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An analytical approach to the problem of the multiphoton exciton absorption in biased narrow-well super-
lattices �SLs� induced by the optical transitions to the localized resonant exciton states is developed. Both the
ac electric field of the intense optical wave and the dc electric field are directed parallel to the SL axis. The SL
is formed by a periodic sequence of quantum wells �QWs� whose widths are taken to be much less than the
exciton Bohr radius. The model of the SL potential employs a limiting form of the Kronig-Penney potential,
i.e., a periodic chain of QWs separated by �-function-type barriers. A sufficiently strong dc electric field
provides the localization of the carriers within one period of the SL. Analytical dependencies of the coefficient
of the multiphoton exciton absorption on the characteristics of the dc and ac electric fields and on the param-
eters of the SL in the approximation of both isolated and interacting Wannier-Stark levels are obtained in the
nearest-neighbor tight-binding approximations. Our analytical results correlate well with those obtained in
numerical investigations. Estimates of the expected experimental values are performed for the parameters of a
GaAs/AlGaAs SL.
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I. INTRODUCTION

Since the pioneering papers of Bloch1 and Wannier,2 elec-
tronic and optical effects in a semiconductor superlattice
�SL� exposed to external electric fields attracted much atten-
tion both theoretically and experimentally. Electrons sub-
jected to a time-independent �dc� electric field E directed
parallel to the axis of the SL with period d exhibit Bloch
oscillations within the spatial region � /2eE �� is the mini-
band width�. The energies of these spatially localized states
are the Wannier-Stark levels �WSLs� with the distance eEd
between the neighboring levels. If the dc field is replaced by
a time-dependent �ac� electric field F0 cos �t of strength F0
and frequency �, the dynamic localization occurs if the con-
dition J0�eF0d /���=0 is obeyed �Jn�x� are the Bessel
functions�.3 In the presence of combined dc-ac electric fields
E+F0 cos �t, the conditions of the localization become
eEd /��=n=0,1 ,2 , . . .; Jn�eF0d /���=0.4–6 Numerous ex-
perimental and theoretical investigations on fascinating phe-
nomena such as absolute negative conductance, phonon-
assisted transport, dynamic Franz-Keldysh effect, terahertz
�THz� radiation, and THz photocurrent resonance and cha-
otic scattering have been performed �see Refs. 7 and 8 and
references therein�.

By the present time, excitonic effects caused by the Cou-
lomb interaction between the electron �e� and hole �h� have
been observed for the majority of low-dimensional structures
based on the III-V and II-VI semiconductors. Clearly, exci-
tons strongly modify the electronic and optical properties of
the SLs. A study of the one-photon exciton effects was de-
veloped originally in biased SLs in Refs. 9–14 and then suc-
cessfully continued in more recent works15–18 devoted to ex-
citons in SLs in the presence of combined dc-ac electric
fields.

In the majority of experimental and theoretical studies the
biased GaAs/Al0.3Ga0.7As SLs of well width dw�35–65 Å,
period d�50–90 Å, and miniband width ��10–90 meV

subjected to dc electric fields E�10–50 kV/cm have been
considered.8,17–22 These SLs consist of the narrow quantum
wells �QWs� of width dw being less than the Bohr radius of
the exciton in the GaAs material, a0�100 Å. One of the
reasons for consideration of these SLs is that a narrow QW
causes the quasi-two-dimensional �quasi-2D� exciton to be
more stable. In units of the effective exciton Rydberg con-
stant Ry, the binding energy Eb of the 2D exciton is 4 Ry
compared to Eb=1 Ry for the bulk material. We consider the
cases of �a� relatively weak dc electric fields E�E0 �E0

=� /2ed� and the carriers being spatially distributed between
several periods of the SL and �b� strong fields E�E0 provid-
ing the localization of the carriers within one period �see
Refs. 9 and 10 and those listed in Table I�. For the latter
electric fields, the exciton Rydberg constant Ry�4.7 meV is
less than the distance between neighboring WSLs eEd
�10–30 meV. As a result, the exciton energy spectrum in
the GaAs/AlGaAs SL is a sequence of Rydberg series con-
sisting of quasidiscrete states each being adjacent to the
WSL from the low-energy side and being in resonance with
states of the continuous spectrum branching from the lower
WSLs.19,20,23,24 One-photon absorption of the probing weak
light with optical frequencies ���103 meV is a widespread
tool to study quasienergetic exciton states in biased
SLs.8,21,22,25 Two- and three-photon spectroscopy of the
GaAs/AlGaAs,26 ZnSe/ZnSSe,27–29 and ZnCdSe/ZnSe �Ref.
30� SLs has been only performed in the absence of dc elec-
tric fields. The absolute majority of the theoretical investiga-
tions of exciton states and exciton absorption in SLs sub-
jected to combined dc-ac electric fields are based on
numerical techniques, which employ semiconductor Bloch
equations,31 dynamics controlled truncation theory,32 and the
excitonic basis.15,18,33 Numerical approaches are indispens-
able for a detailed comparison with experimental data. Ana-
lytical methods applied and/or developed in the present work
are complementary in the sense that they provide the possi-
bility to follow the evolution of the exciton spectrum as a
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function of the parameters of the SL and characteristics of
the dc-ac electric fields.

In order to fill the above indicated gap, we develop an
analytical approach to the problem of multiphoton absorption
in biased narrow-well SL induced by optical transitions to
the localized resonant exciton states. It emphasizes the basic
physics of the unique quasienergetic Wannier-Stark states
and suggests further experiments related to the nonlinear op-
tical exciton absorption in biased SLs. We consider the case
where both the ac field �F0 cos �t� of the intense optical
wave and the dc �E� electric field are directed parallel to the
axis of the SL that, in turn, is modeled by a limiting form of
the Kronig-Penney potential consisting of a periodic chain of
the QWs of width dw=d separated by the �-function-type
barriers. The exciton Bohr radius a0 considerably exceeds
the width d of the QWs. The dc electric field is taken to be
strong �E	� /2ed� to localize the carriers within the period
of the SL. The complete exciton wave function is then ex-
panded with respect to the basis formed by the longitudinal
one-dimensional quasienergetic Wannier-Stark wave func-
tions of the electron-hole pair in the SL in the presence of
combined dc-ac electric fields. The set of the equations for
the transverse radial quasi-Coulomb wave functions describ-
ing the motion in the heteroplanes is solved in the approxi-
mation of two interacting WSLs �double-WSL approxima-
tion� to give, in turn, the complex energies of the resonant
exciton states. The positions and finite widths of the peaks of
multiphoton absorption associated with the dipole optical
transitions to the resonant quasienergetic exciton states are
calculated in explicit form. Analytical dependencies of the
coefficient of the multiphoton exciton absorption on the fre-
quency � and magnitude F0 of the electric field of the light,
on the strength of the dc electric field E, and on the param-
eters of the SL �miniband width � and period d� are ob-
tained.

It is shown that the spectrum of the optical absorption in
the narrow-well SL associated with the transitions to the spa-
tially localized exciton states consists of a sequence of
quasi-2D quasi-Rydberg series of resonances with each se-
ries being adjusted to the specific electron-hole WSL of in-
dex 
. The ground exciton peak dominates in each exciton
series. The most intense series of the one-photon absorption
is associated with the WSL 
=0, while considerably less
intense series correspond to the WSLs with 
= ±1. The most
intense series of the multiphoton absorption are those rel-
evant to the WSLs 
= ±1, with the even-photon spectrum
containing the additional, significantly less intense, series ad-
jacent to the WSL 
=0. With increasing dc electric field, the
exciton absorption increases. The greater the miniband
widths �eh and the greater the magnitude of the ac electric
field F0 are, the stronger the multiphoton absorption is. In-
creasing the dc electric field and decreasing the QWs width
lead to a decrease in efficiency of the coupling between the
neighboring WSLs that, in turn, leads to the exciton states
becoming more stable.

Our analytical results are in line with those obtained
numerically.11,20,46 Estimates of the expected experimental
values are made for the parameters of the recently studied
GaAs/Al0.3Ga0.7As SL.19 Let us emphasize that the focus of
our approach is to elucidate the basic physics of the localized

resonant exciton states in biased SL. We do not intend to
compete with the results obtained by comprehensive numeri-
cal methods.

The paper is organized as follows: In Secs. II and III, the
quasienergetic exciton states and the coefficient of multipho-
ton exciton absorption are calculated, respectively, in the ap-
proximation of a single WSL. The exciton absorption related
to the resonant exciton states is studied in the double-WSL
approximation in Sec. IV. A discussion of the obtained re-
sults, justification of the employed simplifications, as well as
a comparison with the available experimental data and esti-
mates of the expected experimental values are provided in
Sec. V. Section VI contains the conclusions.

II. QUASIENERGETIC EXCITON STATES

We consider multiphoton absorption in a semiconductor
SL associated with the transition of a crystal from an initial
state to an excited exciton state in the presence of a uniform
electric field E. We have an oscillating electric field
F0 cos �t of frequency � and magnitude F0 and a dc field E
both directed parallel to the z axis. The latter is perpendicular
to the heteroplanes. Mott exciton is formed by the Coulomb
interaction between the electron �e� in the conduction band
and the hole �h� in the valence band, both taken to be para-
bolic, nondegenerate, and separated by a wide energy gap Eg.

