 (WE) coupled to a
suitable organic FE. From the fact of strong spatial disper-
sion of the quadrupole transitions, we anticipate strong wave
vector and polarization dependence of the dispersion for the
hybrid. Concrete results will be given below for a realistic
configuration and values of parameters for particular organic
materials.

To the best of our knowledge, there are no experimental
studies yet on confinement effects for the cuprous oxide ex-
citon in a quantum well. Therefore, in Sec. III, we present
theoretical examination of confinement effects which are es-
sential due to the rather small Bohr radius of 1§ exciton, and
central cell and field effects on the exciton dispersion.

In Sec. IV, we discuss the choice of some proper
organic materials to assure resonance between FE and
WE in the quantum wells. We are going to show that
layers of polystyrene (PS): camorphic anhydride
CCA):[2-methyl-6-2C2,3,6,7-tetrahydro-2H , 5H-benzo[ i, j -
quinolizin-a-yl)-ethyl]-4 H-pyran-4-ylidene] propanel dini-
trile CDCM2 (Ref. 6) give an excellent match to the quad-
rupole yellow exciton of Cu,O. We have chosen this organic
compound due to three main factors:

(1) the extremely big oscillator strength of the organic
Frenkel exciton formed on DCM2 molecules;
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(2) unlike the conventional organic with short emission
lifetime, the dynamic “solid state solvation” mechanism dis-
covered in such a compound would allow the hybrid to live
through the phase of “slow” solvation (=3 ns), which is
comparable to the lifetime of the quadrupole exciton;

(3) the ability to tune into resonance the energy of the
singlet FE simply by means of changing the concentration of
the CA.

The strong local electric field induced by the organic
Frenkel excitons penetrates into the cuprous oxide layer and
results in an induced “confined Stark effect.” Relative shift
of the electron and hole gives rise to induced polarization
and reduced hybridization effect. This will be discussed in
detail in Sec. V.

Hybridization requires coupling between the two exci-
tons, and we will estimate the coupling coefficient in Sec.
VI. The coupling between FE and WE in the case of quad-
rupole active 1S WE is due to the gradient of the field in-
duced by the FE in the DCM2 organic. In the dipole-dipole
hybrid exciton, one utilizes the big oscillator strength of the
FE and big Bohr radius of the WE; in the case of quadrupole-
dipole exciton, one utilizes the big oscillator strength of the
FE and long lifetime of the WE, along with the enhanced
spatial dispersion of the coupling parameter.

In Sec. VII, we will discuss the specifics of the
quadrupole-dipole hybridization dispersion and briefly pro-
pose possible applications of such a hybridization. We look
forward to experimental tests of our results, by means of new
types of high precision spectroscopy which were invented
recently.’

II. THE QUADRUPOLE-DIPOLE HYBRID EXCITON
CONFIGURATION

Our proposed configuration of an experiment for obtain-
ing the hybrid exciton is shown in the following diagram
(see Fig. 1). In this simplified model, a monolayer of width
L, ~size of a unit cell of a 4.6 A quantum well of Cu,O
[gap energy E,=2.17 eV (Ref. 7)] is placed on a thin film of
the PS:CA:DCM2 organic (with the gap energy much bigger
than that of the cuprous oxide). Obliquely incident (to assure
x component of the exciton wave vector) photons of close
energies excite the Wannier-Mott exciton in the cuprous ox-
ide in resonance with the Frenkel exciton in DCM2. We con-
sider DCM2 exciton as a two-dimensional (2D) lattice of
dipoles d,=12 D at discrete sites n, placed at z' =L, /2.

We treat the interaction of cuprous oxide quadrupole ex-
citations only with DCM2 organic molecules in the qua-
druple approximation, since at the pumping laser frequency,
only dipole forbidden transitions are allowed. Due to the
small concentration of the DCM2 molecules, there is a
“buffer” of PS between Cu,0O and DCM2 so that one may
neglect the exciton wave function overlap and assume per-
fect 2D invariance of the system in the direction transverse to
growth. Further on, we neglect the kinetic energy of the
Wannier exciton. Indeed, as will be shown in detail in the
next section, due to fluctuations of the inorganic quantum
well (IQW) width, strong confinement of the exciton occurs,’
compared to the kinetic energy for small wave vectors which
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FIG. 1. Schematic representation of a possible experimental
setup to produce quadrupole-dipole excitons. Here, the inorganic
Cu,O quantum well provides the Wannier-Mott 1S quadrupole ex-
citon with the binding energy of 143 meV (for details, see Sec. III).
Two pumping photons w= Epcyn, E|g generate the hybrid signal
from the upper E, and lower E; branches. The DCM2 part of the
organic “solid state solute” provides the dipole allowed Frenkel
exciton; the PS host prevents wave function overlapping between
organic and inorganic excitons; CA under proper concentration al-
lows tuning of the excitons into resonance. Due to the comparable
lifetimes of both types of exciton, the system utilizes the strong
spatial dispersion of the quadrupole exciton and big oscillator
strength of the organic.

results in hopping motion of the exciton between sites of
localization. We seek the new quadrupole-dipole hybrid
eigenstates for the upper (#) and lower (/) branches in the
usual linear combination form:

u,K)=A,|F k) + B,|W,K),

LK) =A/|F,K) + B|W,K),

where the weighting coefficients for small k are given by?
A, =B ,=1/2.

