
Bosonization and density-matrix renormalization group studies of the Fulde-Ferrell-Larkin-
Ovchinnikov phase and irrational magnetization plateaus in coupled chains

G. Roux,1,* E. Orignac,2,† P. Pujol,1 and D. Poilblanc1

1Laboratoire de Physique Théorique, Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31400 Toulouse, France
2Laboratoire de Physique de l’Ecole Normale Supérieure de Lyon, CNRS, 46 Allée d’Italie, 69007 Lyon, France

�Revised manuscript received 15 October 2006; published 20 June 2007�

We review the properties of two coupled fermionic chains, or ladders, under a magnetic field parallel to the
lattice plane. Results are computed by complementary analytical �bosonization� and numerical �density-matrix
renormalization group� methods, which allows a systematic comparison. Limiting cases such as coupled-band
and coupled-chain regimes are discussed. We particularly focus on the evolution of the superconducting
correlations under increasing field and on the presence of irrational magnetization plateaus. We found the
existence of large doping-dependent magnetization plateaus in the weakly interacting and strong-coupling
limits and in the nontrivial case of isotropic couplings. We report on the existence of extended Fulde-Ferrell-
Larkin-Ovchinnikov phases �Phys. Rev. 135, A550 �1964�; Sov. Phys. JETP 20, 762 �1965�;� within the
isotropic t-J and Hubbard models, deduced from the evolution of different observables under magnetic field.
Emphasis is put on the variety of superconducting order parameters present at high magnetic field. We have
also computed the evolution of the Luttinger exponent corresponding to the ungapped spin mode appearing at
finite magnetization. In the coupled-chain regime, the possibility of having polarized triplet pairing under high
field is predicted by bosonization.
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I. INTRODUCTION

Low-dimensional strongly correlated systems have at-
tracted strong interest in the last years because fluctuations
and energetic competitions drive these systems into exotic
phases. Quasi-one-dimensional or strongly anisotropic two-
dimensional superconductors are also known to be good can-
didates for the realization of Fulde-Ferrell-Larkin-Ovchin-
nikov �FFLO� phases1–4 because the orbital effects of the
magnetic field, which induce the Hc2 critical field in type-II
superconductors, can be strongly suppressed. In a singlet su-
perconductor without orbital effect, there is a competition
between polarizing the spins of the electrons and binding
them into Cooper pairs, leading to a theoretical critical field
called the Pauli limit or the paramagnetic limit.2–5 However,
this limit can be exceeded with an inhomogeneous order pa-
rameter �FFLO� which can be energetically favorable, allow-
ing pockets of polarized electrons and paired electrons.
Qualitatively, the FFLO mechanism consists in giving singlet
Cooper pairs a finite momentum, which leads to this inho-
mogeneous superconducting order parameter. Among these
intriguing low-dimensional systems, ladders, which consist
of a few coupled chains, proved to display deep new physical
behaviors and sustained considerable experimental and theo-
retical work.6

At half-filling, ladders are Mott insulators and have a spin
gap if the number of chains is even �this gap goes to zero in
the limit of an infinite number of coupled chains� and no
spin gap if it is odd. The two-leg ladder has thus a spin-
liquid ground state with exponentially decaying magnetic
correlations. Spin gaps can also open under magnetic field
for rational values of the magnetization per site, leading
to plateaus in the magnetization curve.7 Experimental
evidence of zero magnetization plateaus have been
reported on ladder and coupled-dimer compounds8–10

such as Cu2�C5H12N2�2Cl4, �C5H12N�2CuBr4, and
�5IAP�2CuBr4 ·2H2O. Away from half-filling, a few systems
are known to develop irrational magnetization plateaus con-
trolled by hole concentration.11–13 Furthermore, when holes
are introduced into the spin-liquid two-leg ladder, these
charge carriers generically bring the system into either a me-
tallic or a superconducting state. The isotropic two-leg ladder
is known to have a wide superconducting phase14,15 and also
a metallic phase with dominant charge-density wave16

�CDW� fluctuations. Another interesting feature is the ap-
pearance of commensurate CDW for a commensurate hole
concentration.16 The theoretically proposed framework to ac-
count for superconductivity in doped ladders relies on mag-
netic fluctuations and is based on the resonating-valence-
bond �RVB� mechanism for superconductivity proposed by
Anderson in the context of high-Tc superconductors.17

Within the isotropic Hubbard and t-J models, singlet pairing
with an unconventional modified d-wave structure is found.
The competition18 between superconductivity and CDW has
indeed been observed in the copper oxide ladder compound
Sr14−xCaxCu24O41+� �SCCO� for which the superconducting
state only appears under high pressure.19 However, the
mechanism responsible for superconductivity in SCCO has
not reached a full agreement yet. In this context, the upper
critical magnetic fields determined from transport
measurements20,21 suggest that the Pauli limit is exceeded in
SCCO, which reassesses the issue of the nature of the pair-
ing. Note that superconductivity has been discovered in the
zigzag ladder subsystem of the copper oxide compound
Pr2Ba4Cu7O15−� at ambient pressure.22

Recently, a superconducting two-leg t-J ladder under a
strong magnetic field in the plane of the ladder was studied
numerically23 using the density-matrix renormalization
group24,25 �DMRG� method. The magnetic curve displays a
doping-dependent magnetization plateau, as predicted26 by
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Cabra et al. for a Hubbard ladder. In addition to this non-
trivial magnetic behavior, an exceeding of the Pauli limit was
found. Within the t-J model, this exceeding of the Pauli limit
was explained by a one-dimensional analog of the FFLO
phase, hence reconciling the expectation of singlet pairing
and the exceeding of the Pauli limit. Lastly, the behavior of
the superconducting correlations studied in Ref. 23 showed a
surprising behavior in and outside the plateau with a notable
emergence of Sz=0 triplet superconducting correlations.

In this paper, we propose that Ref. 23 can be greatly com-
pleted by an extensive comparison of bosonization and nu-
merical calculations and by extending the results to discuss
the case of weakly interacting or strongly anisotropic ladders
and also to the case of weakly coupled chains. In particular,
we show that the picture developed in Ref. 23 is consistent
with bosonization and extends to both Hubbard and t-J mod-
els, supporting its generality. While most studies on the
FFLO phase resort to mean-field theories for low-
dimensional and unconventional superconductors,4 we use
here approaches which are more relevant for quasi-one-
dimensional strongly correlated systems. In the same spirit,
an early study on the superconducting phase of the t-J chain
which gave evidence of developing FFLO-like correlations27

was based on exact diagonalization computations, and
bosonization has also been used in this context28 on an at-
tractive Hubbard system.

The paper is organized as follows: First, after introducing
microscopic models �Sec. II�, we briefly examine the nonin-
teracting and strong-coupling limits in Sec. III where large
doping-dependent magnetization plateaus can occur. The
coupled-band regime is discussed in detail in Sec. IV and
corresponds to the case of doped isotropic ladders, which is
the most studied at zero magnetic field. Lastly, the coupled-
chain regime is studied under magnetic field �Sec. V�.

