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Raman-Brillouin scattering by acoustic phonons in a free-standing nanosized silicon film is studied theo-
retically. Two well-known models are used to describe the inelastic light scattering. �i� The Raman-Brillouin
quantum model in which the electronic states, and their interactions with light and sound, are taken into
account explicitly. In this model, an effective Raman-Brillouin electronic density is introduced; it is very useful
for analyzing experimental data when a large number of electronic states are involved as intermediate states in
the light scattering process. Its spatial distribution depends on the optical excitation and electronic transitions
of the system, and is directly connected to spectral features of the Raman-Brillouin scattering. In particular,
diagonal and off-diagonal electronic densities are introduced in order to point out that diagonal electron-
vibration matrix elements are relevant for inelastic light scattering in nanosized objects, whereas only off-
diagonal matrix elements are allowed for bulk materials. �ii� The photoelastic model is compared to the
Raman-Brillouin quantum model and is discussed in terms of validity of the steplike profile of the photoelastic
coefficient usually adopted in simulations of the Raman-Brillouin spectra of thin films and superlattices. It is
shown that the use of trapezoidlike, rather than steplike, profiles of the photoelastic coefficient is more realistic.

DOI: 10.1103/PhysRevB.75.245303 PACS number�s�: 73.22.Lp, 63.22.�m, 78.30.Er, 78.67.Bf

I. INTRODUCTION

Inelastic light scattering by acoustic vibrations has at-
tracted much interest since the early work of Merz et al.1 and
Colvard et al.2 who observed light scattering by acoustic
phonons due to Brillouin zone folding in semiconductor su-
perlattices. Afterwards, many experimental and theoretical
studies have extended the use of Raman-Brillouin scattering
to the study of nanostructures3–5 consisting of spatially dis-
tributed quantum objects �wells, wires, dots, particles�.3,4,6

The interest lies in the fact that the wavelengths of acoustic
vibrations, in solids and in the THz frequency range, are of
the order of few nanometers, i.e., well adapted to nanosized
objects.7 Another important advantage of acoustic phonons is
the delocalized nature of their displacement field. Unlike op-
tic phonons, which are usually confined within one type of
material, acoustic vibrations may extend over distances
much larger than the average separation between distributed
scatters. As a result, collective effects, due to spatial order-
ing, appear in the electron-phonon interaction and in the light
scattering process.6,7 Hence, the information one can extract
through modeling and simulations of the Raman-Brillouin
spectra is very rich �size and shape distributions, spatial cor-
relations,…�.

Two main approaches are used for the interpretation and
calculations of the acoustic phonon Raman-Brillouin scatter-
ing in nanostructures. First is the well-known Photoelastic
model8 �PEM� which assumes a modulation of the bulk ma-
terial optical properties by acoustic vibrations through pho-
toelastic coefficients, also known as Pockels coefficients.9 It
was initially developed for the interpretation of Brillouin
scattering in bulk materials. It has been then extended to
two-dimensional structures4 �superlattices, cavities, mem-
branes� and generalized recently by Lazarenkova et al.10

to three-dimensional ordered ensembles of self-assembled

quantum dots. The PEM is very useful for studying acoustic
cavity effects as shown by Giehler et al.11 and Fainstein et
al.12 Acoustic confinement in semiconductor membranes
�tens of nm thick� has been also pointed out recently by
Sotomayor et al.13 using a detailed comparison between
Raman-Brillouin measurements and the spectra simulated
with the PEM. In the PEM only the acoustic vibrations are
modified by reflections and transmissions at interfaces and
surfaces; the electronic structure is taken into account only
through the spatial variation of the photoelastic coefficients
�which are material dependent�. Optical cavity effects have
been introduced in some cases.12–14 The PEM is valid for
excitation energy far from any electronic transition �out of
resonance�. It is worthwhile to mention that the PEM is
widely used also for the interpretation of the acoustic phonon
echoes observed in time-resolved pump-probe experi-
ments.15–18 The conclusions of the present work are mainly
concerned with Raman-Brillouin scattering but they apply to
the time modulation of the optical properties as well.

The second way of calculating the Raman-Brillouin effi-
ciency is based on a quantum mechanical description of the
light scattering. The latter is a three step process: incident
photon absorption, phonon emission �or absorption�, scat-
tered photon emission. The electronic states play the role of
intermediate states in the sense that the photon-phonon inter-
action is not direct, but occurs via electron-photon and
electron-phonon interactions. Unlike in the PEM, in the
Raman-Brillouin quantum model �RBQM� the electronic en-
ergies and wave functions are taken into account explicitly.
This model has been successfully used for the simulation of
resonantly excited Raman-Brillouin spectra, i.e., when the
light scattering properties are determined by the electronic
structure.