In the effective-mass approximation and using the cylin-
drical coordinates � and z, the wave function � of the exci-
ton formed by the particles having the effective masses mj,
charges ej �ee=−eh=−e�, and positions r j�� j ,zj�, j=e ,h,
obeys the equation

� �
j=e,h

�−
�2

2mj
� j + Vj�zj� + ejF�t�zj	

−
e2

4�0�
��e − �h�2 + �ze − zh�2
− i�

�

�t���re,rh,t� = 0 ,

�1�

where F�t�=E+F0 cos �t, � is the dielectric constant, and Vj

is the SL potential consisting of the periodic sequence of the
large number N of the quantum wells of width d separated by
the potential barriers. Further, we assume that the Coulomb
interaction between the electron and hole does not effect
strongly the longitudinal states governed by the SL potentials
Vj�zj� and electric field F�t�. This assumption implies that the
distance between the minibands �2 /2mjd

2 associated with
the potentials Vj�zj� and that between the WSLs eEd both
considerably exceed the exciton Rydberg constant,

Ry =
�2

2mexa0
2 , mex

−1 = me
−1 + mh

−1, a0 =
4�0�

2

mexe
2 ,

a0 being the excition Bohr radius.
The mentioned conditions d�a0 and Ry�eEd allow us

to consider the carriers to be related to the ground electron
and hole minibands and single electron-hole WSL. In this
single-WSL approximation, the exciton wave function � can
be written in the form
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����re,rh,t�

=
1


LxLy

exp�i�K�R� −
E
�

t	 fe��ze,t�fh��zh,t������,t� ,

�2�

where

� = �e − �h and R� =
me�e + mh�h

me + mh

are a transverse relative coordinate and a coordinate of the
center of mass, respectively. �K� is the transverse total mo-
mentum of the exciton, Lx ,Ly are the transverse linear di-
mensions of the crystal, E is the quasienergy of the exciton,
and f j�zj , t�= f j�zj , t+T� and ��� , t�=��� , t+T� �T=2� /��
are the periodic wave functions of the longitudinal and trans-
verse quasienergetic states, respectively. The longitudinal
functions f j�zj , t� satisfy the equation

�−
�2

2mj

�2

�zj
2 + Vj�zj� + ejF�t�zj − E j − i�

�

�t
	 f j�zj,t� = 0,

j = e,h , �3�

where E j are the quasienergies of the carriers.
In an effort to develop an analytical approach to the prob-

lem, we simulate the SL potentials Vj�zj� by a chain of period
d of �-function-type barriers of the powers � j,

Vj�zj� = � j�
s=0

N

��zj − sd�, Vj�zj� = Vj�zj + d� . �4�

This model devised originally in Ref. 34 has been applied
successfully to the problems of one-photon electro- and 2D
exciton absorption,34 multiphoton 2D exciton absorption in
the absence of dc electric fields,35 and multiphoton electro-36

and magnetoelectroabsorption,37 thereby ignoring exciton ef-
fects.

The solution to Eq. �3� with the potentials Vj�zj� �Eq. �4��
at F�t�=0, determining the energies of the ground minibands
E j � j�kj�= j�kj +2� /d� and the SL Bloch functions
f j�zj , t��� j�zj ,kj�=� j�zj ,kj +2� /d�, can be found in explicit
form,34

 j�kj� �  j�� j� = bj + � j sin2 � j

2
, bj =

�2�2

2mjd
2 �1 − 8� j� ,

� j =
�2�2

2mjd
28� j, � j =

�2

2mjd� j
� 1, �5�

� j�zj,kj� � � j�zj,� j� =
i


N
eis�jus�zj��1 + O�� j�� ,

� j = kjd, ���z,k����z,k�� = �kk�� , �6�

where within the sth cell

us�z� =
2

d
sin

�

d
�z − sd�, ds � z � d�s + 1� .

The energies bj and � j represent the bottom and width of
the ground minibands, respectively. � j are treated as param-
eters of the theory, but they can be calculated knowing the
characteristics of the SL.34 Clearly, our approach is valid in
the nearest-neighbor tight-binding approximation �� j�1�.13

In this approximation, the dispersion law  j�kj� has form �5�
and the wave function � is the sum of phase-shifted wave
functions us�z� describing the carrier in an isolated quantum
well bounded by infinite potential barrier �� j =�, � j =0�. In
the wave functions �6�, the correction terms of the order of
� jus take into account the finite penetrability of the barriers
�� j��, � j�1�. In particular, the interwell coupling leads to
the result that the Wannier functions corresponding to the
Bloch functions � �Eq. �6�� become localized not only within
the sth cell ��us� but also in the neighboring s±1 cells
��� jus�. Explicit expressions for the correction terms and for
the Wannier functions can be found in Ref. 34. In order to
remain in the framework of the nearest-neighbor tight-
binding approximation in the presence of the dc electric field
E, we assume that the total potential drop on the length of the
SL is larger than the miniband width � j�NeEd	� j� �see Ref.
1 in Ref. 13�.

For the short-period SLs typically used in experiments
and even for sufficiently strong dc electric fields E, the con-
dition eEd��� remains valid. For example, if ���1 eV,
d�60 Å, and E�100 kV/cm, then the ratio eEd /�� is
about 0.06. As is shown in Ref. 36, under this condition the
electron function fe�ze , t� obeying Eq. �3� for F�t��0 can be
written in the form

fe��ze,t� =

N

2�
�

−�

+�

�e�qe��e,��,ze�ce���e,��d�e, � = �t ,

�7�

where

ce���e,�� = exp�−
i

��
�

0

�

�e��e,�� − ̄e��e��d�

−
i

eEd
�

0

�e �̄e��� − Ee� +
1

2
eEd	d�� , �8�

̄e��e� =
1

2�
�

0

2�

e��e,��d�, e��e,�� � e�qe� ,

qe��e,�� = �e + � sin �, � =
eF0d

��
,

ce���,�� = ce��� + 2�,�� = ce���,� + 2�� ,

�fe��ze,t��fe���ze,t�� = ����,

and

Ee� = be +
1

2
�e + eEd�� +

1

2
, � = 0, ± 1, ± 2, . . . �9�

are the WSLs, counted from the bottom of the conduction
band.
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Using Eq. �5� for e�qe�, we obtain from Eq. �8� for the
electron function in explicit form

ce���e,��

= exp�i�e�sin �e�1��� + cos �e�2���� −
i

2
� sin ��

�exp�i��e sin �e + ��e�� , �10�

with

�1��� = − �
n=1

�
J2n−1���
2n − 1

�1 − cos�2n − 1��� ,

�2��� = �
n=1

�
J2n���

2n
sin 2n�, �e =

�e

��
, �e =

�e

2eEd
J0��� .

Jn��� are the Bessel functions. At this stage, we take into
account that in realistic SLs the widths of the minibands � j
are much less than the energy gap Eg���, yielding � j
���. For � j �0.05 eV and ���1 eV, we have � j
=� j /���0.05. On expanding the functions ce���e ,�� �Eq.
�10�� in the power series with respect to the parameter �e, we
obtain from Eq. �7� for the sth cell

fe��ze,t� = ei�s−1/2�� sin �us�ze��J−��+s���e�

+
�e

2
���1��� + i�2����J−��+s+1���e�

+ �− �1��� + i�2����J−��+s−1���e�� . �11�

In the limiting case �e�1, the Bessel functions in Eq. �11�
transform into J−�n+s���s,−n, which in turn means that the
wave function fe��ze , t� �Eq. �11�� of the electron having the
energy Ee� �Eq. �9�� becomes completely localized within the
s=−� cell �time-independent part� and within the s=−�±1
cells �time-dependent part � 1

2�e�1,2����. The hole function
fh��zh , t� and the hole WSL Eh� can be obtained from the
electron function fe��ze , t� �Eq. �11�� and from the electron
WSL Ee� �Eq. �9�� by replacing in Eqs. �9� and �11� the
electric charge e by −e, index e by index h, t by −t, and � by
� and finally taking the complex conjugate. The hole WSLs
obtained from Eq. �9� are to be counted from the top of the
valence band.

In sufficiently strong dc electric fields, the distance be-
tween the neighboring WSLs eEd becomes much greater
than the Coulomb energy of the exciton, i.e., eEd	Ry. This
allows us to consider the quasi-2D exciton states as being
associated with the isolated electron-hole WSL E��=Ee�
+Eh� �single-WSL approximation�, where

E�� � E
 = Eg + be + bh + 1/2��e + �h� + eEd
 , �12�


 = � − � = 0, ± 1, ± 2, . . . .

In this case, we have for the function ����� , t� from Eqs.
�1�–�3�

�−
�2

2mex
� + U��� ,t� + �E
 +

�2K�
2

2M
− E − i�

�

�t
	�����,t�

= 0, �13�

with

U��� ,t� = −
e2

4�0�
�

0

Nd �fe��ze,t��2�fh��zh,t��2


 2 + �ze − zh�2
dzedzh,

�14�

where the functions f j�zj , t� are determined by Eq. �11�.
Further, we concentrate on the most attractive case of the

sufficiently strong dc electric field satisfying the condition
� j ��� j /2eEd��1 that, in turn, provides the localization of
the carriers within one period of the SL. For a
GaAs/AlGaAs SL consisting of QWs of width d=65 Å
�� j �0.07 meV�,18 electric fields of strength E�55 kV/cm
are required.