II. MICROSCOPIC MODELS AND CONVENTION

We describe the ladder system with a standard one-orbital
Hubbard model which can have different hopping terms
along the chains ��� and between the chains ���. We consider
a situation where no magnetic orbital effect is present and
thus only keep a Zeeman coupling to the spin degree of
freedom. This would experimentally correspond to the situ-
ation where the magnetic field H is in the plane of the ladder
�and even along the direction of the ladder to minimize all
orbital effects�. Then, one can write the Hubbard Hamil-
tonian

H = − t� �
i,p=1,2,�

�ci+1,p,�
† ci,p,� + H.c.� − t��

i,�
�ci,2,�

† ci,1,� + H.c.�

+ U �
i,p=1,2

ni,p,↑ni,p,↓ − �
i,p=1,2

H · Si,p, �1�

where ci,p,�
† , Si,p, and ni,p,� are, respectively, electron cre-

ation, spin, and density operators at site i on chain p and � is
the spin index. The g�B prefactor has been absorbed in the
definition of H for convenience. Free band dispersion is
given by

�ky,��k� = − 2t� cos�k� − t� cos�ky� − H
�

2
�2�

�with k=kx for simplicity and ky =0,�� and is sketched in
Fig. 1. If we denote by kF,ky

� the Fermi wave vectors, we have
the Luttinger sum rule

n =
1

2�
�

�ky,��occ.
kF,ky

� , �3�

where n=Ne / �2L�=1−� is the electron density, � the hole
density, and L the length of the ladder. Experimentally, cop-
per oxide systems have a fixed hole doping � rather than a
fixed chemical potential � so � will be kept fixed in this
paper. Similarly, the magnetization per site m= �N↑−N↓� /
�2L� satisfies

m =
1

2�
�

�ky,��occ.
�kF,ky

� . �4�

Relations �3� and �4� are also valid in the presence of inter-
actions. For quasi-one-dimensional interacting systems, a
useful theorem is the generalization of the Lieb-Schultz-
Mattis theorem to doped and magnetized states done by
Yamanaka-Oshikawa-Affleck29 �YOA�. This theorem relates
gap openings to commensurability conditions. When dealing
with spinful fermions, the demonstration is based on the
definition of two twist operators for spins ↑, ↓, which gives
two commensurability conditions for parameters in each sec-
tor. In the case of doped two-leg ladders, YOA parameters
take the simple form26 1−�+�m. If a parameter is a nonin-
teger, the spectrum has gapless excitations in this sector. If a
parameter is a noninteger but rational, a gap can open in the
sector �depending on the relevance of interactions� but nec-
essarily the ground state is degenerate with translational
symmetry breaking. When the parameter is an integer, the
sector is gapless or it is gapped but with a nondegenerate
ground state. It is interesting to note that for m ,��0, the
sector ↑ can get gapped while the sector ↓ remains gapless
�which corresponds to the m=� plateau phase in Sec. IV� so
that the usual spin-mode–charge-mode separation present
when m=0 is no longer valid.

In the strong-coupling limit of the Hubbard model U� t
and for small hole doping, Hamiltonian �1� reduces to the t-J
model:

FIG. 1. Splitting of the band dispersion in a noninteracting
doped ladder �� is the chemical potential� due to Zeeman effect at
low magnetic field H.
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H = − t� �
i,p=1,2,�

P�ci+1,p,�
† ci,p,� + H.c.�P

− t��
i,�

P�ci,2,�
† ci,1,� + H.c.�P

+ J� �
i,p=1,2

�Si,p · Si+1,p −
1

4
ni,pni+1,p�

+ J��
i
�Si,1 · Si,2 −

1

4
ni,1ni,2� − �

i,p=1,2
H · Si,p, �5�

in which P is the Gutzwiller projector, ni,p=��ni,p,�, and the
same convention is used to label the antiferromagnetic cou-
plings J�,�=4t�,�

2 /U. In what follows, these two microscopic
models will be studied numerically and the isotropic model
will assume t= t� = t� and J=J� =J�.

Bosonization allows us to study the low-energy properties
and correlation functions of one-dimensional-like systems
using field theoretical methods. The bosonization Hamilto-
nians used to describe ladders30–34 fall into two classes,
coupled-band models to be reviewed in Sec. IV and coupled-
chain models to be reviewed in Sec. V. The first approach is
more appropriate to study the system with isotropic param-
eters. There is, however, the possibility, by strongly reducing
the interchain hopping amplitude t�, to obtain a crossover to
a regime where the coupled-chain model is best suited to
describe the behavior of the system �Sec. V�.

III. NONINTERACTING AND STRONG-COUPLING
LIMITS

Noninteracting system. It is interesting to discuss first the
noninteracting system using relation �2� and keeping � fixed
instead of the chemical potential. Two main cases are pos-
sible: either a strong interband coupling with t��2t� or a
small interband coupling with t�	2t�.

In the first case, the only bands which are partially filled
at low magnetic field are the up- and down-spin bonding
bands �0, ↑� and �0, ↓� �see Fig. 2�a��. A first critical field
corresponds to the complete filling of �0, ↑� �Fig. 2�b��. This
induces a plateau with m=� in the magnetization curve. This
plateau is doping dependent and similar to what has been
predicted for other doped systems.12,13 The width of the pla-
teau can be deduced from energetic considerations13 to be
2�t�−2t�� in our case. When the plateau ends �Fig. 2�c��, the
band �� , ↑ � starts to be partially filled. When the band �0, ↓�
gets empty, all electrons are polarized and the magnetization
curve is constant with value m=1−�. For open boundary
conditions �OBCs�, a m=� plateau is also found as displayed

in Fig. 3 �see Sec. IV E 1 for computational details�. The
width is in good agreement with 2�t�−2t��. Note that this
plateau does not originate from interactions, contrary to what
will be discussed in the strong-coupling approach below and
in Sec. IV E 1, but is simply due to band-filling effects.

In the second case, all four bands are partially filled at low
magnetic field. No plateaus are found but filling or emptying
successively the bands will induce cusps in the magnetiza-
tion curve and a decrease of the slope of the magnetization
because fewer electrons contribute to the magnetization.
First, the band �� , ↓ � gets empty, next, �0, ↑� becomes com-
pletely filled, and lastly, �0, ↓� gets empty corresponding to
the saturation of the magnetization. An example of such a
curve for t� = t� with OBC is given in Fig. 16. Two cusps are
visible in this curve as well as a decrease of the average
slope of the magnetization.

Qualitative remarks on the strong-coupling limit. Adding
interactions in the system offers the possibility to study mag-
netization plateaus due to interactions and also pairing,
which does not necessarily mean superconductivity. In this
limit, we have J� , t� , t�
J� and the pairing energy defined as
in Eq. �33� is estimated to be35 J�−2t�−2t� and remains
approximately constant under magnetic field because the av-
erage magnetization in Eq. �33� is zero. Two ground states
are possible at finite magnetization: either holes are paired up
and all the polarization is due to triplets, or hole pairs are
split apart and the partner electron on the rung holds the
polarization. The difference between the energies per rung of
these two states is

m 	 �: �e 	 �J� − 2t� − 2t��� − J�m ,

m � �: �e 	 �2J� − 2t� − 2t��� − 2J�m .

If J� / �t�+ t���2, a transition is then possible from the state
with paired holes to the state with unpaired holes. The cor-
responding critical magnetization mc= �1−2�t�+ t�� /J��� is
always smaller than �. This also gives a possible scenario for
a wide m=� plateau due to interactions. For large J� and
m=0, we expect the ground state to have pairs of holes and
singlets mostly on rungs so that the system has a large spinFIG. 2. Band evolution corresponding to Fig. 3.

FIG. 3. Magnetization curves for the free system with t� =0.2
and t�=1.0 showing a plateau at m=� of width 2�t�−2t��.
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gap, which gives a m=0 plateau. However, the m=0 plateau
is much smaller than the half-filling spin gap because polar-
ized spins, in fact, gain kinetic energy if they are localized
next to holes so that it is easier to create them. As the mag-
netic field is increased, hole pairs are split as suggested by
the above argument and the partner electron of the hole on
the rung becomes polarized. When all of them are fully po-
larized, we enter the m=� plateau because the next spin ex-
citation one can do is to flip a singlet on a rung, which cost
is approximately J�. The m=� plateau can thus be wider
than the m=0 one. This scenario corresponds to Fig. 4,
where no pairing is found in the plateau from the computa-
tion of local densities of spins and holes with DMRG. Such
a scenario could be relevant for compounds with lightly
coupled dimers which could be doped with holes.