First studies of acoustic phonon scattering due to elec-
tronic wave-function localization were reported by Kop’ev et
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al.19 and Sapega et al.20 in GaAs/AlAs multiple quantum
wells. In these structures, the electronic transitions were in-
homogeneously broadened leading to resonant selection of
localized electron and hole wave functions of individual
quantum wells. Because of the spatial localization of the in-
termediate electronic states the wave vector exchanged dur-
ing the scattering process is no longer transferred to a unique
vibration mode but to all modes of the Brillouin zone. As a
consequence, the spectral shape of the acoustic phonon
Raman-Brillouin scattering reflects the spatial distribution of
the excited electronic density.6,7 The RBQM has been used to
extract characteristic features of the electronic states such as
localization and correlation lengths.21 These basic ideas have
been recently extended to semiconductor quantum dots to
include three-dimensional confinement effects22,23 and spa-
tial ordering effects.24–30

Despite the fact that the PEM and RBQM were exten-
sively used for the interpretation of the Raman-Brillouin
measurements, the connection between both models still
needs to be clarified. This is particularly important for the
interpretation of experiments performed close to resonance,
for which the validity of the PEM becomes questionable. On
the other hand, under resonant excitation, only a few inter-
mediate electronic states are responsible for the light scatter-
ing and are therefore taken into account in the RBQM. Out
of �or close to� resonance, this approximation is no longer
valid and the whole density of electronic states should be
included in the RBQM. This is also the case when the energy
separation between electronic states is smaller than the ho-
mogeneous broadening of the resonant optical transitions.

In this work we present calculations of Raman-Brillouin
scattering using both the PEM and RBQM. In order to keep
within analytical and tractable calculations, the results are
presented for a simple model system consisting of a free-
standing silicon film. They can, however, be easily general-
ized to semiconductor multi layers and to embedded quan-
tum wires or dots. The main points addressed in this work
are �i� the dependence of the Raman-Brillouin spectra simu-
lated with the RBQM on the optical excitation energy. Un-
like in most of the published works, a large number of con-
fined electronic states are here taken into account, thus
leading to strong interference effects between different scat-
tering paths. In particular, the effective Raman-Brillouin
electronic density �RBED�,31 introduced by some of us in the
case of quantum dots, is shown to be very useful for analyz-
ing light scattering in layered structures. �ii� The comparison
between the photoelastic model and the Raman-Brillouin
quantum model. It is well known that the photoelastic con-
stants strongly depend on energy.32 They change sign and
acquire an imaginary part near band gaps. The spatial distri-
bution of the RBED depends on the optical excitation energy.
This property is used to discuss the validity of the PEM for
optical excitation close to resonance with confined electronic
transitions. �iii� A steplike profile of the photoelastic constant
is usually assumed for the simulation of the Raman-Brillouin
spectra when using the PEM. Is this simple profile realistic
and can it still be used for thin layers in which quantum
effects can no longer be ignored? In this work we show that
the RBED is a tool well adapted for the discussion of this
still open question. In particular, an alternative to the widely

used steplike profile of the photoelastic coefficient is pro-
posed for very thin layers.

II. MODELS

A. Raman-Brillouin quantum model

In this section we briefly recall the RBQM and introduce
the effective Raman-Brillouin electronic density for a free
standing quantum film. The quantum efficiency of Raman-
Brillouin scattering can be obtained from perturbation theory.
Whereas the first and second order correction terms describe,
respectively, the optical absorption and Rayleigh scattering,
the third order term expresses the inelastic light scattering.
When mediated by conduction states, its efficiency is propor-
tional to5,6,20

� �
e,e�,h

�h�He-pht
s �e���e��He-phn�e��e�He-pht

i �h�
�Es − Ee�-h + i�e�-h��Ei − Ee-h + i�e-h��2

, �1�

where e, e�, and h are electron and hole eigenstates; Ee-h and
�e-h are the energy and the homogeneous linewidth of the e-h
transition, respectively; Ee-h is defined as Ee-h=E0+Ee+Eh,
where E0 is the bulk direct band gap and Ee �respectively, Eh�
is the electron �respectively, hole� confinement energy. Ei
and Es=Ei±��phn are, respectively, the incident and scat-
tered photon energies ���phn being the energy of the ab-
sorbed or emitted phonon�. He-pht and He-phn are the electron-
photon and electron-phonon interaction Hamiltonians,
respectively.

The sum in Eq. �1� runs over all intermediate conduction
states e and e� and initial valence states h which can be
described by Bloch wave functions �e�h��r�=uc�v��r���r�;
uc�v��r� being the atomiclike wave function and ��r� the
slowly varying envelope functions.

In the following, we will restrict the discussion to two-
dimensional quantum films �Lz�Lx ,Ly�. This because we
would like to focus on the effects of wavefunction localiza-
tion and mixing �size effects� on the Raman-Brillouin scat-
tering rather than on dimensionality and shape effects. More-
over, experimental results are available for silicon
membranes.13

For the sake of simplicity, we shall consider only zero
in-plane wave vector electron-hole transitions. This restric-
tion allows to discuss the relation between PEM and RBQM
with simplified notations and without loss of generality. It
must be, however, reconsidered for a detailed comparison
with experiments.

Assuming that electrons and holes are perfectly confined
within the film, the envelope wave functions are then given
by

�n�z� =� 2

Lz
sin	n�z

Lz

 , �2�

where Lz is the film thickness. Using the parabolic band ap-
proximation, the electron and hole confinement energies are,
respectively, Ee

n= �2�2

2me

n2

Lz
2 and Eh

n= �2�2

2mh

n2

Lz
2 , where n is an inte-

ger; me=0.28m0 �Ref. 34� and mh=0.49m0 �Ref. 35� are, re-
spectively, the electron and hole effective masses used in the
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calculations. Moreover, for the bulk band gap we used E0
=4.2 eV which corresponds to direct transitions from the top
of the valence band to the 	2 conduction band minimum.36,37

For this transition the parabolic band approximation is valid
at least around the 	2 point. Obviously, the confinement en-
ergies of electrons and holes in very thin silicon layers are
overestimated by the parabolic band approximation. More
sophisticated band structure calculations36 are needed but
this is out of the scope of the present work.