After the usual diagonalization of the coupled WE-FE
Hamiltonian, H=Hyg+Hpp+H,,, the energies of the result-
ing upper and lower branches are given by

Eu’[ = EW(F) + Fk

where we have introduced the quadrupole-dipole interaction
Hamiltonian and corresponding off-diagonal hybridization
parameter: I'(k) = |[(W k|H,,|F k).

In the subsequent sections, we will derive expressions for
the energies of the exciton and necessary conditions for the
resonance hybridization. Also, as a main result of the article,
we will derive an analytical expression for the hybridization
parameter and dispersion. This will be followed by quantita-
tive and qualitative comparison of systems with dipole-
dipole hybridization.'

III. QUASI-2D EXCITON IN Cu,O

As far as we are aware, there are no experimental data or
theoretical description for the film cuprous oxide systems,
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TABLE I. Selection rules for the excitons in bulk Cu,0O. F, forbidden transition; A, allowed transition.

Oh
Electric dipole Electric quadrupole
operator operator

Symmetry T, Tt T Basis
Para exciton T F F F (2 =y?)(y*=22)(>=x?)
Ortho exciton 3 F;’ F A F Xy;yZ;2X
Basis X352 Xy;yZ;2x 2zi—x2—y2;

3(?-y?)

contrary to the extensive literature for the bulk case. In the
case of the small size Cu,O quadrupole exciton, one cannot
consider strong confinement effect, which requires the width
of the IQW to be much less than the Bohr radius of the
exciton ag. Even if modern epitaxy methods allows one to
get a molecular monolayer for the quantum well thickness,
one would have L,,/ag=2/2 which is not enough for pure
2D consideration. Two and more monolayers in one quantum
well will give the case of weak confinement and result in
much weaker coupling (see below). Thus, we start from the
well described case of bulk yellow excitons and then esti-
mate the main properties in the case of strong confinement
theoretically.

Cu,0O condenses in a cubic structure, where the copper
ions form a face-centered sublattice, while the oxygen ions
form a body-centered sublattice. The arrangement of both
sub lattices is such that a copper ion is found centered be-
tween two neighboring oxygen ions (O, symmetry) with the
lattice constant a~4.26 A. From the lattice structure, we
now turn to the band structure of this crystal.’ There is a
direct band gap where the valence band is formed by the
Cu 3d orbitals and the conduction band arises from Cu 4s
and (possible) oxygen orbitals. When considering the cubic
crystal field, the five 3d states of the valence band split fur-
ther into three states of the *T'} type and a twofold “T' level.
Taking also spin-orbit interaction into account, the state
splits further into a twofold 21"; level and a fourfold degen-
erate “T'y level. The exciton representation is obtained from
the direct product of electron and hole, I',,=T,;,.,,® 1T,
®T,. For S excitons, 'TT® T3 @="T%+'T}. The three-
fold degenerate T’ state and single '} state are termed
ortho exciton and para exciton, respectively. The para exci-
ton is optically forbidden in bulk. The ortho exciton is dipole
(°T";) forbidden from the ground state of symmetry ('T'}),
because ('T'}|’I';|°T't)=0 and couples to the light in lowest
order via quadrupole interaction of symmetry (° '),
(TiPrsPrs) #o.

Unlike the dipole operator, the quadrupole operator de-
pends on the direction of the light wave vector k relative to
the lattice and the radiation polarization vector e. Because of
the k dependence, the transition is anisotropic even in a cu-
bic crystal. The amplitudes of the ortho-exciton quadrupole
transitions are given by the symmetric vector product of k
and e: ~e,-kj+ejki, i #j, see, for example, Ref. 9. The three
components correspond to the Cartesian representations:
31’*+ 31’*+ 31"+

Sxz> * Syz> * Sxy*

The measured'? oscillator strength of the quadrupole tran-
sition in bulk Cu,O is low, f=3.9 X 107°, which is about 4
orders of magnitude smaller than the value found for the
dipole transitions of the P excitons of the yellow series. Even
though the coupling to the light is extremely weak, it cannot
be disregarded. The binding energy is about 153 meV and
Bohr radius of the exciton is given by ag= ZZO ~7A.

Because of the unidirectional confinement in the IQW, the
exciton is discretized in this direction (z direction). So the
symmetry group O, is reduced to Dy;,. As a result, the three-
fold degenerate ortho-exciton 31"; is split into twofold degen-
erate °I'? and nondegenerate 'I"} ortho-exciton levels, which
we are going to refer to as “heavy hole exciton” and “light
hole exciton” in analogy with the well known case of dipole
allowed exciton. Another remarkable result of the confine-
ment is that the para-exciton IF; changes its symmetry to
'T3. Due to the fact that the quadrupole operator I’} also
reduces its symmetry to ZI‘;' and 1F§, the para exciton is no
longer forbidden in the IQW. Note that roughness of the
interface due to the small width of the IQW leads to further
reduction of the symmetry to D,;,. The details of the selection
rules and dependence upon polarization can be found in
Tables I and 1II.

Now, let us consider the effect of confinement on the en-
ergy spectrum of the quadrupole active exciton. We study
only the ortho exciton (the generalization to the case of para
exciton is trivial) and neglect spin-dependent exchange inter-
action and related spin-orbit effects. The energy of the 1S
quadrupole exciton confined in a IQW can be written as

2

p’ P
Hyp=H,(z,) +Hy(z)) + ==+ -— - —————,
o 2u 2M e\p? + (2, - z3)

62

where p is the relative electron e-hole & position, p is the
relative momentum, and P is the center of mass quasimo-
mentum which is to be considered in the x, y plane. w and M
are the reduced mass and total mass of the exciton, respec-
tively.