When one starts with unpaired holes at zero magnetic
field, for instance, with t� =J� 
 t�=J�, the large half-filled
spin gap of order J�−J� is immediately destroyed by doping
�see Fig. 5�. Increasing the magnetic field further quickly
brings the system into a plateau phase with unpaired holes.

While the magnetization curve is similar to the noninteract-
ing one below the m=� plateau, its width is clearly con-
trolled by J�−J� rather than by 2�t�−2t��.

An interesting feature on the pairing of holes in the m
=� plateau is the occurrence of a transition when J� is in-
creased from 0 to J� from a state with unpaired holes to
paired holes �see Fig. 6�. Having pairing in this plateau is a
situation that is not expected in the strong-coupling limit as
we have seen, but for intermediate J�, we expect that hop-
ping between hole pairs and magnons can stabilize hole
pairs23 �see Sec. IV�. Figure 6 suggests that a J� comparable
to J� is also needed to have pairing in this phase.

IV. COUPLED-BAND REGIME

A. Bosonized Hamiltonian

When the interactions are not too strong compared to the
interchain hopping, it is reasonable to begin to solve the
noninteracting band structure and then add interactions. This
is the approach followed in Refs. 32–34. The noninteracting
band structure is simply formed of the bonding band of en-
ergy �0,��k� and an antibonding band of energy ��,��k�. The
annihilation operators of the fermions in these bands are,
respectively, given by

�0,� =
1

2

��1,� + �2,�� , ��,� =
1

2

��1,� − �2,�� ,

with 1 and 2 the labels of the chains. In the continuum limit,
the fermions 0 and � are bosonized in terms of the boson
fields 
ky,� �ky =0,�� so that we write the fermion operator

cn,ky,� → 
a�ky,��x� = 
a�eikF,ky

� x�R,ky,��x� + e−ikF,ky

� x�L,ky,��x�� ,

�6�

in which x=na �a is the lattice spacing� and

FIG. 4. �Color online� Plateaus in the strong-coupling limit. We
chose J�=2.5, J� =0.3, and t� = t�=1.0. The m=� plateau is an ef-
fect of interactions and the ground state in this plateau has unpaired
holes. Still, holes are paired for magnetizations with m�mc	�.

FIG. 5. �Color online� Plateau phase diagram of a two-leg ladder
for t�=J�=1.0 and t� =J� =0.2. Doping immediately destroys the
m=0 plateau present at half-filling, while a large doping-dependent
m=� plateau appears for a small critical field.

FIG. 6. �Color online� Local densities of holes and spins in the
ground state of the m=� phase computed on a ladder with L=48
and 6 holes, t�= t� =1.0, and J�=0.5. As J� increases from 0 to J�

hole pairs form in the isotropic limit.
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�R/L,ky,� =
�R/L,ky,�


2��
ei�R/L
R/L,ky,�,

where R ,L are the labels for the right and left movers �see
Fig. 7�, � is a cutoff �typically a�, �R/L= �1, and � are Klein
factors needed to make the annihilation operators of the dif-
ferent fermion species anticommute. We also have the defi-
nitions 
ky,�= 1

2 �
L,ky,�+
R,ky,��, while dual fields are �ky,�

= 1
2 �
L,ky,�−
R,ky,��=���ky,�.
We then introduce the useful bosons 
�,ky

with �=c ,s for
charge �spin� corresponding to the symmetric �antisymmet-
ric� combination of 
ky,↑ and 
ky,↓. The same transformation
is performed on the dual fields, leading to the Hamiltonian

H = �
ky=0,�

�=c,s

� dx

2�
�uky

����,ky
�2 + uky

��x
�,ky
�2� ,

where �
�,ky
�x� ,���,ky�

�x���= i��,���ky,ky�
��x−x��. In the fol-

lowing, we will make the usual approximation36 of neglect-
ing the difference between the velocities uky

of the 0 and �
bands. This allows us to introduce the linear combinations


c,± =
1

2

�
c,0 ± 
c,�� , 
s,± =
1

2

�
s,0 ± 
s,�� ,

with similar definitions for the dual fields ��,±=����,±. In
the most general case, we have to use a Z matrix to describe
the evolution of the system under magnetic field.37 When
comparing the results with the chain models of Sec. V, it is
useful to note that while 
c+=
�+ and 
s+=
�+ �we use
Greek letters for the fields defined in the chain models and
Latin letters for the fields defined in the band models�, there
is no simple relation between 
�− and 
c− and between 
s−
and 
�−. The magnetic field couples to the system by a term

H =
H

�
� dx�x
s+. �7�

Once interactions are turned on, two types of terms appear
in the Hamiltonian. The terms of the first type are forward-
scattering interaction terms that are quadratic in the fields

�,±. The terms of the second type are backscattering inter-
action terms, the expressions of which were derived in Ref.
33. Since terms containing cos 2
s+ cannot appear in the
Hamiltonian when the magnetization is nonzero, the expres-
sion of the backscattering terms in a magnetized ladder reads

Hback =� dx cos 2�c−� 2gA

�2���2 cos 2
s−

+
2gB

�2���2 cos 2�s−� . �8�

From the Hamiltonian �8�, one sees that in the ground state
the field �c− is pinned to 
�c−�=0. By using the results of Ref.
38 �Sec. 3.1 and Eqs. �20� and �56��, one can argue that in
the presence of repulsive interactions, one must have Ks−
	1. Thus, one obtains a freezing of the field related to the
most relevant operator 

s−�= �

2 . Briefly, when m=�=0, all
fields are massive and we have the famous spin-liquid phase,
often denoted by C0S0. When m=0 but ��0, the system
with repulsive interactions is in a C1S0 phase, or Luther-
Emery �LE� phase, with sectors c− and s± being massive
while the sector c+ is massless, corresponding to the charge
mode. When m�0 and ��0, the sector s+ becomes mass-
less, giving rise to a C1S1 phase. Luttinger exponents asso-
ciated with these sectors will be denoted by Kc/s+. Until now,
we have discussed the case of generic nonzero magnetiza-
tion. For the specific case m=�, however, a magnetization
plateau can be expected. Following Ref. 26, we introduce the
fields


�
± =

1

2

�
c,± + �
s,±� , �9�

which appear in the term that induces the opening of the m
=� plateaus,

� dx cos�2�kF,0
� + kF,�

� �x − 2
2
�
+� , �10�

with, from Eqs. �3� and �4�, the relation kF,0
� +kF,�

� =��n
+�m�. This term leads to the opening of plateaus when
n±m�Z as expected in the YOA theorem. This condition is
a commensurability condition which combines both spin and
charge degrees of freedom. The m=� plateau corresponds to
the locking of the 
↑

+ mode. The origin of term �10� giving
rise to the plateau is the Hubbard interaction Uni↑ni↓ which
contains the terms

�c0↑
† c�↑ + c�↑

† c0↑��c0↓
† c�↓ + c�↓

† c0↓� , �11�

which, once bosonized, yields Umklapp terms such as

� dx cos�2�kF,0
↑ + kF,�

↑ �x − 2�
0,↑ + 
�,↑�� . �12�

B. Superconducting order parameters and most
divergent fluctuations

In this section, we define the order parameters for super-
conductivity at nonzero magnetization �high field�, derive
their bosonized expressions, and deduce their long-range cor-
relations. Since the SU�2� symmetry is broken by the mag-
netic field, we have to compute the superconducting correla-
tion functions 
����

� �x�����
�† �0�� in various channels �. We

use the following microscopic definitions for the pairing op-
erators ����

� �n� at rung n:

FIG. 7. Schematic representation of bosonized bands in the
coupled-band models.
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singlet: �↑↓
s �n� = �

�

�cr�cr�−�, �13�

triplet: ��↑↓
t �n� = �

�

cr�cr�−�

�↑↑
t �n� = cr↑cr�↑

�↓↓
t �n� = cr↓cr�↓,

� �14�

with r= �n ,1� and r�= �n ,2� for next-nearest-neighbor pairs
created on a rung and r= �n , p� and r�= �n+1, p� if created on
the leg p. Contrary to the case of the coupled-chain regime
�Sec. V� where the Fermi wave vectors are the same in both
chains, in the case of the band regime the Fermi wave vec-
tors of the two bands are different �kF,0

� �kF,�
� � as can be seen

in Fig. 1. As a result, a more detailed derivation of the
bosonized expressions starting from lattice expressions in a
two-chain Hubbard model becomes necessary.