Under the condition � j�1, the electron �hole� charge den-
sity described by the functions �11� mostly concentrates
within the cell s=−� �s�=−��. For �e=0.6, the contribution
to the neighboring cells s=�±1 is of the order of 0.07. As a
result, the potential U��� , t� calculated by using the func-
tions �11� under the conditions � j�1 and � j�1 can be writ-
ten in the form

U��� ,t� � U
� � = −
Dehe2

4�0�
�0� 1


 2 + �ze − zh − 
d�2�0�
��1 + O„� j�1,2���…�, 
 = 0, ± 1, ± 2, . . . . �15�

�0�…�0� is an average with respect to the function
u0�ze�u0�zh� determined in Eq. �6� and

Deh�E� = J0
2��e�J0

2��h� with Deh = 1 −
1

4
��e

2 + �h
2�

at �eh � 1. �16�

The coefficient Deh �Eq. �16�� accounts for the extent to
which the carriers are localized within one cell of the SL.

Since the optical dipole transitions are allowed to the cy-
lindrically symmetric states with the magnetic quantum num-
ber m=0 and for the total momentum �K��0,41 the func-
tion ����� , t���
� �= 1


2�
R
� � in Eq. �13� satisfies

�−
�2

2mex

1

 

d

d 
� d

d 
 + U
� � +

4Ry

n2 	R
� � = 0,

E = E
 −
4Ry

n2 , Ry = Deh
2 Ry. �17�

In the following, we provide a brief outline of our method
to solve Eq. �17�. Further details can be found in Ref. 38
where this approach was developed originally.

For  	d, the solution to Eq. �17� becomes
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R
� � = A
u−1/2Wn/2,0�u�, u =
4 

nā0

, ā0 =
a0

Deh
, �18�

where Wn/2,0�u� is the Whittaker function39 and where A
 is a
constant. In the region  � ā0 �u�1�, an iteration procedure
is performed by double integration of Eq. �17� using the trial
function R


0� ,ze−zh�,

R

�0�� ,ze − zh� = c
�ln�u +
u2 +

g

2

n2 + �
	 ,

g
�ze,zh� =
4�ze − zh − 
d�

ā0

� 1, �19�

and its derivative R

0�� ,ze−zh�,

R

�0��� ,ze − zh�

= c
� 1


u2 +
g


2

n2

−
n

g


−
n

2

u


u2 +
g


2

n2

�ln�u +
u2 +
g


2

n2� , �20�

where �
 and c
 are constants. We imply that in Eq. �17�, the
2D potential U� � �Eq. �15�� is replaced by the three-
dimensional Coulomb potential used in Eq. �1�. The averag-
ing with respect to the coordinates ze, zh is performed at the
final stage of the iteration procedure. As a result, we have

R
� � = c
�ln u + �
 + n� 1

ḡ


−
�


2
u ln u	 , �21�

with ḡ
= �0�g
�ze ,zh��0�. In the region  � ā0 �u�1�, the
function R
� � �Eq. �18�� transforms into39

R
� � = −
A


!�1 − n

2
�ln u + ��1 − n

2
 + 2C −

n

2
u ln u	 ,

�22�

where ��x� is the psi function �the logarithmic derivative of
the gamma function !�x�� and C=0.577 is the Euler con-
stant. When terms of the same order in Eqs. �21� and �22� are
equated, we obtain n=n0+ ḡ
, n0=1 ,3 ,5 , . . ., and

ḡ0 =
4

3
�1 −

15

4�2 d

ā0

, ḡ±1 =
16

3
�1 −

15

16�2 d

ā0

. �23�

In this approximation, the solutions to Eq. �17� R
n� � are
the 2D wave functions of the discrete Coulomb energy spec-
trum with40

��
n�0��2 =
8

�ā0
2�n0 + ḡ
�3 , n0 = 1,3, . . . . �24�

Note that the correction to the energy of the ideal 2D
exciton �n=n0� induced by the chosen trial function �19� and

trial derivative �20� �n=n0+ ḡ
� coincides exactly with that
calculated by perturbation theory. The continuous energies

E−E
=
�2k�

2

2mex
�0 in Eq. �13� with K�=0 correspond to un-

bound quasi-2D exciton states with34

��
k�
�0��2 =

exp� �

k�ā0


4�2 cosh� �

k�ā0
 . �25�

Thus, in the single-WSL approximation the energy spec-
trum of the spatially localized exciton is a sequence of quasi-
Rydberg series of discrete levels n0=1 ,3 ,5 , . . ., each adja-
cent from the low-energy side to the WSL E
 �Eq. �12�� and
covered by the branches of the continuous �k�� spectrum
emanating from the WSLs 
−1,
−2, . . ..

III. MULTIPHOTON EXCITON ABSORPTION IN THE
SINGLE-WSL APPROXIMATION

We treat the optical absorption as a transition of the
electron-hole pair from the initial state to an excited state
described by the wave functions �0�re ,rh�=��re−rh� �Ref.
41� and ��re ,rh , t� �Eq. �2��, respectively. The coefficient �
of the light absorption with the oscillating electric field
F0 cos �t in the crystal of volume "=LxLyNd possessing the
refractive index n̄ is determined by the transition rate

W =
1

t
�
e,h

�S�t��2, � =
n̄��

cv"
W , �26�

where c is the speed of light, v=0n̄2F0
2 is the optical energy

density, �e,h is a sum over the exciton states, and S�t� is the
matrix element of the operator of the dipole transition P�t�
= P0 cos �t,

S�t� =
1

i�
�

0

t

��re − rh�P�#��*�re,rh,#�dredrhd# ,

P0 =
i�eF0pehz

m0Eg
. �27�

In Eq. �26�, pehz is the matrix element of the momentum
operator calculated with respect to the Bloch amplitudes of
the electron and hole bands. On substituting � from Eq. �2�
into Eq. �27�, we obtain

S�t� =
P0

i�
�

0

t

exp� i

�
E#M�#�cos �#d# , �28�

with

M�#� = 
LxLy�
n�k��
* �0��

0

Nd

fe�
* �z,#�fh�

* �z,#�dz ,

M�t + T� = M�t� . �29�

Using the expansion

MULTIPHOTON EXCITON ABSORPTION IN A… PHYSICAL REVIEW B 75, 245207 �2007�

245207-5



M�#�cos �# = �
l=−�

+�

e−il�#Al��� ,

Al��� =
�

2�
�

−�/�

+�/�

eil�t cos �tM�t�dt , �30�

� can be written as a sum of the coefficients of l-photon
absorption �l,

� = �
l

�l, �l��� =
n̄��

cv"
P0

22�

�
�
e,h

�Al����2��E − l��� ,

l = 1,2,3, . . . . �31�

The exciton energy E is given by

E � E
n0�k�� = E
 + �−
4Ry

�n0 + ḡ
�2 , discrete states

�2k�
2

2mex
, continuous states,�

�32�

�
e,h

� N�



� ��
n0

� dk��.�
Substituting the functions f j�����z , t� �Eq. �11�� into Eq.

�29�, we obtain for the coefficient of the l-photon absorption
�l���

�l��� = �0�



C

�l���,��G


�l���� , �33�

with

C

�l���,�� = ��l1J−
��� + �1 − �l1��Ql���

��J−
−1��� ± J−
+1�����2. �34�

The sign $ ��� corresponds to an odd �even� number of
photons l. We have

G

�l���� = �

n0�k���

��
n�k���0��2��l�� − E
n0�k��� . �35�

In Eqs. �33�–�35�, the following notations are employed:

� = �e + �h, � = �e + �h,

Ql��� =
1

4
� Jl+1���

l + 1
+

Jl−1���
l − 1

	 ,

�0 =
���2e2�pehz�2

20n̄cdm0
2Eg

2 .

It follows from Eq. �34� that in the case of a sufficiently
strong dc electric field providing the localization ���1�, the
terms 
=0, ±1 contribute mostly to �l��� �Eq. �33��. Taking
Eqs. �24� and �25� for ��
n�k���0��2 in Eq. �35�, we obtain for
the coefficient of l-photon absorption �l���

�a� discrete optical spectrum,

�l��� = �0 �
n0=1

8

�ā0
2†�l1„�n0 + ḡ0�−3J0

2�����l�� − E0
�0��n0��

+ �n0 + ḡ±1�−3J1
2������l�� − E−1

�0��n0��

+ ��l�� − E+1
�0��n0���… + �1 − �l1��2Ql���2

„�n0

+ ḡ0�−3�J1��� ± J−1����2��l�� − E0
�0��n0��

+ �n0 + ḡ±1�−3�J0��� ± J2����2���l�� − E−1
�0��n0��

+ ��l�� − E+1
�0��n0���…‡ , �36�

�b� continuous optical spectrum,

�l��� = �0
mex

2��2��l1�J0
2���

exp��0
�l�����

cosh��0
�l�����

+ J1
2���� exp��−1�l�����

cosh��−1
�l�����

+
exp��+1�l�����
cosh��+1

�l�����
	

+ �1 − �l1��2Ql���2��J1��� ± J−1����2 exp��0
�l�����

cosh��0
�l�����

+ �J0��� ± J2����2� exp��−1�l�����
cosh��−1

�l�����

+
exp��+1�l�����
cosh��+1

�l�����
	� . �37�

Here, we have used

E

�0��n0� = E
 −

4Ry

�n0 + ḡ
�2 , n0 = 1,3, . . . , �38�

�

�l���� =

�

ā0
2mex

�2 �l�� − E
�
. �39�

The energies E

�0��n0� �Eq. �38�� determine the exciton

�-function-type peak positions in the single-WSL approxi-
mation, while the Bessel functions Jk��� �k=0, ±1,2� govern
the effect of the dc electric field on the intensities of the
exciton maxima. With increasing the electric field E, Eqs.
�36� and �37� are simplified by taking J0����1, J±1���
� ± �

2 , J2���� �2

8 at ��1. In the absence of the exciton for-
mation, the expression for the coefficient of the l-photon ab-
sorption �l can be obtained from Eq. �37� by replacing
exp��


�l�����

cosh��

�l�����

by the unit step function % �l��−E
�, 
=0, ±1.