The quadrupole exciton confined in the infinite IQW has a
smaller Bohr radius than in the case of bulk and as a result,
one must take into account so-called central cell
corrections!! (CCCs) in determining the dispersion (see Fig.
2).

Aside from the nonparabolicity of the bands,'? the
electron-hole interaction in this case is the bare Coulomb
interaction modified by the k dependent dielectric function.
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TABLE II. Selection rules for the exciton in a Cu,O quantum well. F, forbidden transition; A, allowed

transition.
Dyy,
Electric dipole Electric quadrupole
operator operator

Symmetry 'T; T Tt T T Tt Basis

Para exciton T F F F F F A (x2=y?)

Ortho exciton T F F F F A F xy

Tt F F A F F F yzi2x

Basis ;X Z yz,zx x2-y? Xy R
This is mainly due to virtual LO-phonon assisted valence 5 pta*  pPPd?

. . . . A— = — . 4
electron transition into the highest conduction bands (*I'g WET 242 ahiM’ ()

split by the confinement). Here, we have to assume that the
energy of the LO-phonon modes exceeds 87 meV,'? when
the dielectric constant drops from g,=7.5+ 0.2 to &,=6.46.
In this case, it can be shown!! that for small values of the
exciton wave number k, (k) = e,,—0.18(ka)>.

In our model, due to the comparable sizes of the exciton
radius and IQW width, one can consider the confinement as
a small perturbation to the pure 2D exciton energy. To ex-
plicitly show the perturbation part, it is convenient to intro-
duce a small variational parameter \ ranging from 1 for pure
2D to 1/2 for pure bulk cases, so that the confined exciton
energy can be rewritten as

HWE—HWOE+HWE+HWE, (1)
where we separate the analytically solvable part:
2 2 2
P \e

Hyp= Ho(z) + Hy(z)) + 2=+ — = == 2

WE o(z.) w(zn) 5 M ep (2)

and small perturbation parts are due to the weak confine-
ment:

)\62 2

! e
L S ®)
ep  eNp +(z,—z)
and
100 T
> \
Q \
E 50 \
> \
E \
0] 0 \
LSJ \
450 N
£ N
= -100 S
L R
m-150f{~_
3 4 5 6 7 8 9 10
agp
2 A

FIG. 2. The solid line shows the modified energy of the 1§
exciton as a function of the Bohr radius (A) and variational param-
eter \ due to the confinement effect; the dotted line shows the same
function with the central cell correction not taken into account.

These terms [Egs. (3) and (4)] come from second order cor-
rections in the tight-binding model and are due to nonpara-
bolicity of the bands with 1/u'=C,/m,+C,/m;, and M’
=m,/ C,+m;,/C,. The second term in Eq. (4) couples the
relative motion of the electron and hole with the motion of
their center of mass and modifies the total exciton mass. The
fourth term in Eq. (2) and second term in Eq. (4) yield the
free exciton dispersion relation for the center of mass
motion:!!

2M MaBI( )’
2

where kj is the Debye wave vector, i.e., the radius of a
sphere with volume equal to that of the first Brillouin zone

and I,(x)=/ xﬁ Kavoulakis et al.!! estimated the order of
magnitude of the constants C, and C, using the k-p pertur-
bation theory. Mixing of bands with different parities modi-
fies the bare electron and hole masses. In addition, including
the coupling to LO modes gives C,~C;=1.

In our work, we are going to use a simplified approach
instead of the k- p perturbation theory and estimate this cor-
rection from the fact that the exciton is becoming localized
as the Bohr radius approaches the lattice constant: lim FEj

agp—a
=0. This yields the following expression: C= 212(77)/14(77)
The correction to the potential energy due to the first term in
Eq. (4) is given by its expectation value in momentum space,

il 3 ) 2 - |

kpag
2\

kpag
2\

I
72> INMa? 4(
- (5)

k=

kpag
2\

1,
t2a*C 6(

IR AN A

24 q<kD q<kD 24/1, Iz(kDaB) °
2N
Here, the relative electron e-hole & motion wave function
8\71'

= riganF is strongly peaked in momentum space. The

last term in HY,, describes the effective interaction between
an electron and a hole at momentum transfer g with the same

245309-4



HYBRIDIZED QUADRUPOLE-DIPOLE EXCITON EFFECTS...

approximation for the k dependent dielectric function as

above:
V(o) 2 dme* A’
q)= ~ +
elq) e e

a*0.18.