The electron-photon interaction Hamiltonian is given by

He-pht
i�s� =

qp� ·A� i�s�

me
as usual; p� being the electron quantum momen-

tum and A� i�s� the vector potential of the incident �scattered�
radiations. We assume deformation-potential �DP� electron-
phonon interaction involving longitudinal acoustic �LA� vi-
brations. Thus, the electron-phonon Hamiltonian, acting on

the envelope wave functions, reads He-phn=Dc�v��� ·u� , where
u� is the displacement vector, and Dc�v� is the conduction �va-
lence� band deformation potential energy. Using stress free
boundary conditions at the film surfaces, the displacement
field of confined LA vibrations along the z direction is given
by

um�z� =� �

2
V�m
cos	m�z

Lz

 , �3�

where 
 and V are the mass density and film volume, respec-
tively; the frequency of LA phonons, assuming a linear dis-
persion, is proportional to the longitudinal sound velocity vL

and the phonon wave vector km=�
m
Lz

: �phn=�m=vLkm �m is
an integer�.

When only one intermediate electronic state is resonantly
excited by the probe light, the sum of scattering amplitudes
�Eq. �1�� can be limited to one term; the off-resonance terms
can be neglected. In that case the Raman-Brillouin peak po-
sitions and intensities are directly related to the spatial dis-
tribution of the electronic density selected by the optical ex-
citation. Otherwise, one has to sum a large number of terms
which leads to strong interference effects in the overall scat-
tering efficiency. Therefore, the characteristics of the Raman-
Brillouin spectra can hardly be related to characteristic fea-
tures of the excited electronic states.

In order to overcome this difficulty, we proposed to re-
write the scattering efficiency �Eq. �1�� by introducing a
Raman-Brillouin electronic density defined as31


RB�Ei,Es,z� =
1

R�Ei,Es�
�

e,e�,h

Rh,e�
s �Es��e�

* �z�Re,h
i �Ei��e�z� ,

�4�

where Re,h
i�s��Ei�s�� is a dimensionless resonance factor given

by

Re,h
i�s��E� =

�e�He-pht
i�s� �h�

Ei�s� − Ee-h + i�e-h
�5�

and

R�Ei,Es� = �
e,h

Rh,e
s �Es�Re,h

i �Ei� �6�

is a normalization factor satisfying 

RB�z�dz=1.

RB�z� is determined by the sum over the initial hole states

of the overlapping between the effective electronic state
�eRe,h

i �Ei��e�z� excited at the probe laser energy Ei, and the
effective electronic state �e�Rh,e�

s �Es��e��z� giving rise to
emission of a scattered photon at energy Es=Ei±��phn;

RB�z� has real and imaginary contributions because of the
homogeneous broadening of the electron-hole transitions
�Eq. �5��. Using Eq. �4�, Eq. �1� becomes

�R�Ei,Es�Dc� 
RB�z�
�um�z�

�z
dz�2

. �7�

From Eq. �7�, one can see that 
RB�z� is the electronic density
distribution that interacts with the phonon field and is re-
sponsible for the Raman-Brillouin scattering.

Strictly speaking, Eq. �7� does not contain new physics
with respect to Eq. �1� in the sense that both equations are
equivalent. However, using Eq. �7�, one is still able to plot an
electronic density distribution which is directly connected to
characteristic features of the Raman-Brillouin spectra, al-
though many electronic states are involved in the light scat-
tering. Moreover, as we will show, the RBED is the discus-
sion thread between the Raman-Brillouin quantum model
and the photoelastic model.

B. Photoelastic model

In the photoelastic model, the light scattering is due to the
modulation of the dielectric susceptibility by the vibration
modes. Here, we discuss the integral form of the photoelastic
model as introduced in Ref. 4 and used by many authors for
the interpretation of Raman-Brillouin scattering in low-
dimensional systems. Notice that the photoelastic model was
initially develop in a differential equation form.33 However,
both forms �integral and differential� assume a steplike pho-
toelastic constant and this is the main point to be discussed in
the following sections.

For scattering by longitudinal acoustic modes the Raman-
Brillouin efficiency is proportional to4,12,14

�� As
*� �z�Ai

� �z�P�z�
�um�z�

�z
dz�2

, �8�

where P�z� is the spatial variation of the photoelastic coeffi-

cient, and A� i �A� s� is the incident �scattered� photon field.
Optical and acoustical cavity effects are introduced through
wave reflections and transmissions at the interfaces.11,12,14

In order to introduce the spatial variation of the incident
and scattered photon fields in a simple way, we assume �for
both PEM and RBQM� Ai�s��z� of the form cos�ki�s��z
−Lz /2��; ki�s� being the incident or scattered photon wave
vector component along the z direction. The in-plane com-
ponent of the incident and scattered wave vectors are ne-
glected in the backscattering configuration �excitation and
detection along the z direction�. Optical cavity effects, due to
reflections at the material/air interfaces, may play an impor-
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tant role because the symmetry of the electromagnetic fields
inside the layer is responsible for a selection of the confined
vibration modes that gives rise to Raman-Brillouin scatter-
ing. Although, important for the interpretation of experimen-
tal data such effects are not addressed in this paper. More-
over, with the form adopted for Ai�s��z� �standing waves� the
backward and forward scattering configurations are equiva-
lent.