In this case, our results �Eq. �37�� transform into those ob-
tained earlier in Refs. 34 and 36 in which one-photon and
multiphoton electroabsorption in SL have been considered,
respectively.
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IV. MULTIPHOTON EXCITON ABSORPTION IN
DOUBLE-WSL APPROXIMATION

In the single-WSL approximation considered above, the
exciton energy E in Eq. �32� consists of a sequence of series
of quasi-Coulomb levels � −4Ry

n0
2 adjacent on the low-energy

side to the WSL E
 �Eq. �12��. The density of the exciton
states is a sum of �-function-type singularities reflected in
the absorption coefficient �36�. The strictly discrete character
of the exciton states is the result of the single-WSL approxi-
mation ignoring the resonant coupling between the quasi-
Coulomb levels adjacent to the WSL E
 and branches of the

continuous spectra
�2k�

2

2mex
emanating from the WSLs 
−1,


−2,
−3, . . .. In fact, the resonant coupling leads to an auto-
ionization of the exciton states. The autoionization rate
!
�n0� /� and lifetime #
�n0�=� /!
�n0� both are related to
the width !
�n0� of the n0 exciton state, associated with the

 WSL.

Below, we consider a double-WSL approximation de-
scribing the interaction between the quasi-Coulomb states
n0=1 ,3 ,5 , . . . adjacent to the WSL E
 and the states of the
continuous spectrum, emanating from the WSL E
−1. The
spectrum of the exciton absorption has been calculated by
two methods. In the first approach, the real wave function
corresponding to the real energy of the continuous state is
taken in the form of a standing wave. We have found the
complete profile of the exciton absorption that transforms in
the vicinity of the peak position into a Lorentzian form de-
termined by the resonant width and shift. Exactly the same
width and shift have been found in the second approach for
which the wave function of the continuous state is taken in
the form of an outgoing-type wave. The real and imaginary
parts of the complex exciton energies determine the positions
and widths of the exciton peaks, respectively. Since in this
paper we focus on the narrow region close to the peak posi-
tion, we follow the considerably less cumbersome second
method. Also, we provide a brief description of the first ap-
proach. Both methods have been originally developed in Ref.
38 and successfully applied to the resonant impurity and ex-
citon states in a single QW.

Since the optical dipole transitions are allowed in the cy-
lindrically symmetric exciton states with the transverse total
momentum �K��0, the quasienergetic solution to Eq. �1�
� corresponding to the quasienergy E can be written in the
form

�� ,ze,zh,t� =
1


LxLy

1

2�

exp�−
i

�
Et

� �
����

fe���ze,t�fh���zh,t�R����� ,t� , �40�

where f j�zj , t� are the electron j=e and hole j=h periodic
longitudinal wave functions �Eq. �11��, satisfying Eq. �3�,
and where R��� , t+T�=R��� , t� are the periodic transverse
wave functions. Substituting � of Eq. �40� into Eq. �1�, we
arrive at a set of equations for the radial functions R��� , t�,

�−
�2

2mex
�1

 

d

d 
 

d

d 
 + �E
 − E� − i�

�

�t
	R��� ,t�

+ �
����

U��
����� ,t�R����� ,t� = 0, �41�

with

U��
����� ,t� = −

e2

4�0�
�

0

Nd

dzedzh

�
fe���ze,t�fh���zh,t�fe�

* �ze,t�fh�
* �zh,t�


 2 + �ze − zh�2
.

�42�

The WSLs E
 are given by Eq. �12�. Below, we consider
the coupling between the localized �� j�1� discrete n0

=1 ,3 , . . . states adjacent to the WSL E0 and continuous k�

states branching from the WSL E−1. Exciton series relevant
to 
=0 is the most intense in the spectrum of the one-photon
absorption. The set of equations �41� with the potentials �42�
calculated with the help of the functions �11� becomes

�−
�2

2mex
�1

 

d

d 
 

d

d 
 + U0� � + �E0 − E�	R0� �

+ � J1��e�
J0��e�

+
J1��h�
J0��h�	�U0� � − U−1� ��R−1� � = 0,

�43�

�−
�2

2mex
�1

 

d

d 
 

d

d 
 + U−1� � + �E−1 − E�	R−1� �

+ � J1��e�
J0��e�

+
J1��h�
J0��h�	�U0� � − U−1� ��R0� � = 0.

�44�

The potentials U0� � and U−1� � are given by Eq. �15�.
It follows from Eq. �15� that in the region  	d,

U0� � = U−1� � � −
Dehe2

4�0� 
,

U0� � − U−1� � = − U0�−1�� �
d2

2 2 � U0�−1�� � .

Keeping in Eqs. �43� and �44� only diagonal potentials U0
and U−1, we arrive at the function R0� � �Eq. �18�� corre-
sponding to the discrete state and the function

R−1� � = A−1v
−1/2Wip/2,0�v�, v =

4 

iā0p
, E − E−1 =

4Ry

p2 ,

�45�

describing the continuous state possessing the asymptote of
an outgoing wave,

R−1� � = A−1 exp�−
v
2

+
1

2
�ip − 1�ln v	, v 	 1.

The quantum numbers n and p obey the relationship
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1

n2 +
1

p2 =
eEd

4Ry
. �46�

In the region  �d, we take the trial function R0
�0�� � and

its first derivative R0
�0��� � according to Eqs. �19� and �20�,

respectively, while the function R−1
�0�� � and its derivative

R−1
�0��� � can be obtained from Eqs. �19� and �20�, respec-

tively, by replacing c0 by c−1, �0 by �−1, n by p, and u by
t= 4 

ā0p . Using the chosen trial functions and their first deriva-
tives, an iteration procedure is applied by double integration
of Eqs. �43� and �44� to give, in turn, for the function R0� �
for u	 ḡ


R0� � = c0�ln u + �0 + n� 1

ḡ0

−
�0

2
u ln u	 +

1

2
c−1�−1G01,

�47�

with

G01 = � J1��e�
J0��e�

+
J1��h�
J0��h�	�ḡ−1 − ḡ0� = 4� J1��e�

J0��e�
+

J1��h�
J0��h�	 d

ā0

.

�48�

The parameters ḡ0,−1 and G01 are calculated via Eqs. �23�
and �48�, respectively. The equation for the function R−1� �
for t	 ḡ−1 can be obtained from Eq. �47� by replacing u by t
and the index �0� by �−1�.

For  � ā0, R0� � is determined by Eq. �22�, while R−1� �
can be obtained from Eq. �22� by replacing n by ip and u by
v. A comparison between these functions and those obtained
by the iteration procedure is performed. When terms of the
same order are equated, we obtain the set of the two homo-
geneous algebraic equations for the coefficients c0 and c−1.
This set is solved by the determinantal method and provides
a transcendental equation for the quantum number n,

���1 − n

2
 −

2

ḡ0
	���1 − ip

2
 − i

�

2
−

2

ḡ−1
	 −

G01
2

ḡ0ḡ−1

= 0.

�49�

Setting in Eq. �49� n=n0+2&, n0=1 ,3 ,5 , . . ., &�1, p
�� 4Ry

eEd
��1, �� 1−n

2
��&−1, we find the complex roots of Eq.

�49�,

2& = ḡ0�1 +
G01

2

4
�1 − i

�ḡ−1

4
	 ,

and the total exciton energy E0�n0�,

E0�n0� = E0
�0��n0� + �E0�n0� −

i

2
!0�n0� , �50�

where E0
�0��n0� �Eq. �38�� is the exciton energy calculated in

the single-WSL approximation and

�E0�n0� =
2Ry

�n0 + ḡ0�3 ḡ0G01
2 , �51�

!0�n0� =
�Ry

�n0 + ḡ0�3 ḡ0ḡ−1G01
2 �52�

are the shift and the width of the exciton level both caused
by the coupling of the discrete and continuous quasi-2D ex-
citon states related to the neighboring WSLs 
=0 and 

=−1. The obtained results are valid qualitatively for arbitrary
pairs of WSLs with �
= ±1.

Below, we describe the first approach based on the match-
ing procedure and the Fano method23 implying a real exciton
wave function that corresponds to the continuous spectrum
with real energies. This method has been originally devel-
oped in Ref. 38 and successfully applied to the resonant ex-
citon states in a single QW. The only difference lies in the
fact that in the course of the averaging, the wave functions of
the isolated QW in Ref. 38 are replaced by the functions �11�
at �e,h=0. Since the details are provided in Ref. 38, only an
outline of the calculations will be given below.