If one truncates the 1S trial wave function outside the first
Brillouin zone, we find the correction due to the small Bohr
radius of the exciton in the form

[/(kDaB> 2
0.36N3e2a2 | 2\ 2\

Wsia‘; ( kpag )
I

In the above expression, the contribution of LO phonons to
the dielectric function has been employed, where the main
contribution comes from virtual transitions between the
higher I'y conduction band and the highest I'; valence band.
Now, treating H%)VE as perturbation in the lowest order [ne-
glecting momentum dependence of t}le screening and ap-
proximating He(ze)+Hh(zh)+% by hm—t‘g], one can find the
total Wannier-Mott exciton energy in the IQW as the mini-
mum of the total exciton energy with respect to the Bohr
radius:

)
AN ONe? A%PCT°\ 2N
,uaB e.ag  24u I(kDaB)

Etotal ( )\ B)

2\
|:Ir ( kDaB):|2
0.36Me%a*| 2\ 2\
- 53 : (6)
TEL AR (kDaB>
I
2\

To find the variational parameter N\, we use an additional
restriction determined by requiring that the first order energy
shift vanishes:'*

(W |Hyy ) =0, (7)
2\
(2N)3? exp(— _p)
W) = Xe(2) X(2) —_—ekn (8)
Vmag

where W, is the unperturbed eigenfunction of H(‘)VE The en-
velope functions for the confined electron and hole are de-
noted as y, and y;, correspondingly and that for k=0 is given
by Eq. (14). The numerical calculations (see Figs. 2 and 3)
show that for a monolayer of the cuprous oxide, A =0.881,
ag=a=4.6 A, i.e., in this case, one can consider the 1S
quadrupole exciton to be Frenkel-like localized exciton with
k dependent oscillator strength.

Without central cell corrections, the value of the binding
energy is 124 meV (minimum of the dashed curve on Fig. 2).
With CCC, it lowers to 154 meV and it corresponds to the
minimum on the lower solid curve of Fig. 2. Now, in the
weak confinement of the IQW, there is a restriction on the
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FIG. 3. (Color online) For numerical estimation of the confined
quadrupole Bohr radius as an approximation, we took ap to be the
bulk Bohr radius of 5.1 A. So the “correction” equation [Eq. (7)]
becomes a function of only one parameter \, and so does the bind-
ing energy [Eq. (6)].

value of the parameter \ given by Eq. (7). So the standard
binding energy (second term in the total energy [Eq. (6)]
slightly grows with the increasing parameter \.'> But the
CCC with increasing confinement N decreases. This results
in bigger binding energy for weak confinement than that for
the bulk case without CCC but slightly smaller than that for
the bulk case with CCC. This unusual behavior is entirely
attributed to the confinement dependent CCC.

The confinement in the IQW increases the overlap of the
electron and hole wave functions, which, in turn, increases
the oscillator strength of the yellow transition. We are only
able to estimate the oscillator strength in the case of quantum
confinement. We consider a non radiative interface exciton,
which refers to the states outside the photon cone, k= “%—\Cg
The exciton propagating in the plane is trapped and accom-
panied by the light field which is evanescent in the direction
perpendicular to the interface (if one considers formation of
polariton modes), i.e., invisible at macroscopic distances
from the IQW. In the strictly two-dimensional limit, the os-

cillator strength of the lowest state scales as g

()\k) -3 / ay. The oscillator strength per unit volume scales
as % ~=
strength i in IQW with respect to the bulk case is eight times
and results in giving f>?~8(3.7X 10™). In general, due to
the interaction with the Frenkel exciton, fZD will have weak
dependence on the wave vector. Also, the exciton resonance
broadens due to imperfections of the IQW. In our case, the
IQW is rather thin, which gives rise to interface roughness
and thickness fluctuations. Therefore, the exciton mode

should show a linewidth of about 1 weV (lifetime ~1.7 ns).

. The maximum enhancement of the oscillator

IV. PS:CA:DCM2 AS AN ORGANIC PART
OF THE HYBRID

As it was already discussed, for the best manifestation of
the hybridization effect, one has to be able to tune the energy
of the Frenkel and Wannier-Mott excitons into resonance.
Also, the Frenkel exciton lifetime should be comparable to
the lifetime of the 1S quadrupole exciton, otherwise the hy-
brid would not live long enough to utilize, the peculiar prop-
erties of the quadrupole part. So we decided to use in our
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model the Frenkel exciton formed in a recently reported
amorphous organic thin film doped with the red laser dye,
DCM2,!6 which has an electric dipole moment df ~11Din
the ground state. To achieve a red spectral shift of DCM2
into resonance with the 1S quadrupole exciton, we propose
to use a low DCM2 dopant concentration in a two compo-
nent host consisting of PS and the polar small molecule CA.

Because DCM2 and CA (dipole moment =6 D) are
highly polar molecules and PS is a nearly nonpolar (less than
1 D), one can adjust the spectral shift by means of adjusting
the relative concentration of the DCM2 and CA molecules.
Increasing the DCM2 concentration increases the strength of
the local electric fields present in the film. In our case, we
will keep DCM2 concentration constant and low (0.05%), to
avoid overlapping of the organic and inorganic excitons and
limiting of DCM2 aggregation effects. At the same time, the
dielectric properties of the film are modified by changing the
concentration of CA, which has a large ground state dipole
moment relative to its molecular weight and is optically in-
active in the relevant region of the DCM2 photolumines-
cence. The dielectric permittivity increases with increasing
CA concentration linearly:

€=2.44+0.13(CA % ). 9)

In contrast, the index of refraction n=1.55 of the film is
nearly constant. The PS provides a transparent, nonpolar host
matrix. Such a mechanism for the spectral shift was termed
solid state solvation, the solvation mechanism underlying
“solvatochromism” of organic molecules in liquids.'”