1. Bosonized form

Using the bosonized form �6� of the fermion operators, we
can express these order parameters as a function of products
of the �R/L,ky,�. In this section, only components with the
dominant contribution will be kept, i.e., we will neglect
terms of the form �R�R and �L�L. These dominant contribu-
tions correspond to pairing with the lowest total momentum
q. The case of 2kF triplet pairing will be discussed in Sec.
IV B 2. At finite magnetization, the equality of the velocities
and Eq. �4� ensures that the lowest momentum is q=kF,0/�

↑

−kF,0/�
↓ =�m. To simplify the expression of the operators, we

will use extensively the following results on a pinned field �
�for which 
��=cste�: we can replace 
f���� by f�
��� and
the dual field has exponentially decaying correlation
functions.39

Starting with the interband order parameters, which read

�R,0,��L,�,−� 	 ei��c+−
c−−��
s+−�s−��,

�R,0,��L,�,� 	 ei��c+−
c−−���s+−
s−��,

we note that they are all proportional to ei
c− and thus, since
�c− is pinned, their correlations decay exponentially. In other
words, power-law decay is possible only for intraband super-
conducting correlations.

The intraband superconducting order parameters in the
three spin channels read, respectively, as follows.

For intraband singlet,

�
�

��R,0,��L,0,−� 	 �
�

�ei��c++�c−−��
s++
s−��,

�
�

��R,�,��L,�,−� 	 �
�

�ei��c+−�c−−��
s+−
s−��.

For intraband triplet Sz=0,

�
�

�R,0,��L,0,−� 	 �
�

ei��c++�c−−��
s++
s−��,

�
�

�R,�,��L,�,−� 	 �
�

ei��c+−�c−−��
s+−
s−��.

For intraband triplet Sz=1,

�R,0,��L,0,� 	 ei��c++�c−+���s++�s−��,

�R,�,��L,�,� 	 ei��c+−�c−+���s+−�s−��.

To determine which forms of superconductivity will be
dominant, we need to express the leg and rung order param-
eters in terms of the intraband order parameters. We have for
the rung singlet order parameter

�↑↓
s �x� 	 �

�

�

2
ei�qx��R,0,��L,0,−� − �R,�,��L,�,−�� , �15�

whereas the rung triplet Sz=0 is given by

�↑↓
t �x� 	 �

�

1

2
ei�qx��R,�,��L,0,−� − �R,0,−��L,�,�� . �16�

Therefore, since it is composed only of interband terms, we
expect that its correlation will present exponential decay.
Lastly, for the rung triplet Sz=1 order parameter, we find

�↑↑
t �x� 	

1

2
��R,0,↑�L,0,↑ − �R,�,↑�L,�,↑� . �17�

Turning to the leg singlet order parameter, we find that it
reads

�↑↓
s �x� 	 �

�

�

2
ei�qx�e−ikF,0

−� a�R,0,��L,0,−� + �0 → ��� .

�18�

Note that because we can neglect interband coupling, the
expression is the same on both legs. Thus, leg-leg correla-
tions on the same leg and between the legs will have the
same sign as found numerically in Fig. 8. Analogously, the
leg triplet Sz=0 operator reads

�↑↓
t �x� 	 �

�

1

2
ei�qx�sin�kF,0

� a��R,0,��L,0,−� + �0 → ��� .

�19�

Note that if we take the limit a→0, this term disappears as
happened for the rung triplet. Finally, the leg triplet Sz=1
reads

�↑↑
t �x� 	

1

2
�e−ikF,0

↑ a�R,0,↑�L,0,↑ + �0 → ��� . �20�

Since Ks−	1, we have 

s−�= �
2 . Then, all the intraband trip-

lets Sz=1 have exponentially decaying correlations. As a
consequence, both the leg and the rung triplets with Sz=1
have exponentially decaying correlations. The behavior of
these correlations with higher 2kF momentum will be dis-
cussed in Sec. IV B 2. Another consequence of the ordering
of the field 
s− is that

�R,0,��L,0,−� 	 e−i��/2��ei��c+−�
s+�,
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�R,�,��L,�,−� 	 ei��/2��ei��c+−�
s+�.

Provided that kF,0�kF,�, the leg triplet Sz=0 order parameter
does not vanish. We find that it has the same critical expo-
nent as the rung singlet order parameter, namely, 1

2 �Kc+
−1

+Ks+�. It is larger than the m=0 critical exponent 1 / �2Kc+�
because of the appearance of the massless boson �s+. The
fact that we have a finite momentum pairing with q=�m is
very likely to occur in a one-dimensional-like system and is
the signature of the FFLO mechanism.

2. Sz=1 triplet with a 2kF momentum

Another notable result is the presence of rung-rung triplet
Sz=1 correlations with 2kF oscillations. Within the band rep-
resentation, it is indeed possible to find a component of the
rung-rung triplet correlations that has power-law decay. Let
us consider the next terms in the expansion of the rung triplet
operator:

�1,��2,� 	 − 2ei�kF,0
� +kF,�

� �x�R,0,��R,�,� + ¯ .

In bosonized form, this operator reads

���,2kF

t �x� 	 ei�kF,0
� +kF,�

� �xei��c+−
c++���s+−
s+��.

It has power-law correlations with a critical exponent

1

2
�Kc+ + Kc+

−1 + Ks+ + Ks+
−1� ,

and from Eqs. �3� and �4�, the associated wave vector is

kF,0
� +kF,�

� =��n+�m�. Note that its critical exponent is al-
ways larger than the one of the rung singlet order parameter.

3. Charge-density wave order parameters

Here, we address the question of the CDW exponents un-
der magnetic field. First, the 2kF CDW order parameter ni,
which vanishes exponentially at zero magnetization, contains
terms such as

�r,0�
† �r,�� 	 ei�
c−+�
s−−r��c−+��s−��,

with r=± for R ,L and a wave vector kF,�
� −kF,0

� . These order
parameters decay exponentially because they are propor-
tional to ei
c−. A last possible term is

�R,0�
† �L,�� 	 ei�
c+−�c−+��
s+−�s−��,

with a “2kF” wave vector ��n+�m�. It decays exponentially
because of ei�s−. Finally, no 2kF CDWs are expected under
magnetic field.

Secondly, the 4kF CDW order parameter16 is ni
2 and has

an exponent 2Kc+ at zero magnetization. This order param-
eter contains terms such as

�R,0�
† �L,0��R,��

† �L,�� 	 ei2�
c++�
s+�,

which have a “4kF” wave vector 2��n+m� and, for nonzero
magnetization, an exponent 2�Kc++Ks+�. We also have terms
like

�R,0�
† �L,0��R,�−�

† �L,�−� 	 ei2�
c++�
s−�,

with a wave vector 2�kF,0
� +kF,�

−� � and an exponent 2Kc+ which
is not affected by the magnetic field. This last term can com-
pete with the superconducting order parameter to be the most
diverging fluctuations depending on Kc+ and Ks+.