In the region  	d, the function �45� is replaced by the
sum of the outgoing-type and incoming-type wave functions,

R1� � =
 mex

��2exp�−
�p

4
�exp�i%�v−1/2Wip/2,0�v� + c.c.� ,

�53�

where % is a phase.
Performing the iteration and matching procedures de-

scribed above, we find the coefficient c−1 and the parameters
�0,−1=2/ ḡ0,−1 and consequently arrive at the set of equations
for the coefficients c0 and c−1. This set is solved by the
determinantal method to give, in particular,

'�� +
� tan�% + 
�p��
1 + exp�− �p� 	 −

G01
2

ḡ0ḡ−1

= 0, �54�

where

'�n� = ��1 − n

2
 −

2

ḡ0

, ��p� =
1

2
���1 + ip

2
 + c.c.	

−
2

ḡ−1

, 
�p� = arg !�1 + ip

2
 .

The coefficient of absorption is proportional to �R�0��2,
where R�0�=R0�0�+R−1�0��2�c0ḡ0

−1+c−1ḡ−1
−1� �see Eq. �19��.

As a result, we arrive at the cumbersome expression that can
be obtained from Eq. �54� of Ref. 38 by replacing g11 by ḡ−1,
g22 by ḡ0, and g12 by G01. The absorption described by this
expression exhibits an asymmetric profile containing both
resonant and antiresonant behaviors. In the vicinity of the
exciton energy calculated in the single-WSL approximation
�'�n�=0, p�1�, the absorption profile is rearranged to a
Lorentzian form
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(��,n0� =
!0�n0�

2���E0
�0��n0� + �E0�n0� − ���2 +

1

4
!0

2�n0�� ,

�55�

where

!0�n0� =
4RyG01

2 ḡ0

�n0 + ḡ0�3ḡ−1�
sin 2� , �56�

�E0�n0� = −
4RyG01

2 ḡ0

�n0 + ḡ0�3ḡ−1�
cos2 � , �57�

and where

cot � =
�

�
�1 + exp�− �p�� .

At p�1, cos ��1, sin ��−�ḡ−1 /4, ��−2/ ḡ−1, Eq. �56�
for the resonant width and Eq. �57� for the resonant shift
exactly coincide, respectively, with those for the width
!0�n0� �Eq. �52�� and the shift �E0�n0� �Eq. �51�� calculated
as the imaginary and real parts, respectively, of the exciton
energy caused by the interwell coupling, implying the wave
function of the continuous spectrum R−1� � in the form of an
outgoing-type wave �Eq. �45��.

Note that the above-mentioned complex energies of the
exciton can be found by calculating the poles of the scatter-
ing matrix S�%� closely related to the phase shift %,42

S�%� = exp�2i�% + 
�p��� =
cot�% + 
�p�� + i

cot�% + 
�p�� − i
.

Equating the denominator to zero and using Eq. �54� at
p�1, we immediately arrive to Eq. �49� and to the complex
energy levels �Eq. �50��. Thus, the coefficient of the optical
absorption induced by the transitions to the resonant exciton
states can be obtained from Eq. �36� by replacing ����
−E0

�0��n0�� by the Lorentzian profile (�� ,n0� �Eq. �55��, in
which E0

�0��n0� is given by Eq. �38� and �E0�n0� �Eq. �51�� as
well as !0�n0� �Eq. �52�� have been calculated above. We
emphasize that our result is valid only in the narrow region
of the photon energy of the order of !0�n0� in the vicinity of
the peak position. In order to describe the complete profile of
the resonant exciton absorption, the more complicated ex-
pression similar to that derived in Ref. 38 should be taken.

V. DISCUSSION

A. Single-WSL approximation

The coefficient of the exciton absorption calculated in the
single-WSL approximation �l��� �Eqs. �36� and �37�� re-
flects the exciton energy spectrum �Eq. �32��. The optical
spectrum of the exciton absorption consists of the set
of quasi-Rydberg series of �-function-type peaks �n0

=1 ,3 ,5 , . . . � positioned below the edge specified by the en-
ergy E
 �Eq. �38�� overlapping with the branches of the con-

tinuous absorption associated with the 
−1,
−2, . . . edges.
Since the intensities of the exciton transitions decrease pro-
portional to n0

−3, the peak n0=1 dominates other ones within
each series. In the vicinity of the edge �l���E
� �Eq. �12��,
the peaks with n0	1 are grouped together in the quasicon-
tinuous absorption remaining finite at the edge. Above the
edge �l���E
�, the absorption �37� decreases and in the
region l��−Eg	Ry it is shaped into the unit step function
%�l��−Eg�. The latter absorption is less by half than that at
the edge. The peak positions are determined by the energies
E


�0��n0� �Eq. �38��, while the intensities within the series are
different for the different numbers l of absorbed photons.
The spectrum of the one-photon absorption �1��� �Eq. �36��
consists of three quasi-Coulomb series adjacent to the edges
E
, 
=0, ±1. These series are separated by the frequency
range ��=eEd /�. The intensities of the series depend on the
miniband widths, period of the SL, the magnitude of the dc
electric field and weakly depend on the magnitude of the ac
electric field. The centrally placed series 
=0 is the most
intense, whereas the relative intensities of the other ones

�
= ±1� are of the order of
J1

2���

J0
2��� , resulting in about 0.2 for

�=0.8. The additional reduction of this ratio is caused by the
different effect of the confinement on the 
=0 and 
= ±1
exciton states �ḡ±1� ḡ0�. The narrower the miniband widths
and the larger the dc field and period, the less the intensities
of the series 
= ±1 relatively to the series 
=0 in all cases.

The employed model of the SL potential �dw=d� allows
us to extend our results to realistic potentials consisting of
potential barriers of finite width. For the ratio d /a0, the pa-
rameter d should be treated as the width of the QWs dw,
while for the parameters � j �

� j

2eEd as the period d of the SL.
It follows from Eqs. �32� and �16� that the exciton binding
energy Eb

�
� defined as

Eb
�
� =

4Ry

�1 + ḡ
�2 , Ry = RyDeh
2 , ḡ
 �

dw

a0
Deh �58�

increases with increasing dc electric field strength. The rea-
son for this is the fact that the electric field E reduces the
effective exciton Bohr radius ā0=a0Deh

−1. Increasing �
� yields
an increase in the effective distance between the electron and
hole ā0ḡ
 �see, e.g., Eq. �23��, which results in a decrease of
the exciton binding energy Eb

�
�.
The oscillator strength I


�l� of the intense one-photon tran-
sition �l=1� to the ground exciton state n0=1, 
=0, �I0

�1��
derived from Eq. �36�,

I0
�1� =

Deh
2 J0

2���

�1 + c0

dw

a0

Deh	3
, �59�

and the binding energy Eb
�0� �Eq. �58�� as functions of the dc

electric field E for the different GaAs/AlGaAs SLs are de-
picted in Fig. 1.
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The spectrum of the multiphoton absorption �Eq. �36��
�l=2,3 , . . . � consists of two most intense quasi-Rydberg se-
ries adjacent to the edges E
, 
= ±1 and separated by the
frequency interval ��=2eEd /�l. The corresponding multi-
photon transitions arise because of the overlap of the electron
�hole� time-independent term of the function fe��z , t� �Eq.
�11�� and the time-dependent terms of the hole �electron�
function fh��z , t� that, in turn, are localized within the cells
s=���� and s=�±1��±1�, respectively. The intensity of the
odd-photon absorption ��J0���+J2����2 insignificantly ex-
ceeds that of the even-photon absorption ��J0���−J2����2 by
a factor of 1.18 at �=0.8. In addition, the spectrum of the
even-photon absorption contains the centrally placed series
adjacent to the edge E
, 
=0 of lower intensity �4J1

2���.
With increasing dc electric field strength �the parameter � j
decreases�, the intensities of the main side series 
= ±1 no
longer depend on both the dc field and the parity of the
number of the absorbed photons, while the peak magnitudes
of the centrally placed series 
=0 become negligibly small.
A sketch of the spectrum of the two-photon exciton absorp-
tion is given in Fig. 2. The intensities of the exciton peaks
�l���, l=1,2 , . . . �Eq. �36�� slowly increase with increasing
dc electric field strength because of the reduction of the ef-
fective Bohr radius ā0 due to the factor ā0

−2�Deh
2 �E� in Eq.

�36�. In contrast to the one-photon absorption, the ac electric
field F0 influences considerably the multiphoton transitions.
The wider the miniband widths �e,h are and the greater the
magnitude F0 is, the greater the l-photon absorption �l

���e+�h

��
�2
�2�l−1� ���1� is.

Figure 3 demonstrates the dependence of the oscillator
strength I


�l� of two-photon transitions �l=2� to the ground
exciton states �n0=1, 
=0, ±1� on the dc electric field E
calculated from �2 �Eq. �36��,

I±1
�2� =

Deh
2 �J0��� − J2����2

�1 + c1

dw

a0

Deh	3
, I0

�2� =
4Deh

2 J1���2

�1 + c0

dw

a0

Deh	3
,

�60�

with Deh from Eq. �16� and c0,1 from Eq. �23�. At this stage,
we note that our analytical method implies that the correc-
tions ḡ
 �23� to the quantum numbers n0=1 ,3 , . . . satisfy the
conditions ḡ
�1 resulting particularly in dw /a0�0.20 for

= ±1. Thus, we are forced to appeal to the short-period and
narrow-well GaAs/AlGaAs SL with typical parameter values

FIG. 1. The dependence of the oscillator strength I0
�1� �Eq. �59��

of one-photon transitions �l=1� to the ground exciton state n0=1,

=0 and of the binding energy Eb

�0� �Eq. �58�� on the dimensionless
dc electric field E /E0 �E0= �

2ed
� for different QW widths dw scaled

to the exciton Bohr radius a0 �s=dw /a0=0.26,0.35,0.43� corre-
sponding to the GaAs/AlGaAs SLs studied in Refs. 11, 22, and 18,
respectively.