The theory of solvatochromism relates the experimentally
observed changes in emission and absorption spectra of a
solute (DCM2) to the dielectric permittivity of a solvent
(PS:CA). An electronic transition on the solute (due to pho-
ton absorption) produces a corresponding change in the sol-
ute charge distribution, which causes the surrounding solvent
molecules to respond to this new field apart from the Frank-
Condon (FC) shift due to solute nuclear reorganization (see
Fig. 4 for details) in two ways:

(1) The first is through electronic cloud reorganization
(polarizability) which is referred to as “fast” solvation which
occurs for 0.16 fs judging from the relaxation spectrum of
the DCM2 (linewidth =0.25 eV).

(2) The second is through gross spatial movement due to
physical translation and rotation (“slow” solvation). During
this phase, the radiative recombination from the FE is pro-
hibited and allows the FE exciton to live for 3.3 ns. In our
proposed scheme, the actual hybridization with 1S quadru-
pole exciton occurs during this time interval as it is compa-
rable to the lifetime of the quantum confined quadrupole
exciton, while the lifetime of the DCM2 in vacuum is deter-
mined by the FC effect which is much faster.

Once the Frenkel exciton energy falls into the nonzero
coupling parameter vicinity with the quadrupole exciton
(resonance condition), the hybridization occurs. The detailed
dynamics of the hybrid is the subject of our future work.
Presently, we assume that the effective lifetime of the hybrid

TsTiS

is ~ . and requires two photons to populate both branches
of the hybrid exciton. We performed calculations for the en-
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FIG. 4. Schematic of dynamic tuning of Frenkel and 1S quad-
rupole Wannier excitons by means of solid state solvation redshift
effect. Following (1) photon absorption in DCM?2, there are distinct
dynamic phases: (2) fast adjustment of the electronic configuration
in DCM2 due to interaction with polar CA molecules within the
time frame of picoseconds, 74; (3) slow self-adjustment of DCM2
and CA molecules with 7,~3.3 ns; (4) absorption of second yellow
photon delayed by 67~ 7,— 75 by Cu,O confined 1S quadrupole
exciton with lifetime 7,3~ 1.7 ns; hybridization when detuning be-
tween this two types of exciton becomes smaller than the k depen-
dent coupling parameter; lifetimes of the hybrid are defined by 7
and 7g; (5) phosphorescence due to the hybrid exciton recombina-
tion. (6) shows possible recombination of noninteracting excitons.

ergy of the Frenkel exciton under the “continuum” approxi-
mation, in which the surrounding molecules of the solvent
are replaced by a continuous dielectric. The molecules of the
solute are described by a spherical cavity of radius ay of the
DCM2 molecules and corresponding charge distribution is
reduced to the dominant dipole moment.'® Then, the total
emission energy including solvation effect can be written as

E= E() + AEsolv’ (10)

where E is the emission energy in vacuum including the FC
shift, and EXOIU:—a%F(,ug—,ue)(A,ug+A,,1,,ug); here, we intro-
duced w, and w, to be, respectively, solute excited and
ground state dipoles and

2(e-1)
T 28+l P

~ 2(n*=1)
2n2+ 1

associated with slow and fast relaxation processes (described
above), respectively.

Equations (9) and (10), along with experimental fitting for
—aé(,u,g—,ue),u,e:O.SI yield the concentration of the CA

~22% to correspond to the resonance with the confined 1S
quadrupole energy of 2.05 eV.

There is one sensitive point we make in our work, namely,
necessity of the second delayed photon. One photon does
allow hybridization once the energy of the FE is close
enough. Only one branch of the hybrid is going to be popu-
lated. Because we approach the resonant energy from above,
the upper branch is the one to be populated. The lower
branch may be populated by a multiacoustical phonon pro-

245309-6



HYBRIDIZED QUADRUPOLE-DIPOLE EXCITON EFFECTS...

cess. However, first, we do not know how long it takes to
populate from the maximum of the upper branch to the mini-
mum of the lower branch. For the temperature of 1.7 K, it
takes approximately 26 of such phonon processes without
the Stark effect (see Sec. V) or 7 of them with the Stark
effect. Even though such transitions are allowed, it may take
more time than the lifetime of the hybrid. For example, the
lifetime of the 1S orthoexciton itself is determined by the
acoustical phonon assisted transformation to the paraexciton,
which involves change in energy of 12 meV, which is com-
parable to 2T7,.

So the second photon is designed to assure that both
branches are populated regardless of the initial conditions.
When both photons are in resonance with the WE, #iw
~FEs, the second photon provides conservation of the en-

ergy:
ﬁw+ﬁw= (Els+rk)+(Els—Fk).

V. INDUCED STARK EFFECT

In this section, we investigate a new effect which plays a
rather significant role in forming any hybrid exciton. Let us
refer to it as an induced quantum confined Stark effect. The
main idea is as follows. There is an evanescent potential in
the z direction and corresponding k dependent electric field
due to the Frenkel organic (DCM2) exciton, penetrating into
the inorganic quantum well (see Fig. 1). This field induces
some polarization of the bound electron-hole pairs forming
the Wannier-Mott inorganic exciton. This polarization leads
to an effective screening of the electric field and results in
reducing the coupling.

We consider the FE as polarization wave® P(r) confined
to a perfectly 2D organic quantum well placed at position
7' Z% Neglecting the constant phase of the wave e‘iTw,
the polarization per unit area S is given as

e—ikn” ( L )
P(r) = r Slz——=.
(l') Clpd \,’E Z 3

Now let us move from the discrete set of FE to a continuous
distribution and take into account that

. 1 .
2 e—zan == e_lkr”dl'”.
n ap

In this continuous approximation, one gets the final result for
the polarization created by the FE propagation along the in-
terface:

—ikry L.
P(r) = ars F&(z - 7”) +c.c.

ap\NS
The potential due to this polarization wave is given by?
(Pk(r) = G(I’, n”,k) V P = - ViG(l', n||,k)Pi.

