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The maximum cooling temperature of a uniform thermoelectric material is limited by its dimensionless
figure of merit ZT. Inhomogeneous or graded thermoelectric materials are mainly studied when there is a large
temperature gradient and the material composition is typically optimized for maximum local ZT. We show that
this is not the correct optimization for maximizing the cooling temperature. We give the theoretical limit of
maximum cooling temperature for an ideal inhomogeneous material. Surprisingly, the optimum Seebeck profile
in the device has three sections with distinct characteristics. As a contrast to the local ZT optimization, the
uniform efficiency criterion is proposed for the design of graded thermoelectric materials in cooling applica-
tions. This optimization is applied to the practical Bi2Te3 material which is common in thermoelectric appli-
cations. Temperature and electrical conductivity dependences of the material properties are taken into account.
The graded material is numerically optimized and it achieves a 27% cooling enhancement compared to the best
homogeneous material.
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I. INTRODUCTION

The maximum cooling temperature of a single stage uni-
form material is limited by its dimensionless figure of merit
ZT, where T is the absolute temperature and the material
thermoelectric figure of merit Z is a function of Seebeck
coefficient S, electrical conductivity �, and thermal conduc-
tivity k: Z=S2� /k.1 The maximum cooling temperature of
typical commercial thermoelectric elements �ZT�1 at room
temperature� is about 70 K. A much larger cooling down
from room temperature to cryogenic range is very useful in
applications such as low-noise thermal sensors and cameras,
superconductor electronic circuits, and microscale low power
freezers for biological single cell storage. Since 1990s, nano-
structured materials have drawn a lot of attention because
their thermal conductivities can be greatly reduced below
those of the alloy limits and ZT values up to 2.4 have been
experimentally observed at room temperature.2–5 In a parallel
direction, a larger cooling temperature beyond that of the ZT
limit can be pursued through engineering of heat and current
flow in three-dimensional configurations.6 It has been proved
that graded thermoelectric materials can achieve much
higher cooling temperatures than uniform materials due to
the distributed Peltier cooling compensating for the internal
Joule heating.7,8 Essentially, this is about the internal com-
patibility in a graded thermoelectric cooling element, similar
as that in the power generation.9 However, the global opti-
mization of thermoelectric cooling is even more difficult
than that of power generation. This is due to the low effi-
ciency of thermoelectric material. The heat flux through the
thermoelectric element stays almost constant in power gen-
eration application but increases dramatically from the cold
side to the hot side in thermoelectric cooling. In this paper,
we first give the theoretical limit of maximum cooling tem-
perature for ideal inhomogeneous materials where the See-
beck coefficient and the electrical conductivity are changing
with position but the local ZT remains constant. While this is
quite a restrictive assumption, the exact analytical solution is

quite instructive. It shows that the optimum Seebeck profile
has three sections with distinct characteristics. It also pro-
vides an upper bound for the maximum cooling. We subse-
quently propose a criterion, so-called “uniform efficiency,”
for the design of graded cooling materials. This provides
some intuition about the analytic Seebeck profile found ear-
lier. Finally, we use a numerical optimization to maximize
cooling in an inhomogeneous state-of-the-art Bi2Te3 mate-
rial. In this case, no simplifying assumptions are made and
temperature dependence of material properties and the elec-
trical conductivity dependence of Seebeck coefficient and
thermal conductivity are taken into account.