FIG. 2. The schematic form of the spectrum of the two-photon
exciton absorption as a function of the shift of the photon energy
2�� with respect to the peak position E0

�0��1� �Eq. �38�� scaled to
the exciton Rydberg constant Ry for different dc electric fields E
�k= eEd

Ry
�.

FIG. 3. The dependence of the oscillator strength I

�1� �Eq. �60��

of two-photon transitions �l=2� to the ground exciton state n0=1
adjacent to the WSLs 
= ±1 �I±1

�2�� and 
=0 �I0
�2�� on the dimension-

less dc electric field E /E0 �E0= �

2ed
� for the parameters of the

GaAs/AlGaAs SLs �Ref. 43�: dw=19 Å, d=36 Å, �e=193 meV,
and �h=50 meV.
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dw=19 Å, dw /a0=0.16, d=36 Å, �e=193 meV, and �h
=50 meV, in which the optical transitions between the WSLs
were successfully observed.43 The numerical estimates for
the typical SLs of moderate periods will be given below.
Figure 3 shows that with increasing dc field strength, the
intensities of the main side peaks 
= ±1 tend to a constant
value, while the central weak maximum 
=0 vanishes rap-
idly.

B. Double-WSL approximation: Resonant width and shift

In the double-WSL approximation, the �-function-type
exciton peaks �Eq. �36�� are replaced by the peaks of a
Lorentzian form �Eq. �55�� of width !0�n0� �Eq. �52�� shifted
toward larger wavelengths by an amount �E0�n0� �Eq. �51��.
The resonant width !0�n0� and the shift �E0�n0� both caused
by the interwell coupling associated with the dc electric field
and finite widths of the QWs dw �dw=d in our model� depend
on the dimensionless parameters � j �

� j

eEd �1 and
dw

a0
�1, re-

spectively. The greater the dc electric field and the less the
ratio

dw

a0
, the less both the shift �E0�n0� and the width !0�n0�.

The width !0�1� �Eq. �52�� of the ground exciton state n0

=1, 
=0 as a function of the dc electric field for different
QW widths, relevant to the GaAs/AlGaAs SLs studied in
Refs. 19, 22, and 18, is depicted in Fig. 4. Clearly, the local-
ization �E increases� and confinement �dw decreases� both
reduce the resonant width of the exciton states. Note that the
interwell coupling associated with the correction functions
�� j in Eq. �6� contributes the additional terms �0�…�0� to the
matrix elements of the Coulomb potential �Eq. �15�� and
consequently to the resonant shift �E�n0� and width !�n0�.
Such a contribution has the order of �� j /� j�2 with respect to
those determined by Eqs. �51� and �52�, which, in turn, is
negligibly small because of the approximation of the ground

size-quantized levels bj �Eq. �5�� being actually unperturbed
by the dc electric field E ��� j /� j�2��eEd /bj�2��bj /bj�1,
see Table I�.

Also, we ignore the broadening of the exciton linewidth
induced by the coupling between the bound exciton state
associated with the selected WSL �
=0� and continuous ex-
citon states corresponding to the neighboring WSLs �

= ±1, . . . �. This coupling is caused by the Coulomb interac-
tion of the electron and hole incompletely localized within
the single QWs of the SL subjected to weak or moderate dc
electric fields E�eEd�Ry�. This effect dominates in the re-
gion of these fields that, in turn, leads to the growth of the
exciton linewidth as a function of the dc electric field.20,46

However, in the presence of strong electric fields considered
here �eEd�Ry�, the carriers become localized within one
period of the SL and the mechanism described above does
not contribute to the broadening of the linewidth.

In our model, the dependence of the width !0�n0� �Eq.
�52�� on the period of the SL d is determined by the factor
s4 �s=d /a0� and the Bessel functions J
�) j�, 
=0,1. The
factor s4 and the Bessel functions J
�� j� describe the contri-
bution of the 2D confinement �s�1� and the spatial localiza-
tion �� j�1� to the coupling, respectively. It follows from Eq.
�5� that the dependence of the miniband width � j on the
period d for a fixed power of the barrier � j is given by

� j =
�0j

s3 ,

where

s =
d

a0
and �0j =

2�2�4

mj
2a0

3� j

.

The presented dependence of the miniband width on the
period of the SL is in qualitative agreement with that found
numerically in Ref. 12. The stronger dependence � j�d� found
in Ref. 12 is due to the fact that in this work the wells and
the barriers were taken of equal width. The growth of the
miniband width � j is caused by the narrowing of both the
wells and the barriers, while in our paper the powers of the
barriers � j are kept constant. Increasing the parameter s, the
miniband-width � j narrows, the localization increases, and
the width !0�n0� �Eq. �52�� decreases. On the other hand, the
increase of the parameter s destroys the 2D confinement that,
in turn, leads to an increase in the width !0�n0��s4 �Eq.
�52��. Thus, the localization of the carriers and 2D confine-
ment both related to the period d are in competition, resulting
in a nonmonotonic dependence of the resonant width of the
exciton state on the period of the SL. This dependence cal-
culated from Eq. �52� for the GaAs/AlGaAs SL with �0
�8 meV found from the parameters19 d=51 Å, ���e
�100 meV, and a0=115 Å is given in Fig. 5 for different
values of E. For the SL of a moderate period d �s�0.5, �e
�0.4�, the localization effect dominates that of the 2D con-
finement and the width !0�1� of the ground exciton state
n0=1 decreases with increasing parameter s. For the SL of
smaller period d �s�0.4, �e�1�, the effect of the 2D con-
finement exceeds that of the moderate localization and the

FIG. 4. The width !0�1� �Eq. �52�� of the ground exciton state
n0=1, 
=0 scaled to the exciton Rydberg constant Ry versus the
dimensionless dc electric field E /E0 �E0= �

2ed
� for different QW

widths dw, s=
dw

a0
=0.30,0.35,0.43 �a0 is the exciton Bohr radius�

relevant to the GaAs/AlGaAs SLs studied in Refs. 19, 22, and 18,
respectively.
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width !0�1� increases with increasing parameter s. In this
region, the dependence of the resonant width on the dc elec-
tric field deviates from that corresponding to moderate peri-
ods. The reason is that the chosen electric fields become
inadequately large to provide a considerable localization for
the short-period SLs because of wide minibands. The analo-
gous situation has been revealed numerically for relatively
weak electric fields.46 The isowidth curves reflecting the re-
lationships between the field E and period d at which the
width !0�1� �Eq. �52�� of the ground exciton state �n0=1,

=0� remains constant are shown in Fig. 6 for the param-
eters of the SL mentioned above.19

The exciton peaks associated with the transitions to the
excited states n0=3 ,5 , . . . are much narrower �!
�n0��n0

−3�
and much less shifted ��E
�n0��n0

−3� compared to those
corresponding to the ground state n0=1. It seems that only
the ground exciton peak n0=1 can be experimentally re-
solved.

C. Criteria of the approximations

Let us turn to the relationships between the modern ex-
perimental and theoretical studies for GaAs/AlGaAs SLs in
electric fields and the approximations applied here.

In Table I, we present the parameters providing the
quasi-2D character of the exciton states �dw /a0�1�, restric-
tion by the ground electron and hole minibands only �we,h
�1 and �be,h /be,h�1�, localization of the carriers within the
one period d �E0 /E�1�, and the double-WSL approximation
�4 Ry/eEd�1�. In the above conditions, dw is the width of
the QWs, we,h�F0 ,�� is the probability of the interminiband
transitions caused by the ac electric field F0 cos �t, and
�be,h�E� is the correction to the size-quantized ground level
be,h induced by the dc electric field E. We also estimate the

widths of the exciton levels associated with the coupling
between the ground and first excited minibands in the pres-
ence of the dc electric field �Zener tunneling� �!e,h

Zener�. The
parameter �=eF0d /�� ���1� and the probabilities we,h are
calculated for the electric field F0=340 kV/cm and the fre-
quency � ���=750 meV� relevant to the two-photon ab-
sorption emanated by a 2 MW Er laser focused on a spot
with diameter 700 �m. For the parameters of the GaAs ma-
terial, we take me=0.067m0, mhh=0.62m0, �=0.060m0, 
=13.2, Ry=4.7 meV, and a0=115 Å.44 We limit ourselves to
heavy-hole excitons and neglect the valence-band mixing
and contribution of the light-hole excitons which are well
justified for structures composed of relatively narrow QWs.19

It follows from the data and references provided in Table
I that all existing studies refer to the case of a narrow QW
�dw�a0�. For the estimates of the probability of the transi-
tion between the ground and first excited electron minibands
induced by the ac electric field we�F0 ,��, we have

we�F0,�� �
�eF0z12�2

2
� 1

��� − �be�2 +
1

��� + �be�2

+
1

��� − �be���� + �be�
	 ,

where z12�
dw

5 is the matrix element of the z coordinate cal-
culated with respect to the electron wave functions of the
ground and first excited size-quantized states and �be=3be is
the gap between the ground �be� and first excited size-
quantized levels. The correction �bh�E� to the ground hole
size-quantized level bh= �2�2

2mhdw
2 caused by the dc electric field

E reads

�bh�E� �
�eEdw�2

�4bh
.