The standard Green’s function for z<<z' is given by
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A ek(z—z')

ek)+g k

G(z,7'.k) =

It gives rise to the potential of the form

oi(r) =2 (k6. +ik)G(k,z' 2)Pi(r) = ¢ (r)

e—zkr" 477
= —

apNSe+&

ek, (11)

Here, we utilized the fact that the complex conjugate part
cancels out the imaginary part of the above expression. The
electric field creates an additional polarization in the IQW,
which we are going to estimate by its effect upon the cou-
pling parameter. Effectively, this polarization manifests itself
in an envelope function equation in the IQW for the electron
and hole. Following a standard procedure (Bastard'®), the
equations governing the electron (hole) envelope function in
the IQW are as follows:

R
(— a2 eFkZ>Xi(z) =(E-E)x(2),

2 2
( i d—+esz)»d:(z):(Ev—E)/k<z),

- 2_mhdz2

where we used the long wave approximation for the poten-
tial, namely, taking the effective electric field in the form
Fi,=ke(z=7"). The total energy shift due to the induced
field is negligible for small difference in the electron and
hole masses and small width of the IQW. The envelope func-
tions are subject to zero boundary conditions at both sides of
the IQW. Here, one comes across some difficulties. Although
this system has an exact solution, the standard approach with
Airy functions Ai and Bi will lead us to a rather complicated
but exact result:

F.z - Frre
Xi(2) = Cy i Ai<ekz—§"’k) +Cox Bi<ekz—§mk> .
oy o
(12)

In the last expression, we introduce the following notation
for the electron (hole) energy change due to the confinement
and FE induced polarization:

1/3

s

_ { (eFifi)?

0.k —

2m

gn,k = En - EO - quk(O) >

with E,=0 for the electron and E=~E, for the hole (we also
omitted indices ¢ and h for simplicity). The normalization
constants are connected as
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L
F - _
‘ e k2 §n,k
Ai
dok

Cl,n,k = L
F—* -
el 5 §n,k

Sok

Bi

The energy levels can be found using boundary conditions as
discrete solutions for

g, [fument
' e k2 nk ’ nk =€ k2
Ai Bi
Sok fok
p L i L
. e k2 Cnk ’ Lnx—e k2
—-Bi Ai =0. (13)
Sok fok

The constant is defined from the normalization condition.
For the hole, one has to change ¢ — —e. Although Egs. (13)
and (12) exhibit the exact solution, they are rather compli-
cated for further analytical description of the hybrid exciton
states.

There are some approximate ways to treat the problem of
relative shift of the electron and hole wave functions in the
induced field. First, let us treat the electric field F; using the
perturbation theory. In this approach, we can explicitly see
the term due to the induced polarization. This perturbation
approach is applicable if the energy difference between the
unperturbed ground and first exited states is much bigger
than the perturbing potential at the average position of the
particle z=0. For the case of a monolayer of Cu,O, it is
applicable only for the very small wave vector region but
may be used as a correction in the dipole-dipole hybridiza-
tion. In the first order, there will be no change in total energy
(cF f), but the wave functions will be changed to

‘() /2 (771) 32FLiem |1 ,(2771)

= —cos| — |—-——5>5—\/—sin| —|.

NI =N L ONL) T e N, UM L,
(14)

Because Eq. (14) is still rather complicated, we will consider
only the lowest energy level transitions, so it is possible to
consider (instead of the infinite IQW) an “equivalent” para-
bolic profile defined through its lowest energy level as

1
5ﬁwé=

(mh)?
2mL,,’

So we are able to consider k and L,, values in the region
where the perturbation theory is not applicable. This problem
has the exact solution with the same energy as was given by
the perturbation theory for the lowest transition. The enve-
lope function normalized inside the given IQW has a Gauss-
ian form:
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2r) /4 _ 2
(77—,_ exp{— M ) (15)
Verf(mV2)L,, Ry

In Eq. (15), the dimension R, of the parabolic IQW for the
electrons and holes is taken to be the same:

| #h L
RO = = = .
m,wg a

The shifted average electron and hole positions are given by

X2 =

2 2 14
el eFymL,,

= x .
272

Zen=*
2may

In the next section, we are going to use these results for the
envelope function to calculate the coupling parameter.

VI. THE COUPLING PARAMETER AND DISPERSION

The energy of interaction between the organic dipole and
inorganic 1S quadrupolar excitons can be written as>°

A 1 A d 4 1.
H. =—- —F === 0)D; n-r.z’,
int 6% % Qa'B(?)Ca B 6Qa,,8| > l,a,ﬁ( I»< Z)

x(0ldr,

where Qaﬂ is a quadrupole transition operator; the electric
field operator F 5 is due to the Frenkel exciton as in Eq. (11);
D; o s is the Green’s function in momentum space. The inter-
action parameter is given by the following transition matrix
element:

Fky=2> >

@pBi n

Fk=<W’k I:Iint

H int

dzdr (W, k

F.k).