II. MAXIMUM COOLING IN AN IDEAL CASE

Considering a graded thermoelectric material with the
thermal conductivity, the Seebeck coefficient, and the elec-
trical conductivity changing with position x, the heat equa-
tion at the steady state is

d

dx
�k�x�

dT�x�
dx

� = −
J2

��x�
+ JT�x�

dS�x�
dx

, �1�

where J is the electrical current density and T is the absolute
temperature. It can be proved that the cooling performance is
independent of the material dimensions. In a practical mate-
rial, an increase of electrical conductivity is usually accom-
panied with a decrease of Seebeck coefficient and there is an
optimal electrical conductivity which gives the maximum
thermoelectric power factor S2�. The thermal conductivity
usually increases with the electrical conductivity due to the
electronic contribution to heat conduction. For most semi-
conductor materials, lattice thermal conductivity is dominat-
ing and the relative change of thermal conductivity is small
when the electrical conductivity changes. In this section, in
order to find an analytical solution, we assume that the ther-
mal conductivity k�x�=C1 and the power factor S�x�2��x�
=C2 are constants in a finite range of electrical conductivity
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values. This assumption is a little stricter and more practical
than that made in Ref. 7. Muller et al. change each material
parameter independently. Even though the average Seebeck
coefficient and electrical conductivity do not change, the lo-
cal ZT could become larger than the maximum material ZT.
Under constant power factor and thermal conductivity as-
sumptions for a graded material with small ZT ��0.2�,8 the
maximum cooling temperature with respect to the current
density J can be written as

�Tmax =
1

2
ZT2

�
0

L

S�x�dx�
0

x

S�x��dx�

�
0

L

dx�
0

x

S2�x��dx�

. �2�

We prove mathematically in the Appendix that the theoretical
limit of maximum cooling temperature with respect to the
Seebeck profile S�x� is

�Tmax = �1 +
1

2
ln�SL

S0
���1

2
ZT2� , �3�

where S0 and SL represent Seebeck coefficients at the starting
and ending positions, respectively. The corresponding opti-
mal Seebeck profile includes three sections,

Sopt�x� = 	S0, 0 � x � 1/2

�S0/2�/�1 − x� , 1/2 � x � 1 − S0/2SL

SL, 1 − S0/2SL � x � 1,

 �4�

where position x is normalized with the material length L.
The optimal Seebeck profile is plotted in Fig. 1�a� for an
ideal material, whose thermal conductivity is 125 W/m K,
The Seebeck coefficient changes from 150 to 750 �V/K,
while its power factor keeps a constant value of
0.0013 W/m K2, which is a good approximation for a typi-
cal silicon material. The theoretical limit �Eq. �3�� represents
an increase of 80.5% over 0.5ZT2, the maximum cooling
temperature of a uniform material. The efficiency of thermo-
electric cooling, i.e., the coefficient of performance �COP�, is
defined as the ratio of the cooling power to the consumed
electrical work,

COP = Qc/W . �5�

For a fixed cooling temperature, there is an optimal pairing
of heat load and cooling current, which gives the largest
COP. For the inhomogeneous material optimized for maxi-
mum cooling temperature, the COP could be improved at
large cooling temperatures. This is verified in Fig. 1�b�,
which compares the optimal COP values of uniform and in-
homogeneous materials at different cooling temperatures.
The intercepts with cooling temperature axis �COP=0� are
the maximum cooling temperatures of corresponding materi-
als.

III. UNIFORM EFFICIENCY CRITERION

Because the optimal graded Seebeck profile defined in Eq.
�4� also offers the largest COP when the largest cooling tem-

perature is pursued, it makes sense to find more physical
meaning behind the mathematical solutions by thinking
about how to improve the cooling efficiency of a graded
material. The “global” optimization of the inhomogeneous
Seebeck profile is justified in that the heat flux increases
dramatically and the “local” efficiency varies from the cold
side to the hot side in a uniform material so that different
positions cannot reach the optimal operation at the same
time. It is reasonable to expect that a uniform distribution of
the local efficiency, which resulted from increasing the See-
beck coefficient, could improve the global cooling capacity.
In this case, we segment the material into sections and each
section is supposed to be homogeneous. The proposed “uni-
form efficiency criterion” here means that these sections
have the same local cooling temperature �T and they work

FIG. 1. �a� Three Seebeck profiles of an ideal inhomogeneous
material: the exact mathematical solution giving the maximum
cooling temperature and the approximate solutions using 4-section
and 20-section staircase profiles according to the uniform efficiency
criterion. �b� Comparison of the optimal COP of uniform and three
inhomogeneous materials at different cooling temperatures.
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individually with the same optimal COP, obeying the
relation1