For a bulk material, the photoelastic coefficient is a con-
stant within the material volume �of which dimensions are
much larger than the wavelength of photons and phonons�. In
that case the integral in Eq. �8� reduces to a delta function
and the wave vector conservation ki−ks=km is fulfilled.
Hence, the spectrum of the scattered light consists of a single
line, namely, the Brillouin peak.

In superlattices, P�z� is a periodic steplike function along
the growth direction. According to Eq. �8�, the wave vector
conservation is fulfilled at integer numbers of the superlattice
wave vector leading to several peaks in the Raman-Brillouin
spectrum. It is well known that from the frequencies of these
peaks, one is able to extract the superlattice period.1,2,4 The
intensities ratios of the peaks are directly related to the pho-
toelastic coefficients of the layered materials.

For our model system, consisting of a single two-
dimensional layer, P�z� is a rectangular function. The photo-
elastic coefficient being constant inside the layer and zero
outside. In the following we will refer to this P�z� profile as
a “steplike” profile. In that case, the wave vector conserva-
tion law breaks down �along the z direction� and all acoustic
phonon modes become allowed. Their Raman activity de-
pend on their symmetry �with respect to the middle of the
layer� and on the electromagnetic fields inside the layer �see
Eq. �8��.

III. RESULTS AND DISCUSSIONS

A. Construction of the Raman-Brillouin electronic density

Figure 1 shows the spatial distribution of the RBED cal-
culated using Eq. �4� for a film thickness Lz=10 nm. Since
we are interested in studying the change of the Raman-
Brillouin scattering around the fundamental electronic tran-
sition, 
RB�z� was generated using the first fifteen electron
and first fifteen hole states. A homogeneous broadening
�e-h=25 meV �thermal broadening at room temperature� was
used for all transitions. The RBED shown in Fig. 1 was
calculated for various values of the detuning between the
incident photon energy and the fundamental electron-hole
transition; the detuning is defined as �=Ei− �E0+Ee

1+Eh
1� in

which Ee
1 �Eh

1� is the confinement energy of the fundamental
electron �hole� state. We also define the reduced detuning
��=� / �Ee

1+Eh
1� and reduced broadening ��=�e-h / �Ee

1+Eh
1�.

The scattered photon energy is fixed at the Stokes value Es
=Ei−��1 corresponding to emission of the first confined
acoustic vibration mode.

Because ��phn��e-h, in-coming and out-going reso-
nances occur simultaneously, and the RBED is rather inde-
pendent of the acoustic vibration energy �this point will be
reconsidered later on�. For excitation well below the funda-

mental electron-hole transition ���=−7 and −4�, the RBED
distribution within the layer is quasiuniform �i.e., constant
except in the vicinity of the film surfaces�. In this situation
�far from resonance�, there is no selection of a particular
transition. Close to resonance ���=−1.5�, the contribution of
the first confined electron-hole transition emerges and be-
comes dominant for resonant excitation ���=0�. Higher en-
ergy confined transitions come into resonance, for ��=2, 4,
7, and 12, and give rise to strong oscillations of the RBED.

Figure 2 shows resonance profiles calculated according to
Eq. �6� for three values of the reduced homogeneous broad-
ening ��=�e-h / �Ee

1+Eh
1�. For rather small homogeneous

broadening ���=0.12 and 1.2� resonance peaks occur at each
confined electron-hole transition: the selection of a given
transition by the optical excitation is very efficient and the
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B
|(

ar
b.

u.
)

δ’=_4

δ’=4
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δ’=0

δ’=12

δ’=_1.5

δ’=2

FIG. 1. Modulus of the Raman-Brillouin electronic density
along the z axis of a 10-nm-thick layer, and for reduced detuning
ranging from ��=−7 to ��=12. The reduced homogeneous broad-
ening is ��=�e-h / �Ee

1+Eh
1�=1.2. The plots were shifted vertically

for clarity.
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FIG. 2. Raman-Brillouin intensity as a function of the detuning
�� for a 10-nm-thick layer. Resonance profiles are shown for homo-
geneous broadening �=2.5 meV ���=0.12�, 25 meV ���=1.2�, and
250 meV ���=12�.
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light scattering is mediated by the corresponding electron
and hole states. For larger homogeneous broadening ���
=12�, many electron-hole transitions are excited leading to
interferences between different scattering paths: the low-
energy tail �negative detuning in Fig. 2� is due to the reso-
nance effect and also to the fact that, for negative detuning,
all scattering amplitudes have nearly the same phase �that of
the optical excitation�. In that case, the interferences between
the different scattering amplitudes �terms of sum 4� are con-
structive. Whereas, for positive and large detuning ����1�
some scattering amplitudes have a positive phase and others
a negative phase depending on whether the energy of the
excited �and detected� electron-hole transition is larger or
smaller than the excitation energy. As a consequence, the
scattered intensity falls down for positive detuning due to
destructive interference between all scattering amplitudes.