The quadrupole transition matrix element may be obtained
by using the relation équo] s(q)=¢;5(r,—r,=0) between the
wave function of the relative electron-hole motion of the 1§
exciton ¢;g normalized to the unit area S and its momentum
representation ¢ 4. Hence, the Fourier component of the
quadrupole exciton transition from the ground state of the
crystal®! is given as

. ikr)
00g0) = _eV/E > ¢15(a) Q. 5(q)
q

2 ikr)
NN e

dap \’E

(W.k

Considering the weak dependence of the conduction u, , and
valence u,,, Bloch functions on the wave vector ¢, the quad-
rupole moment of the interband transition may be written as

1 .
Qa,ﬁ = Qa,B(q = 0) = _f dsucq(s)xwxﬁum(s),
() "

with the integration taken over the unit cell of the cuprous
oxide v,. The expectation value of the FE dipole transition
operator is given as
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TABLE III. Green’s function selection rules.

Qxy sz Qyz
k[l,0,0] DXX)’zo D= 47T~k26k(z—z')’ d=(dx,0,0) Dx,\'zzo
+
Dy, =0 “7% D=0 D,.=0
D7 ,:0 4’77' - D7 720
zxy szi—che"(“ ), d= (O’O’dz) 2z
e+e
k[O,l,O] Dxxyzo Dxxz=0 nyzzo
Dyyy=0 Dy.=0 Dy),z=—4—wkzek(z_"',), d=(0,d,,0)
g+& :
D. = D .= 4 ’
Xy 0 Xz 0 DZ\,Z:i 7T~kzek(z—z )’ d=(0,0,dz)
- e+e
k[0,0,1] Dxxy=0 D,.=0 nyz=0
Dy =0 Dy, =0 Dy,,=0
DnyZO D,.=0 DZYZ=0
. T or o the interaction of the cuprous oxide quadrupole with the gra-
(0ld; (m)|F, k) = EaFdi e dient of the electric field created by the organic Frenkel ex-

The Green’s function in momentum space for the given ge-
ometry is given by

Diopk,2',2) = 7T~kzek(z_z )<% + 5,%) (l_kg + 53,2) (17&

e+ &

+ 511,1).

For the selection rules based on the specific geometry of the
problem and the corresponding Green’s function, see Table
III. Without loss of generality, we may take the wave vector
along the x axis. From the Green’s function, polarization
selection rules,?? our specific type of interaction energy, and
the requirement of having real eigenvalues, one can conclude
that the only possible direction of the wave vector and dipole
orientation is df and Q, , respectively.

We note here that there is another possible approach to the
problem of resonant interaction between these two types of
exciton. If one modifies the results of Moskalenko and
Liberman?®! for our case and introduce an effective polariza-
tion due to quadrupole transitions via a k dependent inter-
band dipole element,

djjx ~ |Ql(ek; +ejky), (16)

then one uses the corresponding interband polarization, this
would coincide with a case of “dipole-dipole” transitions,
when the electric field created by the set of WE dipoles will
interact with the dipoles in the organic. In this way, one
could directly use the results of Agranovich et al.! Due to an
additional requirement for the Hamiltonian to be Hermitian,
it would give us the following result for the coupling con-
stant:

Iz i(k) ~ Re(divj‘kajadZ) ~ 10, |dikeje,.

Here we used the fact that the wave vector has only an x
component. So this coupling parameter vanishes in this ap-
proximation as j # x. For that reason, in this article, we study

citon placed near the interface between the organic PS:CA
and inorganic Cu,O.

Calculating the integral of the coupling parameter and
summing over the dipoles for the case when a perturbation
approach is applicable yields

I'(k) =T, (k) + I',(k).

Here I' (k) corresponds to the unperturbed coupling param-
eter, and the last term is due to the perturbation,

ok h(ka>
e " sin —
82 2 ) 0.d"
Iy (k)= = 2 . (17)
6[8(k)+8]Lw \‘1+<kLW>J aFaBLw
2

To increase this coupling term, one may consider the organic
host PS:CA with DCM2 organized in a multilayered struc-
ture. Generalizing the same approach to this case of multi-
layered organic with distance between the layers equal to
twice the radius of the Frenkel exciton (compact composi-
tion), it can be shown that one has to multiply Eq. (17) by

(:ﬁk_q) The factor of 2 in the last expression indicates that
the organic is placed on both sides of our IQW and one must
consider the symmetrical Green’s function in the interaction.

Another term in the coupling parameter is due to the in-

duced Stark effect®? and has the form

( LLW)
e COSh
2

KLY + 107220, + 97

512 LykF\ CM
27 wh?

I(k) ~ -

where Fy is the electric field induced by the organic layer of
dipoles and the terms proportional to Lfv, have been omitted.

For the region of wave vector and width of the IQW
where one cannot use the perturbation theory, another form
of the coupling parameter can be introduced. In this case, it
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FIG. 5. The solid lines represent the upper and lower branches
of the quadrupole-dipole hybrid dispersion when the coupling is
calculated in the parabolic approximation and the induced Stark
effect is taken into account; the dash lines correspond to the cou-
pling parameter for different approximations: (1) infinite IQW and
the induced Stark effect is neglected; (2) parabolic approximation;
(3) infinite IQW with the induced Stark effect treated as a
perturbation.

is convenient to use the effective parabolic potential and the
envelope functions in the form of Eq. (15), and the coupling
parameter has the form

[~ 2 4,2 [~

V2 1625 — Rk \2
T (k) ~ ke = (——e 0 ) f[—z + kR ]
(k) e p exp 8R(2) er 4( T 0)

+erf{i—2(2w—kRo)}}. (18)

Here, for simplicity, we set z,~ -z, or in other words, m,
=~ m,,. For numerical estimation of the quadrupole matrix el-
ements, we used the well known?! result for the correspond-
ing oscillator strength:

4’77}”’[0Eg dap 3
fxz,ko = 3e2ﬁ2 ( E) esz,xQx,z’

where N\ represents the effect of quantum confinement and
|ky|=2.62%10° cm™.