C. Interpreting the superconducting critical field Hc

as a band-filling transition

In this section, we identify the observed superconducting
upper critical field Hc with a band-filling transition. Such a
transition will ungap all three remaining sectors, leading to
an enhancement of the correlation exponents. We describe
the system just above the transition and compute the various
possible exponents using bosonization. We consider a case
where the Fermi energy is positioned in such a way that the
band �� , ↓ � is empty while the three other bands remain
partially filled �see Fig. 1 for illustration�. The band �� , ↓ �
being empty has important consequences. Projecting out the
high-energy subspace where the band �0,↓� is occupied by a
single electron, one gets in lowest order

cn,p,↓
† cn,p,↓ →

1

2
cn,0,↓

† cn,0,↓, �21�

and as a result the on-site Hubbard interaction reduces to

U

2 �
n

ni,0,↓�ni,0,↑ + ni,�,↑� . �22�

In the absence of commensuration between the different

FIG. 8. �Color online� Absolute value of superconducting corre-
lations for zero and a finite magnetization in an isotropic doped
ladder with �=0.063. Notations are “Rg” for rung, “Lg” for leg,
“	0” for numerically irrelevant signal, “exp” for exponentially de-
caying correlations, and “�m” and “2kF” for the wave vectors. Note
that the Sz=1 “2kF” oscillations are smoothed out by taking the
absolute value. M =1000 states were kept with discarded weight of
order 10−6.
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bands, the resulting bosonized Hamiltonian has only
forward-scattering interactions. Thus, its excitations are com-
pletely gapless. The bosonized Hamiltonian reads

H = H0 + HU,

H0 = �
����0,↑�,�0,↓�,��,↑��

� dx

2�
vF,�������2 + ��x
��2� ,

�23�

HU =
U�

2�2 � dx�x
0,↓��x
0,↑ + �x
�,↑� . �24�

This Hamiltonian can be fully diagonalized. In the general
case, where the Fermi velocities are all different, one needs
to first perform a rescaling ���→
u /vF,��� and 
�

→
� /
u /vF,�, where u is an arbitrary quantity with the di-
mension of a velocity� and then diagonalize the matrix

�
vF,0↑

2 U�

4�2

vF,0↑vF,0↓ 0

U�

4�2

vF,0↑vF,0↓ vF,0↓

2 U�

4�2

vF,�↑vF,0↓

0
U�

4�2

vF,0↑vF,0↓ vF,�↑

2 � .

�25�

Afterward, one performs the inverse rescaling on the di-
agonal matrix to obtain the velocities of the modes and the
associated Luttinger exponents. To simplify the algebra, we
will assume that all the Fermi velocities are equal. Then, we
find that the following combination of fields

�
1


2


3
� =�


2

2

1

2

1

2


2

2
−

1

2
−

1

2

0

2

2
−


2

2

��
0,↓


0↑


�↑
� �26�

diagonalizes the interaction and

u1K1 = u2K2 = u3K3 = vF, �27�

u1

K1
= vF +

U�

2�2
2
, �28�

u2

K2
= vF −

U�

2�2
2
, �29�

u3

K3
= vF. �30�

In terms of these new fields, the fermion operators read

�r,0,↑ =
�r,0,↑

2��

ei��1/2���1−r
1�−�1/2���2−r
2�+�1/
2���3−r
3��,

�r,�,↑ =
�r,�,↑

2��

ei��1/2���1−r
1�−�1/2���2−r
2�−�1/
2���3−r
3��,

�r,0,↑ =
�r,0,↓

2��

ei�
2/2����1−r
1�+��2−r
2��.

From these expressions, it is possible to obtain the various
superconducting order parameters and their critical expo-
nents. The results are gathered in Tables I and II on which
one must note that the correlation exponent will be twice the
dimension of the operator.

TABLE I. The superconducting operators for the Hubbard model with an empty band corresponding to
the coupled-band regime just above Hc.

Type of operator Fermion expression Dimension Wave vector

Sz=1 triplet �R0↑�L0↑
1

4K1
+

1

4K2
+

1

2K3
0

�R�↑�L�↑
1

4K1
+

1

4K2
+

1

2K3
0

�R0↓�L0↓
1

2K1
+

1

2K2
0

�R�↑�L0↑
1

4K1
+

1

4K2
+

K3

2
kF�
↑ −kF0

↑

Sz=0 triplet or singlet �R0↑�L0↓
3+
8

16
�K1

−1+K2�+
3−
8

16
�K2

−1+K1�+
1

8
�K3+K3

−1� kF0
↑ −kF0

↓

�R�↑�L0↓
3+
8

16
�K1

−1+K2�+
3−
8

16
�K2

−1+K1�+
1

8
�K3+K3

−1� kF�
↑ −kF0

↓
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D. Numerical results on superconducting correlation functions

We have computed superconducting correlation functions
with DMRG using the definitions of Eqs. �13� and �14�. As
predicted by bosonization results, only modified d-wave sin-
glet superconductivity is found when m=0 �rung-leg corre-
lations have an opposite sign to rung-rung and leg-leg corre-
lations, see Ref. 16 for a bosonization discussion�, while Sz

=0 leg-leg triplet and Sz=1 rung-rung triplet correlations
emerge under high magnetic field �see Fig. 8 for the t-J
model and Fig. 9 for the repulsive Hubbard model�. Further-
more, these correlations oscillate with wave vectors q=�m
for the Sz=0 channel and q=2kF for the Sz=1 channel. The
q=�m relation has been checked in all the FFLO phases �see
Fig. 17 and discussion in Sec. IV E� by fitting the oscillating
correlations with A cos�qr+�� /r� �see Fig. 10�, confirming
the FFLO-like mechanism. We observe that Sz=0 rung-rung

triplet correlations have an exponential behavior, while rung-
rung singlet correlations are algebraic, in agreement with the
prediction from bosonization. Since from the point of view
of the rotation symmetry these two order parameters trans-
form in the same way, the difference must be caused by their
different transformation properties under interchange of the
legs. Note that because of the sin�kF,ky

� a� factors in the leg
singlet and Sz=0 leg triplet, the cancellation of the intraband
terms obtained in the case of rung order parameters is absent.
This explains the observation of power-law correlations.
Concerning the orbital part of pairs, singlet Cooper pairs
have a mixed s-wave and d-wave structure and Sz=0 triplet
can be considered to first approximation as p-wave pairs
along the legs �with a symmetric superposition of the two
legs�.

The good agreement with bosonization predictions relies
on the fact that in the doped isotropic t-J ladder, four Fermi
points exist with approximately35 kF,0	3� /5 and kF,�
	2� /5 when m=0 and that the assumption of equal Fermi

TABLE II. The CDW/SDW operators for the Hubbard model with an empty band corresponding to the
coupled-band regime just above Hc.

Type of operator Fermion expression Dimension Wave vector

SDWz /CDW �R0↑
† �L0↑

K1

4
+

K2

4
+

K3

2
2kF0

↑

�R�↑
† �L�↑

K1

4
+

K2

4
+

K3

2
2kF�

↑

�R0↓
† �L0↓

K1

2
+

K2

2
2kF0

↓

�R�↑
† �L0↑

K1

4
+

K2

4
+

1

2K3
kF�
↑ +kF0

↑

SDWx,y �R0↑
† �L0↓

3−
8

16
�K1

−1+K2�+
3+
8

16
�K2

−1+K1�+
1

8
�K3+K3

−1� kF0
↑ +kF0

↓

�R�↑
† �L0↓

3−
8

16
�K1

−1+K2�+
3+
8

16
�K2

−1+K1�+
1

8
�K3+K3

−1� kF�
↑ +kF0

↓

FIG. 9. �Color online� Same correlations as Fig. 8 but using the
Hubbard model with �=0.063 and U / t=8.0. M =1600 states were
kept with discarded weight of order 10−6.

FIG. 10. �Color online� Verification of the q=�m relation of
FFLO-like pairing at finite magnetization in an isotropic ladder with
J / t=0.5.
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velocities is numerically reasonable at low hole doping. The
existence of a small leg-leg triplet component �about 100
times smaller than the rung-rung triplet� in the two-leg t-J
ladder considered may therefore be explained by the persis-
tence of a small band splitting in this strongly coupled ladder
system.