Figure 3 shows the construction of the Raman-Brillouin
electronic density for ��=−7 and ��=1.2 �plotted in Fig. 1�.
The number n for electron and hole states is increased from
1 to 15.

One can see that even for excitation well below ���
=−7� the fundamental electron-hole transition, high energy
transitions play an important role in the construction of the
RBED �i.e., in the scattering process�. For instance, the
maximum value of the RBED reaches only 91% of its final
value �inset of Fig. 3� when including three electron and
three hole states. The convergence curves and the plots in
Fig. 3 show that the RBED tend to be quasiuniform and does
not evolve once ten electron and ten hole states are taken into
account.

As can be noticed, the convergence of the RBED is very
rapid. This allows generating Raman-Brillouin spectra, with-
in a reasonable computation time, even for large systems.

From Eq. �4� it is evident that the RBED has a real part
and an imaginary part; the latter is due to the homogeneous

broadening of the electronic transitions. For ��=−7 and ��
=1.2 the imaginary part of the RBED is rather small in com-
parison with the real part. It, however, increases when ap-
proaching the resonance and has a noticeable influence on
the spatial distribution of �
RB�z��.

B. Size dependence of the RBED

The lower panel of Fig. 4 plots the distribution of the
RBED along the z axis for various layer thicknesses Lz. The
excitation energy Ei and homogeneous broadening � are
fixed at 4.075 eV and 25 meV, respectively. In that case, the
reduced detuning �� and homogeneous broadening �� de-
pend on the layer thickness as indicated in the figure caption.
For very thin layers �Lz=2 nm� both �� and �� are small.
Then, the fundamental electron-hole transition is efficiently
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B
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u.
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z(nm)
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FIG. 3. Construction of the RBED for ��
=−7 �excitation below the fundamental optical resonance� and ��
=1.2. n is the number of electron and the number of hole states used
in the calculations. Starting from the lowest plot n=1 �one electron
and one hole states�, n is increased up to 15. The inset shows con-
vergence curves defined as 
= �
RB,max

n �− �
RB,max
n−1 � / �
RB,max

n � �cir-
cles� and �=1− �
RB,max

15 �− �
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FIG. 4. Lower panel: Modulus of the RBED along the z axis for
layer thickness ranging from Lz=2 to 100 nm. The excitation en-
ergy is fixed at Ei=4.075 eV and the homogeneous broadening is
�=25 meV. Reduced detuning and homogeneous broadening
��� ,��� are, from bottom to top, �−1.2,0.05�, �−7,1.2�, �−38,7.4�,
and �−590,120�. For each Lz are shown the steplike profile �bold
dotted line� and the trapezoidlike profile �bold dashed line�; z− and
z+ are the z coordinates �dashed lines� which define the trape-
zoid. Upper panel: deviation of the steplike and trapezoidlike
profiles from the RBED evaluated as �step�trap�= �Sstep�trap�
−
�
RB�z��dz� /
�
RB�z��dz.
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selected by the optical excitation. For this reason the RBED
reduces to the density distribution associated with the first
confined electron and hole states �Eq. �2��. With increasing
layer thickness, the energy separation between the confined
electronic states decreases and many transitions come into
resonance. This leads to a quasiuniform distribution of the
RBED for Lz=10 and 25 nm as shown in Figs. 3 and 4.
However, for Lz=100 nm the RBED oscillates and strongly
deviates from a quasiuniform distribution. In fact, it is the
wave vector conservation law that starts to come out with
increasing layer thickness.

Indeed, for ki�s�Lz�1, i.e., for a layer thickness much
smaller than the �incident and scattered� photon wavelength
�around 150 nm inside the layer� the electromagnetic fields
Ai�z� and As�z� are slowly varying functions along the z axis.
Therefore, the electron-photon matrix elements are propor-
tional to the overlapping between the electron and hole wave
functions. Thus, only electron and hole states having the
same envelope wave functions are relevant for both the pho-
ton absorption and emission steps. As a consequence, the
intermediate states e and e� in Eqs. �1� and �7� are inevitably
the same and the RBED is composed of diagonal matrix
elements. The RBED plotted in Figs. 1 and 3 are mainly due
to such diagonal contributions �ki�s�Lz�0.1�. Off-diagonal
transitions have been taken into account but are negligible
for Lz�10 nm.

Figure 5 shows the spatial distribution of both diagonal
and off-diagonal Raman-Brillouin electronic densities. For
these plots Ei and � are varied so that the reduced detuning
and homogeneous broadening are fixed ���=−7 and ��=1.2�.
This allows one to compare similar resonance conditions for
the different layer thicknesses.

With increasing layer thickness the off-diagonal part of
the RBED increases and becomes important for Lz=100 nm

�Fig. 5�. Indeed, for a layer thickness comparable to the ab-
sorbed and emitted photon wavelengths ki�s�Lz�1, the spatial
variation of the electromagnetic fields allows transitions be-
tween electron and hole states having different envelope
wave functions. Therefore, different states e and e� in Eqs.
�1� and �7� can be involved in the light scattering. In the limit
of ki�s�Lz�1 the RBED involves only transitions that fulfill
the wave vector conservation rule at the electron-photon in-
teraction steps �emission and absorption�. In that case states
e and e� differ by the exchanged wave vector.