COPopt =
Tc

�T

�1 + ZTm�1/2 − Th/Tc

1 + �1 + ZTm�1/2 , �6�

where Th, Tc, and Tm are each section’s hot end, cold end,
and average temperature, respectively. The optimal COP at a
given cooling temperature can be achieved only at the opti-
mal cooling current given by

Iopt

Imax
=

�T

Tc

1

�1 + ZTm�1/2 − 1
, �7�

where the maximum cooling current Imax is the ratio of STc
and the electrical resistance R of this section. The corre-
sponding optimal heat load Q is determined in turn by the
unitless equation

�T

�Tmax
= − � Iopt

Imax
�2

+ 2� Iopt

Imax
� −

Q

Qmax
, �8�

where Qmax is the maximum cooling capacity S2Tc
2 /2R. Sup-

pose that the material ZT is small and the total cooling tem-
perature is much smaller than the heat sink temperature. Ap-
proximately, Tc, ZTm, and Th /Tc can be taken as constants in
Eqs. �6� and �7� for different sections. According to Eq. �6�,
�T should be about the same for all the sections if they have
the same optimal COP, denoted by �. Since these sections
are electrically in series and the electrical currents Iopt are the
same, the maximum cooling current Imax of all the sections
should be the same according to Eq. �7�,

Imax =
Si�Tc�i

Ri



SiTA�i

Li
= C3, �9�

where i is the section index, A the cross-sectional area, Li the
length of section i, and C3 a constant. Because the electrical
work in the preceding sections is added into the heat load of
the succeeding section, according to Eq. �5�, the heat loads of
adjacent sections are related by Qi+1=Qi+Wi=Qi�1+1/��.
Thus, the ratio of the heat loads of adjacent sections is a
constant,

Qi+1

Qi
= 1 +

1

�
= C4. �10�

Then, it can be seen from Eq. �8� that the ratio of the maxi-
mum cooling capacities of adjacent sections is given by the
same constant,

�Qmax�i+1

�Qmax�i
=

Si+1
2 �i+1Li

Si
2�iLi+1

= C4. �11�

Using Eqs. �9� and �11� and the constant power factor as-
sumption Si

2�i=C2, it can be derived that

Si+1/Si = Li/Li+1 = 1 + 1/� = C4. �12�

Suppose that the total length of N cascaded sections is L and
the Seebeck coefficients at the cold and the hot sides are,
respectively, S1 and SN. We determine the local coefficient of
performance �, the Seebeck profile �S1 ,S2 , . . . ,SN�, and the

length Li of each section using Eq. �12� and the following
equations derived from Eq. �12�:

SN

S1
= �

i=1

N−1
Si+1

Si
= �1 +

1

�
�N−1

,

L = �
i=1

N

Li = LN�
i=1

N �1 +
1

�
�i−1

= LN���1 +
1

�
�N

− 1� .

�13�

The same cooling temperature of each section �T can be
determined by the uniform local efficiency � from Eq. �6�.
The total cooling temperature is �Twhole=N�T. It is easy to
find from Eqs. �5� and �10� that the efficiency of the whole
material including N sections with the same �T and � is

COPwhole =
Q1

�
i=1

N

Wi

=
1

�1 + 1/��N − 1
. �14�

The staircase Seebeck profiles of 4-section and 20-section
materials and their optimal COP values are plotted in Figs.
1�a� and 1�b�, respectively. It can be seen that multiple sec-
tion optimization according to the criterion of uniform effi-
ciency gives very similar results as the exact solution of glo-
bal optimization. In fact, when all the local sections are
working at their optimal condition with local �T and � sat-
isfying Eq. �6�, we are not guaranteed that the whole effi-
ciency COPwhole is optimal for the total cooling temperature
�Twhole and vice versa. To justify this argument, we scan the
cooling current and the heat load to find the optimal working
condition of the 4-section material with the maximum
COPwhole for each �Twhole. The local cooling temperature and
efficiency � of the four sections under the optimal working
condition are plotted in Fig. 2. It can be seen that there is
only one point of �Twhole, where both the local cooling tem-
perature �T and efficiency � of the four sections are the
same and they obey Eq. �6�, which means that at this point