FIG. 5. The dimensionless width !0�1� /Ry �Eq. �52�� �Ry is the
exciton Rydberg constant� of the ground exciton state n0=1, 
=0 as
a function of the period of the SL d scaled to the exciton Bohr

radius a0 for different parameters p=E /Eex �Eex=
�0

2ea0
�, where �0

=8.0 meV calculated from the parameters of the GaAs/AlGaAs SL
�Ref. 19�: d=51 Å, �e=94.5 meV, and �h=5.5 meV.

FIG. 6. Isowidth curves !0�1� /Ry=q=const, where !0�1� �Eq.
�52�� is the width of the ground exciton state n0=1, 
=0, Ry and a0

are the Rydberg constant and the Bohr radius of the exciton, respec-
tively, d is the SL period, and E is the dc electric field scaled to the

field Eex=
�0

2ea0
, �0=8.0 meV �see Fig. 5 caption for details�.
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Since the probability of the interminiband electron transi-
tions we�F0 ,���1 and correction to the ground hole size-
quantized level are negligibly small ��bh�E��bh�, the inter-
miniband transitions induced by both the ac and the dc
electric fields can be neglected. The probability of the hole
transitions wh�F0 ,�� and relative correction to the electron
size-quantized ground level ��be�E� /be� are both less than
we�F0 ,�� and ��bh�E� /bh�, respectively. The reason for the
significant probability we�F0 ,���0.5 �Ref. 8� is the fact that
for the parameters of the SL taken in Ref. 8, the chosen
photon energy ��=750 meV is in resonance with the first
electron miniband gap. However, for the SL of the same
parameters the interminiband probability for the photon en-
ergy relevant to the three-photon absorption is found to be
we�F0 ,���1.8�10−2�1. Thus, we can focus on the ground
electron and hole minibands.

The width of the resonant states !h
Zener associated with the

Zener tunneling between the ground and first excited hole
minibands calculated via Ref. 45,

!h
Zener =

eEd

2�
exp�−

mhd��b12,h�2

4�2eE
	 , �61�

is negligibly small �see Table I�. In Table I, the widths !h
Zener

are given only for the SLs studied in Refs. 20 and 18. The
widths !h

Zener calculated for the SLs investigated in the re-
maining references are much smaller than those presented in
Table I. The width of the ground exciton resonance estimated
according to Eq. �52� for the only SL �Ref. 8� providing more
or less localized excitons �E0�E� in a relatively narrow QW
�dw�a0� gives the result !0�1��0.54 meV. Note that
!e

Zener�!h
Zener and thus we conclude that for the cases treated

in the references of Table I both resonant and nonresonant
miniband couplings have a minor effect.

In an effort to demonstrate that relatively strong electric
fields E�E0 provide the monotonic dependencies excluding
the unexpected phenomena in Figs. 1 and 3–5, we extended
the dc fields to the values E�7E0. In spite of the significant
absolute values of these fields, the theoretical probability of
the Zener intersubband tunneling determined by the expo-
nential factor in Eq. �61� remains small �3.2�10−2–10−10�.
The relatively narrow QWs considered here prevent the SL
from the electric breakdown. Only in the case of �Ref. 18,
Fig. 1� the limiting dc field E=7E0 is less but close to the
threshold field. Note that usually the experimental critical
fields are less than those calculated theoretically. The maxi-
mum dc electric fields related to Fig. 5 and Ref. 11 �Fig. 1�
contribute to the Zener width a negligibly small amount of
the order of 10−6–10−9 meV, while for the remaining cases
�Ref. 22 in Fig. 1, Ref. 43 in Fig. 3, and Ref. 19 in Fig. 4�
this contribution is about 0.1–1.3 meV. In the latter cases, in
order to ignore the Zener tunneling the limitation of the dc
electric fields by the condition E� �2–3�E0 is desirable.
Above these fields, the effect of the intersubband Zener tran-
sitions on the interwell WSL coupling should be taken into
account.8

References 8 and 20 deal with the situation where carriers
are localized by the dc electric field within one period of the
SL �E0 /E�1�. For the remaining references, the relatively
weak dc electric fields prevent the carriers to be effectively
localized. However, in the presence of a dc electric field of
strength E=72 kV/cm �see Refs. 18 and 22� and E
=125 kV/cm for Ref. 19, the ratio E0 /E becomes equal to
about 0.8. In the presence of the dc electric fields of Refs. 18,
20, and 22, the binding energy of the quasi-2D excitons
�4 Ry� is less than the distance between the neighboring
WSLs �eEd� �4 Ry/eEd�1�. For the electric field E
=30 kV/cm applied to the SL considered in Ref. 8 and E
=50 kV/cm in Ref. 19, the parameter 4 Ry/eEd becomes
0.60 and 0.75, respectively, and the corresponding quasi-2D

TABLE I. The QW widths dw, periods d, electron-hole miniband widths �=�e+�hh, the dc electric fields
E, corrections �be�E� to the ground size-quantized electron energy levels be, probabilities we of the interlevel
transitions induced by the ac electric field F0=340 kV/cm, ��=750 meV, the widths of the exciton levels
!Zener caused by the intersubband Zener tunneling, and the parameter �=eF0d /�� corresponding to the
GaAs/AlGaAs SLs studied in Refs. 8, 19, 20, 22, and 18. The Bohr radius a0 and the Rydberg constant Ry
of the exciton are taken to be a0=115 Å and Ry=4.7 meV �Ref. 44�. The miniband widths * and ** are
estimated from the Refs. 34 and 10, respectively.

Ref. 8 Ref. 19 Ref. 20 Ref. 22 Ref. 18

dw �Å� 45 34 67 41 50

d �Å� 90 51 84 65 65

E �kV/cm� 11 25 25 40 50

� �meV� 11.2 100* 35 75** 75

dw /a0 0.39 0.29 0.58 0.35 0.43

E0 �kV/cm� 6.2 98.0 20.8 57.6 67.6

4Ry/eEd 1.9 1.48 0.89 0.72 0.58

� 0.40 0.22 0.37 0.29 0.29

we �F0 ,�� 0.5 8.6�10−4 5.9�10−3 5.1�10−2 4.5�10−2

�bh /bh 3.9�10−4 2.7�10−4 2.3�10−2 3.0�10−3 1.5�10−2

!h
Zener �meV� 1.1�10−4 2.9�10−5
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exciton series is associated with the corresponding WSL
�single- and double-WSL approximations�. Clearly, the rela-
tively strong dc electric fields considered in this work pro-
vide the spectrum of the exciton absorption convenient for
the experimental study because the Rydberg series are sepa-
rated. In other case of the moderate and weak fields eEd
��, 4 Ry optical spectrum would constitute the sequence of
the superimposed exciton series adjacent to a number of the
WSLs 
=0, ±1, ±2, . . .. In all cases given in Table I, the
parameter �=eF0d /�� satisfies the condition ��1. This al-
lows the conclusion that the parameters of the studies re-
flected in Table I meet those used in this work or are at least
close to them. Thus, all employed approximations, namely,
the narrow-well SLs �dw /a0�1�, neglecting the coupling be-
tween the ground and excited minibands �we,h�F0 ,���1,
�be,h�E� /be,h�1� and interminiband Zener tunneling
�!e,h

Zener�!0�, localization of the carriers �E0�E�, single- and
double-WSL approximations �4 Ry�eEd�, as well as the
condition ��1, are in line with the current experimental and
theoretical studies and are therefore well justified.

D. Comparison with other methods and experiment

Our analytical results are in agreement with those ob-
tained by numerical studies and with the available experi-
mental data. Though we do not focus here on the one-photon
absorption, we note that its signatures, i.e., linear increase of
the distance between the exciton peaks 
=0, ±1 and corre-
sponding decrease of the oscillator strengths of the peaks 

= ±1 relative to the peak 
=0 with increasing dc electric
field observed in Refs. 9–14, are reflected in Eq. �36�. In
these papers, both the above listed signatures and others are
well represented in the corresponding figures and diagrams.
The dependencies of the binding energy of the exciton asso-
ciated with the WSL 
=0 and corresponding oscillator
strengths on the dc electric field �Fig. 1� correlate well with
the results of the numerical calculations of Leavitt and Little
up to Emax=70 kV/cm �Ref. 11� and of Dignam and Sipe up
to Emax=140 kV/cm �Ref. 13�. For the binding energy pre-
sented in Ref. 11, the discrepancy within the interval E
=50–70 kV/cm �E0=37 kV/cm� does not exceed 11%. The
same holds for the binding energy obtained by Dignam and
Sipe for E=100 kV/cm �E0=57 kV/cm�, while as expected
for the electric field E=140 kV/cm the difference is about
1.5%. The quantitative deviations of our oscillator strengths
�Fig. 1� from those calculated in Refs. 11 and 13 are caused
by the different definitions of it. In particular, Leavitt and
Little pointed out that they ignored the dependence of the
oscillator strength on the reciprocal exciton Bohr radius a0

−1

providing the additional dependence on the dc electric field,
while in our approach this dependence �a0

−1Deh �see eq. �16�
for Deh� is taken into account.