We now would like to compare precisely the algebraic
decay exponents �s and �t of the singlet and Sz=0 leg-leg
triplet correlations. DMRG is known to often underestimate
correlation functions25 for a fixed number of kept states M.
In order to capture the behavior in the thermodynamic limit,
we computed the correlation functions for fixed M ranging
from 800 to 2000 and lengths L=32, 64, 96, and 128 �we
worked at fixed �=1/16 and m=3/32 so that these are the
only accessible cluster sizes�. We extracted ��M ,L� by fit-
ting the data. Then, we can extrapolate � in the M→� limit

to get a correct exponent ��L� at size L from which we can
do a finite-size scaling. In Fig. 11, we see that for a given
size, ��M� decreases as M is enlarged, roughly like ��M�
	1/M �see Fig. 13�b�� as was previously found. We note
from Fig. 12 that the larger the system, the larger M is
needed to reach a good convergence. Convergence as a func-
tion of the discarded weight is also given in Fig. 13 and has
qualitatively the same behavior. For L=128, the convergence
is slower with M than for L=96, probably because we would
need larger M to have a correct accuracy �the 1/M might be
realized for large enough M� so that we believe the results
are not as reliable as for L=64 and 96 �larger M would be
very expensive numerically�. On one side of Fig. 13�c�, M
=2000 is too small �for L=128�, while on the other side, it is
difficult to extract � because the system is too small to re-
solve enough oscillations �when L=32�. Extrapolations can
be tentatively done with some uncertainties which can be
roughly estimated. Therefore, we can infer from Fig. 13 that
�s=1.54±0.15 is greater than �t=1.17±0.15, which pleads
in favor of dominating Sz=0 triplet correlations in this part of

FIG. 12. �Color online� Convergence with size L for the same
parameters as in Fig. 11, M being fixed.FIG. 11. �Color online� Convergence with the number of kept

states M for a fixed length L=64. The plotted superconducting cor-
relation is the singlet one and parameters are m=0.094, �=0.063,
and J / t=0.5 which corresponds to the phase above the m=� plateau
and below the superconducting upper critical field Hc.

FIG. 13. �Color online� Extrapolation �a� of
fitted exponent as a function of discarded weight
w and �b� of the inverse of the number of kept
states M for different lengths L. Extrapolated re-
sults from �b� are tentatively extrapolated vs L in
�c�. Large error bars occur when L is too small
�for L=32� and because M is too small �for L
=128�. Parameters are given in the caption of
Fig. 11.
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the phase diagram �above the m=� plateau and below Hc�
but the difference is rather small. Finite-size effects could
explain that the bosonization prediction �t=�s is not realized
on numerical results. Note that �	2 is sufficient to have a
divergent superconducting susceptibility in the system. Con-
cerning CDW exponents, they are difficult to compute nu-
merically because of OBC but we will see that we can de-
duce from the two-particle gap of Fig. 18 that the system is
in a superconducting phase.

1. Evolution of the Luttinger parameter Ks+

We now want to have access to the evolution of the Lut-
tinger exponent Ks+ of the gapless mode which appears at
finite magnetization. We remark that the bosonized form of
the triplet creation operator on a rung S2

+�x�S1
+�x� contains

dominant terms such as

�L,0↑
† �L,0↓�R,�↑

† �R,�↓ 	 e−i2�
s−+�s+�, �31�

giving an exponent 2Ks+
−1 since 

s−�=� /2. The wave vector

associated with this operator is �kF,0
↑ −kF,0

↓ �− �kF,�
↑ −kF,�

↓ �	0
since, if the difference between the Fermi velocities of the 0
and � bands is negligible, we have kF,ky

↑ −kF,ky

↓ =�m. Note
that 2Ks+

−1 is the smaller exponent for terms with this wave
vector. Because Ks+	1, we could expect smaller possible
exponents such as 2Ks+ or 1

2 �Ks++Ks+
−1�. For the first, one can

show that fields 2�
s+±
s−� or 2�
s++��c−� cannot appear
in the decomposition of S2

+S1
+. For the other, fields


s+±�s+±�c−±
s− cannot be decomposed in terms of the
right and left mover fields with factors �. Finally, the decay
exponent of the correlations of this order parameter is ex-
pected to be 2Ks+

−1 and depends only on Ks+ and not on Kc+.
Numerically, we have computed the correlation function

S2

+�x�S1
+�x�S2

−�0�S1
−�0��. Data for the isotropic t-J model are

displayed in Fig. 14 and show a power-law decay with an
exponent larger than 2 and a wave vector approaching zero.
Points are given as a function of H /�s, �s being the finite-
size spin gap of the system. We thus have access to the

evolution of Ks+ as a function of the magnetic field �see Fig.
15�. The general behavior is that Ks+	1 and increases with
magnetic field toward the limit Ks+=1 at high fields. Simi-
larly, the Luttinger parameter Ks+ has been characterized us-
ing Bethe ansatz in the context of the SO�8� description of
two-leg half-filled Hubbard ladders40 which gave Ks+	1.
When doped, the SO�6� description41 gives the same con-
straint �results not shown� as well as an increase of Ks+ at
high magnetic field. However, a detailed comparison of
SO�6� predictions and numerics would require one to deter-
mine first the conditions and parameters at which both ap-
proaches match and this is beyond the scope of this paper.
Lastly, the values of Ks+ obtained numerically should be
slightly larger in the thermodynamic limit than what is found
because of finite-size and finite M effects as explained above.

E. Generic phase diagram of the t-J model

In this section, we discuss the generic phase diagram in
the �H ,�� plane for the isotropic t-J model on the basis of
DMRG and bosonization results.

1. Doping-dependent magnetization plateaus

The magnetization curves m�H� of Fig. 16, obtained
within the Hubbard and t-J models, display plateaus for m
=0 and m=�. Energies E�nh ,Sz� were computed keeping M
=1600 states with the single-site method proposed by
White42 �we used a noise level of 10−6� at fixed hole number
nh and total magnetization Sz. Magnetic fields are deduced
using H�Sz�=E�nh ,Sz+1�−E�nh ,Sz�, and interpolated with
�H�Sz�+H�Sz−1�� /2 if they do not belong to a plateau. The
m=0 plateau simply corresponds to the well-known spin gap
of the doped ladder. The m=� plateau exists at small doping
for continuous values of � �see Fig. 17 and Ref. 23� and thus
falls into the classes of doping-dependent irrational magne-
tization plateaus predicted12,26 by Cabra et al. It can be un-
derstood as a commensurate-incommensurate43 �C-IC� tran-
sition so that we expect the critical exponent of the
magnetization as a function of the magnetic field to be 1/2.
In the plateau phase, the mode 
↑

+ is locked but the sector
�↓ , + � remains gapless, leading to a metallic phase. Note that

FIG. 14. �Color online� Normalized four-point spin correlations
T�x�= 
S2

+�x�S1
+�x�S2

−�0�S1
−�0�� for various magnetizations in the iso-

tropic t-J ladder with J / t=0.75 and �=0.063. Their decay exponent
is 2Ks+

−1 which gives access to Ks+�H�. Correlations were computed
on a system with L=64 and M =1200 states kept.

FIG. 15. �Color online� Ks+�H /�s� from DMRG computations
on a system with parameters of Fig. 14.
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↑
+ is a superposition of both spin and charge modes so that

charge and spin are no more independent modes in the pla-
teau phase.

The Hubbard and t-J models give qualitatively the same
behavior at low magnetization. The spin gap �m=0 plateau�
in the Hubbard model with U / t=8 is about half of the spin
gap of the t-J model with J / t=0.5 as it was previously
found,44 but the irrational plateau has roughly the same
width. A larger U gives a slightly larger plateau. Both models
display a singularity of the magnetization curve, more or less
pronounced, near the superconducting critical field Hc. The
location of Hc in Fig. 16 has been roughly determined by
looking at local densities �see Ref. 23 for the method� since
Cooper pairs break down above this field. For larger U, the

superconducting critical field is smaller. These results are
also observed in the t-J model having in mind that J / t
	 t /U �see Sec. IV E 2 and Fig. 19�. For higher magnetiza-
tion states, Gutzwiller projection induces a rather different
behavior between strongly interacting systems �Hubbard U
=16 and t-J�, the Hubbard model with U=8 which displays
the expected square-root-like behaviors near critical fields in
good agreement with the band-emptying scenario proposed
in Sec. IV C. At last, a quick comparison with the isotropic
noninteracting system proves the nontrivial role of interac-
tions in the apparition of these plateaus.