FIG. 2. The cooling temperature and COP of each section for
the 4-section material working at its optimal condition for different
total cooling temperatures.
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each section achieves its optimal operation individually as
well as the full device. It can also be shown that the optimal
total cooling temperature decreases when the section number
N increases from N=4 �with less than four sections, one
cannot define a graded material profile with enough resolu-
tion�. This makes sense in that each Seebeck profile �section
number N in this case� is optimal only for a certain cooling
temperature range. These features indicate that the uniform
efficiency criterion developed above is suitable for the de-
sign of inhomogeneous material optimized for different
working conditions and cooling temperatures. Furthermore,
choosing a correct number of sections N may push the maxi-
mum cooling temperature to its theoretical limit.

IV. PRACTICAL MATERIALS

In a practical material such as Bi2Te3 alloy, the thermo-
electric power factor always changes with the electrical con-
ductivity. The temperature dependence of material properties
should also be taken into account because of its large ZT and
cooling temperature. There is no analytical solution of Eq.
�1� for the optimal Seebeck profile and the corresponding
cooling performance. Usually, the finite element method is
used to calculate the total cooling temperature and cooling
efficiency of a given material.10 To facilitate a numerical
simulation, we use some approximate formulas in Ref. 11 to
describe the relation of material properties and their depen-
dence on the local temperature. We start with a 4-section
Seebeck profile designed according to the uniform efficiency
criterion using the material properties at 260 K. Then, ran-
dom variations around the 4-section profile are generated re-
peatedly to find the optimal case. For each randomly gener-
ated profile, the current is scanned to find the maximum
cooling temperature and the local material properties are ad-
justed according to the calculated local temperatures. Several
iterations are taken to reach a self-consistent solution. The
optimal profiles from different Seebeck ranges are compared
to get the best solution. Simulations show that an optimal
inhomogeneous Bi2Te3 material can achieve a large cooling
temperature of 83.9 K, a 27% improvement compared to the
optimal uniform material �66.2 K�. The cooling efficiency of
the optimal inhomogeneous material is much more improved
compared to that of the uniform material when the cooling
temperature is above 50 K, a typical range in real applica-
tions. Figure 3 compares the Seebeck coefficient profile and
the local ZT distribution for the optimal uniform and inho-
mogeneous materials, respectively, when they are operated at
their maximum cooling conditions. The slight changes of the
Seebeck coefficient and the ZT of the uniform material are
due to the temperature dependence of material properties. It
is interesting that the optimal profile of the inhomogeneous
material still has a shape similar to that of the ideal case �see
Fig. 1�a�� after the temperature dependence of material prop-
erties and the variation of the thermoelectric power factor are
included. It is also prominent that the ZT of the best inho-
mogeneous material changes a lot in the cooling direction
and with a minimum of only 0.47 at the hot end.

Graded thermoelectric materials can be grown using, e.g.,
epitaxy or sputtering with precisely controlled doping con-

centration or material composition variation. For highly dif-
fusive material system, a low-temperature growth process is
required. High quality Bi2Te3 superlattice material has been
successfully grown.12

V. CONCLUSIONS

In summary, we give the maximum cooling of the optimal
inhomogeneous material and the corresponding optimal See-
beck coefficient profile for an ideal case. The criterion of
uniform efficiency provides some physical insight into the
design of inhomogeneous material for different cooling in-
tensities, which can serve as a starting point for a self-
consistent numerical optimization of practical materials.
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APPENDIX: NONLINEAR OPTIMIZATION

We want to maximize the functional below with respect to
the Seebeck profile S�x�,

F�S�x�� �
�

0

1

S�x���
0

x�
S�x�dxdx�

�
0

1 �
0

x�
S2�x�dxdx�

=

1

2��0

1

S�x�dx�2

�
0

1

�1 − x�S2�x�dx

.