In Refs. 46 and 20, the experimental spectrum consisting
of exciton resonances in biased GaAs/AlGaAs SLs has been
compared to the numerical calculations derived from the
theories based on the Green’s function method46 and on the
Born-Markov equations of a SL.20 It was found that the
widths !
�1� of the ground exciton peaks n0=1 relevant to
the WSLs 
=0, ±1 decrease with increasing dc electric field

E with !±1�1��!0�1�. This correlates completely with our
results �see Fig. 4�. In particular, extending Eq. �52� for
!0�1� to !1�1�, we expect that

!1�1� �
Ry

�1 + ḡ1�3 ḡ1ḡ0�ḡ1 − ḡ0�2 with
!1�1�
!0�1�

�
�1 + ḡ0�3

�1 + ḡ1�3 � 1

as ḡ0� ḡ1 �see Eq. �23��. Relatively wide QWs of width
67 Å �dw /a0=0.58� and insufficiently strong dc electric field
considered in Refs. 46 and 20 �Emax=33 kV/cm, while E0
=21 kV/cm� prevent us from a quantitative comparison of
our results and those given in Ref. 46.

Since a dc electric field E has not been imposed on the
SLs studied in Refs. 26–30 on two- and three-photon spec-
troscopy and since to our knowledge the experimental study
of multiphoton electroabsorption in SLs has not been widely
addressed in the literature to date, we estimate the values
expected in a possible experiment. Estimates are now made
for the recently studied19 GaAs/Al0.3Ga0.7As SL of period
d=51 Å formed by the QWs of width dw=34 Å separated by
the barriers of width 17 Å with the bandwidth �
�100 meV estimated from Ref. 34. The exciton Rydberg Ry,
the exciton Bohr radius a0, and the magnitude F0 and the
frequency � of the ac electric field of the laser wave are
Ry=4.7 meV,a0=115 Å, F0=340 kV/cm, and ��
�750 meV. For the dc electric field E, providing the spatial
localization of the exciton, we take E=180 kV/cm. For the
chosen structure and the characteristics of the electric fields,
the parameters relevant to the coefficient of two-photon ab-
sorption �2 �Eq. �36�� become �=0.13, �=0.23, Q2=0.03,
and �=0.55. This allows us to estimate the ratio of the inten-
sities of the main peaks 
= ±1 of two-photon absorption to
that of one-photon absorption 
=0 as

�2

�1
� ��Q2�2� Eb

�0��E�

Eb
�±1��E�	3/2

,

where Eb
�
��E� are the binding energies �Eq. �58�� of the ex-

citons associated with the 
 WSLs. Equation �58� implies
that ḡ
�1. It follows from Eq. �23� that for the chosen well
width dw �equal to d in our model�, the above condition is
valid only for 
=0. In an effort to estimate the ratio �2 /�1,
we take the ratio of the binding energies from Ref. 11. In this
work, the binding energies were calculated numerically for
the correlated SL of period d=2dw=60 Å, for the wide re-
gion of the electric fields E to give, in turn, for the relatively
strong dc field E ���1� the results Eb

�0� /Eb
�±1��const�1.7

and �2 /�1�3.6�10−5. This leads one to expect that the
discussed two-photon absorption can be detected experimen-
tally similar to that observed in the ZnSe/ZnSSe SL of the
correlated parameters for which the significantly smaller ra-
tio �2 /�1�6�10−7 occurs.29

The ratio of the intensity of the weak central peak 
=0
��2,0� to that of the main side peaks 
= ±1 ��2,±1� estimated
in the same manner yields
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�2,0

�2,±1
�

4J1
2���

�J0��� − J2����2� Eb
�0��E�

Eb
�±1��E�	3/2

� 0.75.

It follows from Eq. �36� that the distance between the
central and side peaks of the two-photon absorption is about
90 meV, while the main side peaks are separated by an
amount of 180 meV. The width of the 
=0 central exciton
peak estimated from Eq. �52� is found to be !0�1�
�0.15 meV. Taking into account that the widths of the main
side peaks obey !±1�1��!0�1�,46 we conclude that the reso-
nant coupling between the different WSLs does not prevent
the experimental observation of the multiphoton exciton
maximum in the strongly biased short-period SLs formed by
narrow QWs.

The light polarization dependence of two-photon exciton
absorption in multi-quantum-well structures has been studied
in Ref. 30. Based on this paper, we expect that multiphoton
exciton electroabsorption for the ac electric field polarized in
the heteroplanes �s polarization� would consist of discrete
peaks and a continuous spectrum of different intensities and
forms with respect to the case of the ac field polarized par-
allel to the SL axis �p polarization� considered here. The
standard experimental configuration implies the radiation di-
rected at angle to the heteroplanes that, in turn, leads to the
imposition of differently polarized spectra.27 The contribu-
tions of spectra depend on the direction of radiation. For the
light wave directed parallel �perpendicular� to the SL axis,
we arrive at the s�p�-polarized spectrum. The latter requires
multiperiod SLs. The angular dependence allows, in prin-
ciple, the separation of the absorption of light polarized dif-
ferently. The photoluminescence excitation technique has
been used applying a selective polarization configuration to
study the two-photon absorption in multi-quantum-well
structures.30

The resonant states of the Coulomb particle in the biased
SL are analogous to those in bulk material in the presence of
a strong magnetic field B,47,48 providing the effective two-
dimensional confinement in the plane perpendicular to the
magnetic field B bounded by the magnetic length aB

= �� /eB�1/2. The resonance comes from the coupling of the
one-dimensional quasi-Rydberg and extended Coulomb
states, each associated with the different equidistant Landau
subbands. The investigations of these diamagnetic resonant
states based on the theory of Fano23 were undertaken in Refs.
49–51, whereas the multisubband approximation was em-
ployed in Refs. 52 and 53. Our results derived for the reso-
nant exciton states in the biased SL are in complete qualita-
tive agreement with those corresponding to the diamagnetic
resonant exciton states in bulk material.49–53 The resonant
shift and width both decrease with the increase of the con-
finement, i.e., with the decrease of the width d of the QWs
and with the increase of the dc electric field E for the biased
SL and with the increase of the magnetic field B for the bulk
material.

In the case of anisotropic energy bands with effective
masses m�,�j �j=e ,h� corresponding to the motion parallel
and perpendicular to the SL z axis, respectively, the exciton

states depend on the ratio m�j /m� j that, in principle, requires
a numerical study. In a narrow QW �d�a0�, the in-plane
motion is governed by the Coulomb potential and the effec-
tive mass m�j, while the mass m� j determines the z states.
This allows us to obtain the final results for the exciton peak
position and for the resonant shifts and widths of the exciton
states by the following replacements. In Eqs. �36�, �37�, �51�,
�52�, �38�, and �5�, ā0 is replaced by ā0

mex

mex�
,Ry by Ry

mex�

mex
,g


by g

mex�

mex
, where mex�

−1 =me�
−1 +mh�

−1 , bj by bj
mj

mj�
, and � j by

� j
mj

mj�
, j=e ,h.

For a more realistic model of the QW of finite depth hav-
ing the z-dependent effective masses m�eh�z�, the wave func-
tions us�zj� �Eq. �6�� should be replaced by those relevant to
the mentioned properties.44

For the QWs of intermediate width comparable to the
exciton Bohr radius, the states of the first excited electron
and hole minibands should be taken under consideration at
least. For the moderate strengths of the dc electric field E for
which the distance between the neighboring WSLs eEd be-
comes of the order of the 2D exciton binding energy 4 Ry,
the single- and the double-WSL approximations become in-
appropriate. Nevertheless, the resonant states can be found in
the multi-WSL approximation. Only at the final stage of the
determinantal procedure is some minor numerical study nec-
essary. We expect that in the multisubband approximation,
the series �40� is rapidly convergent as happens with the
series describing the diamagnetic resonant states.53 However,
these states demonstrate that the multi-Landau subband
approximation53 does not lead to significant qualitative
changes relative to the two-subband model.52 For the SLs
with relatively narrow potential barriers of width
�20 Å,10,21,43 the dispersion law becomes different from Eq.
�5� calculated in the nearest-neighbor tight-binding approxi-
mation. In this case, our results may be applied only quali-
tatively.

VI. CONCLUSION

We have developed an analytical approach to the problem
of multiphoton absorption in the narrow-well SLs induced by
the optical transitions to the resonant exciton states spatially
localized by the dc electric field. The dc electric field and the
ac electric field of the intense laser wave are both directed
parallel to the SL axes. The resonant character is caused by
the coupling of the exciton states of the discrete and continu-
ous spectra adjacent to the neighboring Wannier-Stark levels.
The SL potential is modeled by the periodic chain of the
QWs separated by the weakly penetrated �-function-type
barriers providing the validity of the nearest-neighbor tight-
binding approximation. The dependencies of the coefficient
of the multiphoton exciton absorption upon the characteris-
tics of the ac and dc electric fields and parameters of the SL
are obtained in an analytical form. The most intense optical
quasi-Rydberg series consisting of peaks of finite resonant
width are those adjacent to the WSLs with the indexes 

= ±1. The wider the miniband widths and the larger the am-
plitude of the ac electric field, the larger the intensity of the
multiphoton absorption. Narrowing the SL QWs and increas-
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ing the dc electric field lead in all cases to a decrease of the
resonant width and shift of the exciton states. The approxi-
mations employed in this work correspond to the character-
istics of the ac and the dc electric fields and the parameters of
the SL chosen for recent experimental and theoretical studies
�see Table I�. Our analytical results are in line with those
calculated numerically. Estimates of the expected experimen-
tal values made for the parameters of the GaAs/AlGaAs SL

show that the multiphoton exciton absorption in biased SL
should be observable experimentally.
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