The dispersion of the hybrid state in the case of negligibly
small detuning of 1S exciton with the DCM2 transitions
(resonance) is presented in Fig. 5. The first dashed lines (1)
correspond to the coupling parameter when the Stark effect
is neglected. So it corresponds to the upper part of the dis-
persion in this approximation. To show the effect of the
“parabolic” approximation on the coupling, we drew the sec-
ond dashed line (2). The third dashed line is when the Stark
effect is small enough to be taken as a perturbation without
applying the parabolic approximation.

Note that we consider the quadrupole-dipole interaction
only between Cu,O and DCM2 excitons and neglect the cou-
pling with PS:CA host transitions, as the corresponding in-
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terband dipole moments for the transitions off-resonance
with the inorganic have much smaller oscillator strength. By
neglecting the Stark effect from this numerical estimation, it
is easy to see that for the values of kRy<< 1, expressions (18)
and (17) are equivalent.

VII. RESULTS AND DISCUSSION

Although the oscillator strength of the 15 quadrupole ex-
citon is 3 orders of magnitude smaller than that for the near-
est dipole allowed exciton, strong spatial dispersion’* makes
the maximum of the coupling parameter comparable with
those for the dipole-dipole case.

The 1S quadrupole exciton has a rather big mass (
~3m,) and so is comparable to the mass of the Frenkel ex-
citon (=5m). Also, one has to take into account a significant
effect of the IQW width fluctuation. Indeed, the effect of the
width fluctuation is energy change between the confined and
bulk cases, which corresponds to energy drop of
E15 pinding N=1) = E 5 pinging A\ =0.881)=17 meV (see Fig. 3).
Hence, due to both of these effects, we neglected the kinetic
energy of the confined quadrupole 1S exciton (the motion
occurs in Frenkel-like way, by hopping between sites of lo-
calization). Thus, the quadrupole-dipole hybridization effect
is more pronounced than that of the dipole-dipole hybridiza-
tion because it is not masked by the kinetic energy of the
exciton.

Also, the hybridization effect is not masked by the large
radiative decay rate of the Frenkel exciton. Instead of the
classical spontaneous radiative rate of the organic, we use the
solid state solvation process to obtain a different relaxation
mechanism. Namely, one has the dynamical redshift of the
DCM2 Frenkel exciton during the slow phase of the solva-
tion process, when the energy of the photon excited DCM2
molecules is partially transferred to the polar CA molecules
by nonradiative dipole-dipole electromagnetic interaction
followed by immediate (compared to the 7g) radiative decay.
To compare the radiative decay rate (lifetime) with the hy-
bridization parameter, we simplify the dynamics to the fol-
lowing statement. The Frenkel exciton has fixed resonant
energy with the 1S5 quadrupole Wannier exciton but has ef-
fective lifetime equal to 7.>> So if one omits all the possible
nonradiative channels of decoherence except the radiative
decay, then the radiative decay rate from the hybrid to the
ground state is calculated using Fermi’s golden rule:

B YViypria(1:k) = 270 g | Hylut, 13 )| (oo, — E,, )
Al h BlLh
= — + ———

Lu
Ts Tis
ﬁ T + T 1S
=——=0.29 peV.
2 TTs
From this estimation, the ratio of the hybrid radiative rate to
the maximum of the coupling parameter is 0.0006, which is
2 orders of magnitude smaller than the predicted” value of
0.09 for the dipole-dipole hybrid in a quantum dot.?® Indeed,
it was shown in, the case of fully localized quantum dot
dipole-dipole hybridization that the ratio of the hybrid exci-
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ton damping parameter to the coupling is proportional to
BTN (Vag in th f ntum wires')

T, Vap (Vap in the case of quantum wires’) so
quadrupole-dipole hybridization takes advantage of the small
radius of the 1.5 quadrupole. Also, the fact of the comparable
lifetimes of the organic and 1S quadrupole excitons signifi-
cantly influences the ratio.

A noteworthy feature of the resulting upper (1) and lower
(1) branch dispersion in Fig. 5 is that the well pronounced
minimum on the lower branch can be populated by pump-
probe experiment and now it may be possible to have a finite
critical temperature in the case of quasi-2D excitons, due to
the fact of nonparabolic dispersion of the lower branch of the
hybrid. This can provide a good basis for searching for BEC
in such a hybrid. A new type of an interface polariton may
also be expected.

Note that we mentioned the possible BEC as a possibility
only. Judging from the fact of the big saturation density of
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the hybrid and minimum of the energy on the lower branch,
this minimum would make the hybrid exciton strongly local-
ized and many dissipative processes (such as Auger
heating?’) are going to be suppressed. Also, as we men-
tioned, the nonparabolic dispersion allows the system to have
a finite condensation temperature contrary to the case of 2D
excitons with parabolic dispersion. However, the main ques-
tion about the lifetime of the hybrid is still a subject of our
current research. So we do not make a concrete statement
about the BEC of the hybrid but rather make an educated
guess on that.
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