�A1�

For a fixed Seebeck profile S�x�, the maximum cooling tem-
perature �with respect to the electrical current� is given in Eq.
�2� in the text as

�Tmax =
1

2
ZT2F�S�x�� . �A2�

In the optimization, the Seebeck profile S�x� is subject to the
constraint

FIG. 3. The Seebeck coefficient profile and the local ZT distri-
bution for the optimal uniform and inhomogeneous Bi2Te3

materials.
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S0 � S�x� � S1, x � �0,1� .

Below, we will show that the optimal Seebeck profile is
given by

Sopt�x� = 	 S0, 0 � x � 1/2

S0/2�1 − x� , 1/2 � x � 1 − S0/2S1

S1, 1 − S0/2S1 � x � 1.

 �A3�

It is straightforward to verify that the maximum cooling tem-
perature for Sopt�x� is

�Tmax = �1

2
ZT2��1 +

1

2
ln�S1

S0
�� . �A4�

Now we show step by step the mathematical analysis that
leads to Sopt�x�.

Step 1. The optimal S�x� must be nondecreasing. Suppose
that we discretize S�x� as

S�x� = yj for x � � j

N
,
j + 1

N
� .

The numerator and denominator of F�S�x�� are expressed as

1

2��0

1

S�x�dx�2

=
1

2
� 1

N
�
j=0

N−1

yj�2

,

�
0

1

S2�x��1 − x�dx =
1

N
�
j=0

N−1 �1 −
j

N
�yj

2.

�A5�

If S�x� is not nondecreasing, then we can find a pair of indi-
ces �j ,k� such that j�k but yj �yk. By exchanging the val-
ues of yj and yk, we have that �1/2���1/N�� j=0

N−1yj�2 is un-
changed but �1/N�� j=0

N−1�1− j /N�yj
2 is decreased. It follows

that the value of F�S�x�� is increased after the exchange.
Therefore, the optimal S�x� must be nondecreasing.

Step 2. The optimal S�x� has three segments,

Sopt�x� = 	 S0, 0 � x � x0

S0 � S�x� � S1, x0 � x � x1

S1, x1 � x � 1.



This follows directly from that Sopt�x� must be nondecreasing
�result of step 1�.

Step 3. The middle segment of Sopt�x� must satisfy

Sopt�x� =
q

1 − x
for x � �x0,x1� .

Let �S�x� be a function that is nonzero only in the middle
segment. That is, �S�x�=0 in �0, x0� and in �x1, 1�. Consider
a small perturbation to the middle segment of Sopt�x�,

Sopt�x� + ��S�x� .

When � is small enough, Sopt�x�+��S�x� is between S0

and S1 �i.e., satisfying the constraint of the optimization�.
Sopt�x� is the optimal Seebeck profile that implies

F�Sopt�x� + ��S�x�� � F�Sopt�x�� , �A6�

for � small enough, which leads to

�dF�Sopt�x� + ��S�x��
d�

�
�=0

= 0. �A7�

Restricting our attention to perturbations satisfying
�x0

x1�S�x�dx=0, we have

�dF�Sopt�x� + ��S�x��
d�

�
�=0

=

− 2��
0

1

Sopt�x�dx�2

��
0

1

�1 − x�Sopt
2 �x�dx�2

	�
0

1

�1 − x�Sopt�x��S�x�dx ,

�
x0

x1

�1 − x�Sopt�x��S�x�dx = 0 for all �S�x� satisfying

�
x0

x1

�S�x�dx = 0,

�1 − x�Sopt�x� = const for x � �x0,x1� ,

Sopt�x� =
q

1 − x
for x � �x0,x1� .