It is interesting to notice that the RBED shown in Fig. 5
for Lz=2 nm strongly differs from the one plotted in Fig. 4
for the same layer thickness. The reduced detuning is not the
same in these figures. In Fig. 5 the optical excitation is well
below ���=−7� the electron-hole transition. It is much larger,
in absolute value, than the separation between the confined
energy levels. In that case, the resonance factors associated
with the different transitions are similar. That’s why the
RBED tends to be quasiuniform for a very negative detun-
ing.

The study of the RBED distribution shows that the optical
transitions giving rise to the light scattering process strongly
depends on size effects. This is particularly important for the
emission and absorption of vibration modes and for the in-
terpretation of experimental data.

In the photoelastic model a steplike photoelastic coeffi-
cient �constant within the layer and zero outside� is usually
assumed. By comparing Eqs. �7� and �8� one can see that the
product As

*�z�Ai�z�P�z� identifies with the RBED 
RB�z�. For
ki�s�Lz�1 �i.e., nanosized layer thickness�, As

*�z�Ai�z� is
rather constant and thus it is mainly the photoelastic coeffi-
cient profile that determines the Raman-Brillouin spectra in
the photoelastic model. That’s why, in the following, we
compare directly 
RB�z� and P�z�.

First, as can be seen in Fig. 4, the RBED is far from being
constant within the layer; it vanishes at the film surfaces
because only the first confined transitions significantly con-
tribute to the RBED �Fig. 3�. In other words, if all transitions
could equally contribute to the light scattering, the RBED
would approach a steplike profile. This is, of course, not the
case since high energy transitions are far away from the op-
tical excitation, thus leading to very small resonance factors.

The top panel of Fig. 4 presents a comparison between the
RBED distribution of Fig. 4, the steplike profile usually
adopted for the photoelastic coefficient and a proposed trap-
ezoidlike profile. This comparison is performed for fixed ex-
citation energy �4.075 eV� and homogeneous broadening
�25 meV�. The parameter used to evaluate the deviation of
the RBED from the steplike or from the trapezoidlike profile
is defined as �= �Sstep�trap�−
�
RB�z��dz� /
�
RB�z��dz, where
Sstep�trap� is the integral of the steplike �trapezoidlike� profile
over the layer thickness. The amplitude of the steplike and
trapezoidlike profiles are fixed to the maximum value of the
RBED inside the layer �see Fig. 4�.

It is clear that the steplike profile shows strong deviations
from the RBED for very narrow layers �less than 10 nm�.
The trapezoidlike profile fits much better the RBED distribu-
tion. In other words, by forcing the photoelastic coefficient to
vanish at the layer surfaces, the quantum nature of the film
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is, in that artificial way, taken into account �the thin layer is
no longer considered simply as a part of a bulk material from
the view point of the optical properties�. For Lz�30 nm the
RBED starts to oscillate �see plot for Lz=100 nm in Fig. 4�.
It strongly deviates from the steplike and trapezoidlike pro-
files because the spatial variation of As

*�z�Ai�z� is not taken
into account when only the photoelastic coefficient is plotted.

Second, by studying the variation of the RBED as a func-
tion of Lz we are able to propose trapezoidlike profiles that fit
the RBED for layer thicknesses ranging from 2 to 25 nm;
the parameters z− and z+ defined in Fig. 4 are z−=0.74
+0.13Lz and z+=−0.74+0.87Lz, where Lz is in nm. Notice
that for very thin layers �Lz=2 nm in Fig. 4� the trapezoidlike
profile becomes a trianglelike profile and obviously it
strongly deviates from a steplike profile. By comparing the
RBED distribution with these profiles it clearly appears that,
for layer thickness ranging from 2 to 25 nm, the proposed
trapezoidlike profile is more realistic than the steplike profile
usually assumed for the photoelastic coefficient. For larger
layer thickness �Lz�25 nm� the deviations of the steplike
and trapezoidlike profiles from the RBED indicate that the
As

*Ai terms should be taken into account, even for Lz about
five times smaller than the photon wavelengths.

Finally, strong deviations of the RBED distribution from
the steplike and trapezoidlike photoelastic profiles are evi-
dent if one consider resonant excitation �see Fig. 1�: both
profiles are unable to approximate the RBED for excitation
close to and above the fundamental electron-hole transition.
The PEM, in which a real and dispersionless PE coefficient
is assumed, is valid only for excitation below the fundamen-
tal electron-hole transition. That is why we compared the
RBQM and PEM for negative �� �in Fig. 4�. We now inves-
tigate the emission and absorption of acoustic vibrations and
compare the inelastic light scattering spectra simulated using
the RBED �quantum model� and the photoelastic model in
which either the steplike or trapezoidlike profile of the of the
photoelastic constant is assumed.