The magnetic part of the phase diagram of the t-J model
with J / t=0.35 has been computed �see Fig. 17� and is very
similar to the one obtained with J / t=0.5 �see Ref. 23� but
have larger m=� plateaus. We propose that such a phase
diagram is generic for the isotropic t-J and Hubbard models
under Zeeman effect at low doping and for parameters 0.25
� �J / t	4t /U��1.0 corresponding to the strong-coupling
regime. Varying J / t modifies the width of the different
phases as proposed in Fig. 19. Lastly, we note that �=1/4
corresponds to the end of the plateau both for J / t=0.35 and
J / t=0.5. Furthermore, the magnetization curves are strongly
modified with ��1/4 �data not shown�, which suggests that
this hole density corresponds to a singular point.

2. Charge gaps and exceeding of the Pauli limit

To study the charge degree of freedom of the system, we
computed the two-particle gap �2p �related to the inverse
compressibility� and pairing energy �p as a function of the
magnetization m to discuss the nature of the ground state.
With nh the number of holes and Sz the total spin along the
magnetic field, we have the definitions

�2p�Sz� = E�nh + 2,Sz� + E�nh − 2,Sz� − 2E�nh,Sz� �32�

and

�p�Sz� = E�nh − 1,Sz + 1/2� + E�nh − 1,Sz − 1/2�

− E�nh,Sz� − E�nh − 2,Sz� . �33�

The evolution of these gaps under increasing magnetization
is displayed in Fig. 18. Superconducting correlations are also
algebraic when the pairing energy is finite from Fig. 6 of
Ref. 23. These observations confirm that the system is in a
superconducting state, except in the m=� plateau where a
finite two-particle charge gap is found as well as a strong
reduction of all superconducting correlations from Fig. 6 of
Ref. 23. However, the field 
↓

+ remains gapless in the irra-
tional plateau, while other fields are gapful. This suggests
that the system is in a metallic phase in this plateau phase.
Increasing the magnetic field brings the system back into a
superconducting phase, giving an example of reentrant su-
perconductivity which shares similarity with a proposal for a
bilayer system.45 The finite value of �2p in the thermody-
namic limit within the plateau phase can be inferred by using
Eq. �32� and the constraint m=� for continuous values of
hole doping, which are more general hypotheses than the
particular case under study. Indeed, it is straightforward to
find that it exactly equals the width E�nh ,Sz+1�−E�nh ,Sz

−1� of the plateau in the thermodynamical limit. This is co-

FIG. 16. �Color online� Magnetization curves for the isotropic
t-J, Hubbard, and noninteracting systems. Irrational plateaus are
clearly visible at m=�. Hc represents the superconducting critical
field. The energy scale J is defined as 4t2 /U in the Hubbard model.
The noninteracting system curve has been rescaled �H→H /4� for
clarity.

FIG. 17. Phase diagram for the isotropic two-leg t-J ladder in
the �H ,�� plane for J / t=0.35. The large FFLO phase is delimited
by the upper limit of the m=0 plateau and the critical field Hc. Note
also that in this part of the diagram, the m=� phase is not expected
to be a superconducting phase but rather metallic.
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herent with the numerical results of Fig. 18 obtained at fixed
�. It simply means that removing a hole pair in a system
which has m=� �i.e., the same number of hole pairs and
magnons� is energetically equivalent to adding a magnon in a
system with m�=�� at a slightly lower density. Thus, one has
to pay the energy gap of the m�=�� plateau for that, and this
gap equals the m=� gap in the thermodynamical limit.

We now come to the computation of the theoretical Pauli
limit HP and of the actual superconducting critical field Hc.
The Pauli limit is defined by equaling the condensation en-
ergy at T=0 and H=0 to the energy of the electrons coming
from a broken pair and stabilized by Zeeman effect.4 We
have access numerically to the condensation energy of a pair
of electrons at zero magnetization through �p�Sz=0�. Paired
electrons in a singlet state do not take advantage of Zeeman
effect contrary to unpaired electrons which can be polarized
along the magnetic field. The total energy of these two elec-
trons is 2E�nh−1, +1/2�−2�

1
2 �H, to be compared with

the total energy of the same system with paired electrons,
E�nh ,0�+E�nh−2,0�. By looking at Eq. �33� with Sz=0, we
find that the Pauli field simply reads HP=�P�Sz=0�. What
actually occurs in the system is a transition to a FFLO state
which changes the nature of the ground state so that the Pauli
limit can be exceeded. The superconducting upper critical
field is deduced from the location at which �p�Sz� crosses
zero, which gives a critical magnetization mc and in turn the
critical field Hc reported in Fig. 17. It is important to note
that these calculations are exact and with no approximation.
The superconducting critical field Hc can also be interpreted
in the bosonization language as the emptying of the �� , ↓ �
band �see Sec. IV C�. From Figs. 17 and 19, it is clear that
Pauli limit is exceeded at low doping and for a wide region
of parameters. This exceeding of the Pauli limit can be asso-
ciated with the FFLO mechanism discussed in Sec. IV D
from the behavior of the superconducting correlations.

At last, we remark from Fig. 18 that the pairing energy
has a discontinuity upon magnetizing the ladder �in the m

→0 limit� very similar to the known discontinuity of the spin
gap46,47 upon doping the ladder �in the �→0 limit�. Note
also that the strong reduction of the pairing energy and of the
spin gap for �=1/4 observed in Fig. 17 is related to the
proximity of the CDW phase,16 which occurs for J / t	0.2.

3. Phase diagram

The phase diagram of Fig. 17 is proposed to be generic in
the coupled-band regime for strong repulsive interactions. In
addition to the magnetic properties described above, the sys-
tem is in a LE superconducting state in the m=0 plateau, in
a Luttinger liquid superconducting phase below Hc, and in a
metallic phase in the m=� plateau phase. Above Hc, the sys-
tem switches to a metallic phase with three ungapped sectors
which couple both spin and charge degrees of freedom. The
central charge c is expected to take the following values in
each phase encountered as the magnetic field is increased
�taking, for example, a vertical cut in Fig. 17 with �=0.063�:
c=1 �m=0 plateau�, 2 �FFLO below the m=� plateau�, 1 �
m=� plateau�, 2 �FFLO above the m=� plateau�, and 3
�above Hc�, 2 �saturation phase�. Note that one could expect
a last transition c=2→1 for certain parameters, correspond-
ing to a situation where the �0, ↑� is completely filled. Since
such a transition would induce a cusp in the magnetization
curve and there is no sign of it in Fig. 16, we conclude that
c=2 is the value for the saturation in this regime.

To evaluate the role of J / t on this generic phase diagram,
we computed various energy gaps and critical fields in the
�→0 limit, i.e., for two holes on a ladder with L→�. Re-
sults are extrapolated from systems of length L=32,48,64
and are displayed in Fig. 19. First, we note that for very
small J / t, a Nagaoka phase competes with the LE phase and

FIG. 18. �Color online� �a� Two-particle gap and �b� pairing
energy for isotropic ladders as a function of magnetization. An
anomaly in the two-particle gap at m=� is clearly visible, while the
pairing energy remains finite up to the superconducting-metallic
state transition. mc represents the magnetization corresponding to
the superconducting critical field Hc.