Step 4. Sopt�x� must be continuous at both x0 and x1.
We show the continuity using the method of proof by

contradiction. Suppose that Sopt�x� is discontinuous at x0.
Since Sopt�x� is nondecreasing, we have

S0 �
q

1 − x0
and

q

1 − x1
� S1,

�1 − x0�S0 � q � �1 − x1�S1,

�1 − x0�S0 − �1 − x1�S1 � 0. �A8�

Let �S�x� be a function that is nonzero only in �x0−
 ,x0�
and �x1 ,x1+
�. Specifically,

�S�x� = 	1, x � �x0 − 
,x0�
− 1, x � �x1,x1 + 
�
0 otherwise.



Consider a small perturbation to Sopt�x�,

Sopt�x� + ��S�x� .

When � is positive and small enough, Sopt�x�+��S�x� is be-
tween S0 and S1 �i.e., satisfying the constraint of the optimi-
zation�. Sopt�x� is the optimal Seebeck profile that implies

F�Sopt�x� + ��S�x�� � F�Sopt�x�� ,

for � positive and small enough, which leads to
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�dF�Sopt�x� + ��S�x��
d�

�
�=0

� 0.

Notice that �S�x� satisfies �x0

x1�S�x�dx=0. We have

�dF�Sopt�x� + ��S�x��
d�

�
�=0

=

− 2��
0

1

Sopt�x�dx�2

��
0

1

�1 − x�Sopt
2 �x�dx�2

	�
0

1

�1 − x�Sopt�x��S�x�dx ,

�
0

1

�1 − x�Sopt�x��S�x�dx � 0,

�
x0−


x0

�1 − x�S0dx − �
x1

x1+


�1 − x�S1dx � 0,

�1 − x0 +



2
�
S0 − �1 − x1 −




2
�
S1 � 0.

Dividing by 
 and taking the limit as 
→0, we obtain

�1 − x0�S0 − �1 − x1�S1 � 0,

which contradicts with Eq. �A8�. Therefore, Sopt�x� must be
continuous at both x0 and x1. In other words, Sopt�x� has the
form

Sopt�x�

= 	 S0, 0 � x � x0

q/�1 − x� , x0 � x � x1, x0 = 1 − q/S0, x1 = 1 − q/S1

S1, x1 � x � 1.



�A9�

Step 5. The optimal value of q is q=S0 /2,

�
0

1

Sopt�x�dx = �
0

x0

S0dx + �
x0

x1 q

1 − x
dx + �

x1

1

S1dx

= x0S0 + q log�1 − x0

1 − x1
� + �1 − x1�S1

= S0 − q + q log
S1

S0
+ q = S0 + q log

S1

S0
.

�
0

1

�1 − x�Sopt
2 �x�dx = �

0

x0

�1 − x�S0
2dx + �

x0

x1 q2

1 − x
dx

+ �
x1

1

�1 − x�S1
2dx

= �1 −
x0

2
�x0S0

2 + q2 log�1 − x0

1 − x1
�

+
�1 − x1�2

2
S1

2

=
S0

2 − q2

2
+ q2 log

S1

S0
+

q2

2

=
S0

2

2
+ q2 log

S1

S0
.

Consider the function

f�q� � F�Sopt�x�� �

1

2��0

1

Sopt�x�dx�2

�
0

1

�1 − x�Sopt
2 �x�dx

=
�S0 + q log

S1

S0
�2

S0
2 + 2q2 log

S1

S0

.

Taking the derivative with respect to q, we have

df�q�
dq

=

2�S0 + q log
S1

S0
�log

S1

S0

�S0
2 + 2q2 log

S1

S0
�2 �S0

2 − 2S0q� .

The maximum of f�q� is attained at q=S0 /2.
In summary, the five steps above have completely deter-

mined the optimal solution

Sopt�x� = 	 S0, 0 � x � 1/2

S0/2�1 − x� , 1/2 � x � 1 − S0/2S1

S1, 1 − S0/2S1 � x � 1.
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