C. Simulations of Raman-Brillouin spectra

1. Diagonal/off diagonal contributions

Figure 6 presents Raman-Brillouin spectra generated us-
ing Eq. �7�. The peaks in the Stokes and anti-Stokes regions
are due to emission and absorption of confined acoustic vi-
brations �their frequencies scale as the inverse of the layer
thickness Lz�. For each Lz are plotted the spectra simulated
with either diagonal or off-diagonal RBED �shown in Fig. 5�.
One must, however, keep in mind that the overall scattered
intensity is the coherent sum of the diagonal and off-diagonal
contributions.

As mentioned above, for Lz=2, 10, and 25 nm the
Raman-Brillouin spectra are determined by the diagonal part
of the RBED, mainly. Off-diagonal RBED contributes only a
little to the light scattering. It also means that, for ki�s�Lz

�1, mainly diagonal electron-vibration matrix elements are
responsible for the inelastic light scattering. This can be de-
duced directly from Eq. �1� by letting the intermediate states
e and e� be the same. With increasing layer thickness off-
diagonal electron-vibration matrix elements come out since

the excited electronic state e can be different from the one,
e�, giving rise to the optical emission of the scattered photon.
The off-diagonal contribution to the Raman-Brillouin spectra
becomes dominant for ki�s�Lz�1 �plots for Lz=100 nm in
Fig. 6�. For infinite systems the diagonal contribution is for-
bidden whereas the off-diagonal contribution gives a single
scattered peak: a Brillouin peak located at the acoustic vibra-
tion frequency of the wave vector km=ki−ks.

The inset of Fig. 6 shows the evolution of the diagonal
�Ion� and off-diagonal �Ioff� Raman-Brillouin intensities ver-
sus layer thickness. These curves are particularly important
for analyzing experimental data. Indeed, since the intensities
ratios between the Raman-Brillouin lines, due to confined
acoustic vibrations, strongly depend on the spatial distribu-
tion of the electronic density it is important to evaluate, for a
given layer thickness, the relative contributions of diagonal
and off-diagonal RBED as both do not have the same spatial
distribution �Fig. 5�. From the evolution of Ion and Ioff one
can see that for �Lz�30 nm� the contribution of the off-
diagonal RBED to the Raman-Brillouin scattering can be
neglected.

Notice that for Lz=25 nm and 100 nm the anti-Stokes in-
tensity is larger than the Stokes intensity because of the
stronger outgoing resonance for the anti-Stokes scattering.
As a matter of fact, ��=−7 and ��=1.2 correspond to detun-
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ing �=−1.25 meV and homogeneous broadening �
=0.25 meV for Lz=100 nm. These values indicate that the
energy separation between the Stokes and anti-Stokes fre-
quencies is comparable to the detuning and smaller than the
homogeneous broadening. In that case, strong differences be-
tween outgoing resonances in the Stokes and anti-Stokes re-
gions are indeed expected.

2. Steplike, trapezoidlike, and RBED profiles

Figure 7 shows the spectra calculated in the frame of the
Raman-Brillouin quantum model and of the photoelastic
model for a layer thickness Lz=10 nm. The trapezoidlike
photoelastic coefficient used in the PE model is the one that
fits the RBED for Lz=10 nm �see Fig. 4�. Each spectrum was
normalized to the intensity of the first low-frequency peak.
Some differences in the peak intensities ratios can be no-
ticed. These differences lie in the spatial distribution of the
RBED and of the photoelastic coefficient profiles.

As indicated in Fig. 7, the intensities ratios of the peaks
generated with the PE model using either the steplike or the
trapezoidlike profile are different. The wavelengths of the
lowest frequency peaks associated with the m=1 and 3 con-
fined modes �see Eq. �3�� are comparable to the layer thick-
ness. They are less sensitive to the details of the photoelastic
coefficient profile than the vibration modes at higher fre-
quencies. Indeed, the Raman-Brillouin intensities of the high
frequency peaks due to the m=5, 7, 9, and 11 modes are
overestimated by the steplike PE profile.

In Fig. 8 are plotted the trapezoidlike/steplike Raman-
Brillouin intensities ratios as a function of layer thickness Lz.
These plots were generated using the analytical expression

Itrap/Istep = 	 sin�kmz−�
kmz−


2

�9�

which is a simple squared sinc function, where km=m� /Lz;
the trapezoidlike profiles �characterized by z−� are those dis-
cussed in the preceding section �and plotted in Fig. 4�. These
profiles were obtained for a fixed excitation energy
�4.075 eV� and homogeneous broadening �25 meV�, and for
layer thickness ranging from 2 to 25 nm �plotted range in
Fig. 8�. As one can see, the convergence between the trap-
ezoidlike and steplike models is rather rapid for the first con-
fined mode m=1: the intensity ratio is around 0.4 for Lz
=2 nm and reaches 0.9 for Lz=17 nm. For the m=3 mode
this ratio is only 0.33 at Lz=17 nm and less than 0.05 for the
m=5 and 7 modes. The shorter the wavelength �in compari-
son with z−� the greater the sensitivity to the PE profile.

In most of the published works,4,11,12 the photoelastic
model, with the crude assumption of a steplike photoelastic
coefficient, succeeded in simulating the acoustic phonons in-
duced Raman scattering and the modulation of the optical
response observed in time-resolved pump-probe experi-
ments.15–18 However, in some cases, for instance in short
period superlattices38 �i.e., with layer thicknesses smaller that
the acoustic wavelengths�, or for excitation close to optical
resonances,38,39 strong deviations between measured and cal-
culated Raman intensities are noticed. In these situations the
PE profile can strongly deviate from a steplike profile as
shown in Figs. 1, 3, and 4. Therefore, we propose to improve
the PE model �in the high vibration frequency range� by
using trapezoidlike, instead of steplike, profiles for the pho-
toelastic coefficient. The dependence of these profiles on the

FIG. 7. Inelastic light scattering spectra simulated according to
the Raman-Brillouin quantum model ���=−7 and ��=1.2� and us-
ing the photoelastic model with steplike and trapezoidlike profiles
of the photoelastic coefficient. The layer thickness is 10 nm. Each
spectrum has been normalized to the intensity of the first low-
frequency peak �out of the vertical scale�. The intensities ratios,
with respect to the first peak, are indicated for the anti-Stokes
scattering.
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layer thickness has been discussed in the previous section.
Nevertheless, one must keep in mind that these profiles de-
pend on the excitation energy.

Moreover, experimental data were reported in Ref. 13
on silicon membranes with thicknesses ranging from 24 to
32 nm. The light scattering was excited below the fundamen-
tal direct transition. It has been shown that the PE model
with a steplike photoelastic constant, well accounts for the
Raman-Brillouin intensities associated to the first confined
acoustic vibrations. However, some deviations of the simu-
lated spectra from the measured ones can be noticed for the
high frequency confined vibrations. According to Fig. 4, dif-
ferences between the Raman-Brillouin intensities calculated
with the trapezoidlike and steplike profiles are indeed ex-
pected for such thin layers. It is worthwhile to mention that
due to the low scattering efficiency of very thin layers, ex-
periments are usually performed close to resonance with
some optical transitions involving confined electronic states.
This enhances the Raman-Brillouin scattering but the latter
can no longer be described in the frame of the PEM whatever
the profile of the photoelastic constant �trapezoid or step-
like�. As shown in Fig. 1 the RBQM is more appropriate in
the case of resonant excitation.

It is worthwhile to underline that the experimental
Raman-Brillouin peak intensities strongly depend on the in-
cident and scattered photon fields,13 i.e., on the scattering
configuration �forward and backward scattering�. In our cal-
culations we assumed simple standing electromagnetic
waves �cosine functions�. More complete modelling of the
optical properties is required to compare directly with ex-
periments.

The scattered intensities generated with the RBQM differ
from those obtained with the PEM for both the steplike and
trapezoidlike profiles. Although, the latter is based on a good
approximation of the RBED distribution inside the layer, it
does not take into account explicitly outgoing resonance ef-
fects. Indeed, the RBED depends on the excitation energy,
optical transitions �energy, homogeneous broadening� and
also on the scattered photon energy, i.e., on the vibration
mode energy �resonance factor for the outgoing photons in
Eq. �6��. This was not taken into account while fitting the
RBED with trapezoidlike profiles. In other words, we as-
sumed vibration energies smaller than the homogeneous
broadening of the electronic transitions and thus identical
resonance factors for the incident and scattered photons. One

can see in Fig. 7 that the explored vibration energy range
�40 meV in both Stokes and anti-Stokes regions� is larger
than the homogeneous broadening �25 meV� of the optical
transitions. So, strictly speaking, for a given layer thickness
and excitation energy, one should determine a trapezoidlike
profile for each scattered photon energy �i.e., for each emit-
ted or absorbed vibration mode�. Of course, this points out
the limits of the PE model even if size-dependent trapezoid-
like profiles are included.

IV. CONCLUSION

In summary, we have introduced an effective electronic
density in the Raman-Brillouin quantum model which allows
one to discuss, in a direct and a rather simple way, resonance
effects and size dependence of the spectra even when a large
number of intermediate electronic states are involved in the
light scattering. In particular, we have pointed out the impor-
tance of diagonal electron-vibration matrix elements for
nanosized objects, as they are responsible for the main con-
tribution to the Raman-Brillouin scattering. The effective Ra-
man Brillouin electronic density also serves to investigate
the validity of the steplike profile of the photoelastic coeffi-
cient usually assumed in the photoelastic model: we have
shown that for layer thickness smaller than 25 nm the trap-
ezoidlike profile is more realistic than the steplike profile.
The Raman-Brillouin spectra calculated using both profiles
are comparable for the lowest frequency vibration mode �m
=1 confined mode� and for layer thickness larger than
17 nm. The profile of the photoelastic coefficient has strong
impacts on the Raman-Brillouin intensities of the highest
frequency confined modes �m=3,5 ,7 , . . . �, particularly for
very thin layers �below 10 nm�. As a matter of fact, we found
that the intensities of the m=5,7 ,9 , . . . modes are overesti-
mated by a steplike profile: no convergence between the in-
tensities calculated with the steplike and trapezoidlike pro-
files was observed for layer thickness up to 25 nm.
Moreover, we have shown that, due to optical selection of
confined electronic states, neither the steplike nor the trap-
ezoidlike profiles are able to approximate the Raman-
Brillouin electronic density for resonant excitation. The con-
cepts discussed in this work are quite general and can be
extended to analyze the Raman-Brillouin scattering in a va-
riety of low-dimensional systems.
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