FIG. 19. �Color online� Hc, HP, and m=� plateau on an isotropic
two-leg t-J ladder doped with two holes as a function of J / t �this
corresponds to the �→0 limit of the phase diagram of Fig. 17�. The
curve with squares corresponds to the upper limit of the m=0 pla-
teau and the lower limit of the m=� plateau, while the curve with
circles to the upper limit of the m=� plateau. The FFLO phase is
delimited by the curve with circles and the curve with triangles.
Results are extrapolated from DMRG results on systems with L
=32,48,64. For small J / t, a Nagaoka phase is found but because of
strong finite-size effects, we do not discuss this part of the diagram.
Lines are guides for the eyes.
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induces strong finite-size effects in the ground states; thus,
the displayed boundary between these phases does not cor-
respond to the thermodynamical transition. Hence, we only
focus on points for which the LE phase is stable �on finite-
size systems�, which are found to be qualitatively for 0.25
�J / t�1.0. For large J / t, the model undergoes a phase sepa-
ration between holes and spins and we are not interested in
the behavior near this instability. In this region of param-
eters, we have the following behavior: the width of the pla-
teau increases for decreasing J / t �for J / t=1.0, the m=� pla-
teau is hardly visible at finite density, data not shown�, while
the exceeding of the Pauli limit increases with J / t �which
simply follows the increase of the pairing energy�.

These elementary excitation gaps at �→0+ can be related
to the dynamics of the system47 when m=0. The difference
between min��p ,�M� and the spin gap corresponds to the
binding energy of the resonant magnetic mode. It is interest-
ing to note that the upper limit of the m=� plateau is ap-
proximately independent of J / t and corresponds to a free
magnon �which is nothing but the spin gap of the undoped
system �M 	J /2�. Indeed, once the hole pair is bound to a
magnon, the next magnetic excitation is to create a magnon
in the remaining undoped background, which cost is �M,
slightly renormalized by the scattering with the hole-magnon
bound state. This supports the phenomenological mechanism
proposed in Ref. 23 for the opening of the irrational plateau.
The binding of the hole pair to the magnon comes from the
gain in kinetic energy holes have in a locally ferromagnetic
environment. It is thus expected that the binding energy in-
creases with t /J. It is also likely to find such a bound state in
the vicinity of a Nagaoka phase which here competes with
the LE phase. It also explains the decrease of the pairing
energies as J / t is reduced. Note that previous studies of this
resonant magnetic mode with exact diagonalization47 and pe-
riodic boundary conditions agree with these results, and
hence suggest that open boundary conditions do not affect
this generic phase diagram.

V. COUPLED-CHAIN REGIME

A. Dominant exchange model

By strongly reducing the interchain hopping amplitude,
one can reach the coupled-chain regime in which interchain
hopping is an irrelevant perturbation48–51 and the relevant
interchain couplings are either the Josephson coupling �for
attractive intrachain interactions� or the exchange coupling
�for repulsive interchain interaction�. An important point is
that even if the bare model has only interchain hopping, Jo-
sephson and exchange couplings are generated by the renor-
malization group �RG� flow49–51 and, as a result, the effective
model always contains this type of interaction. In the rest of
the paper, we will call this strong-coupling limit the “chain
representation.” The bosonized Hamiltonian describing the
two uncoupled chains reads39

H = �
i=1,2

�=�,�

� dx

2�
�u�K�����,i�2 +

u�

K�

��x
�,i�2� , �34�

where we have dropped terms �g1� cos 
8
�,i since these
terms are marginally irrelevant in the case of repulsive inter-

actions. In the case of attractive interactions, they also be-
come irrelevant upon the application of a magnetic field
strong enough to induce a C-IC transition.43

1. Dominant exchange

For small J� / t� ratios, the analysis of the scaling dimen-
sions in the t-J model on a single chain52 shows that the
dominant interchain coupling is the exchange one. This term
reads

2J��

�2���2 cos 
2�
�,1 − 
�,2�

��cos 
2���,1 − ��,2� +
1

2
cos 
2�
�,1 − 
�,2�

+
1

2
cos 
2�
�,1 + 
�,2 + 2�mx�� , �35�

where we have the usual definition ��,i=����,i. For nonzero
magnetization, the last term is oscillating and drops from the
Hamiltonian. It is convenient to introduce the new fields


�,± =
1

2

�
�,1 ± 
�,2� , ��,± =
1

2

���,1 ± ��,2� .

With this transformation, the exchange term is rewritten as

2J�

�2���2 � dx cos 2
�−�cos 2��− +
1

2
cos 2
�−� . �36�

Moreover, the two chains being equivalent, the chain Hamil-
tonian is rewritten as

H = �
r=±

�=�,�

� dx

2�
�u�K�����,r�2 +

u�

K�

��x
�,r�2� . �37�

Obviously, the Hamiltonians describing the fields 
�+ and

�+ are purely quadratic, indicating that the total charge and
the total spin excitations are gapless. The fields 
�− and

�− are described by a generalized sine Gordon model. The
sine Gordon interaction term �36� can be treated within
a RG analysis. The scaling dimension of the term
cos 2
�− cos 2��− is K�−+K�−

−1 and scaling dimension of the
term cos 2
�− cos 2
�− is K�−+K�−. From the analysis of
Ref. 30, we can conclude that in the case of interest we have
K�−�1 and cos 2
�− cos 2��− is the most relevant term and
for antiferromagnetic J� the ground state has 

�−�
=0 �mod �� and 
��−�= �

2 �mod ��.

2. Most divergent superconducting fluctuations

The expression of the intrachain order parameters in terms
of the fields in Eq. �37� can be found in Ref. 39. When
reexpressed in terms of the � fields and denoting q=�m, the
singlet operator reads
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OSS,i = �
�

�eiq�x�R,i,��L,i,−�

	 �
�

�eiq�xei���+−�− �i��−�e−i��
�+−�− �i
�−�, �38�

and, for triplet operators, we have

OTS,i,Sz=0 = �
�

eiq�x�R,i,��L,i,−�

	 �
�

eiq�xei���+−�− �i��−�e−i��
�+−�− �i
�−�, �39�

OTS,i,Sz=1 = �R,i,↑�L,i,↑ 	 ei���+−�− �i��−�e−i���+−�− �i��−�.

�40�

For the interchain operators, the singlet operator reads

OSS� = �
�

�eiq�x�R,1,��L,2,−� 	 �
�

�eiq�xei���+−
�−+����−−
�+��,

�41�

while the triplet ones read

OTS,Sz=0
� = �

�

eiq�x�R,1,��L,2,−� 	 �
�

eiq�xei���+−
�−+����−−
�+��,

�42�

OTS,Sz=1
� = �R,1,↑�L,2,↑ 	 ei���+−
�−+��+−
�−�. �43�

Since 

�−�=0, we have 
ei
�−��0 and by duality

ei��−�x�ei��−�0��	e−x/�−. This property implies that all the in-
trachain superconducting correlations should decay exponen-
tially along the chains. On the other hand, the interchain
correlations are reinforced. The physical picture is that in this
situation, fermions of opposite spins on each chain are bound
together by the exchange interaction. Whether the dominant
superconductivity is the interchain one or the intrachain one
depends on the value of K�−. Since we have K�−�1 in our
case, the dominant superconducting correlations are the in-
terchain singlet and the interchain triplet Sz=0. Note that
these two operators have exactly the same critical exponents.
In the case of dominant Josephson coupling, the situation is
reversed.

3. Sz=1 triplet with a 2kF momentum

It is also straightforward to derive an expression of the
operator e2ikF,�x�R,1,��R,2,� associated with the 2kF triplet
correlations. This expression reads

e2ikF,�xei���+−
�+�ei����+−
�+�. �44�

This expression again shows power-law correlations with the
critical exponent

1

2
�K�+ + K�+

−1 + K�+ + K�+
−1� �45�

very similar to what has been obtained in Sec. IV B 2.

B. Favoring the Josephson coupling in the
coupled-chain regime

Let us consider the regime of small interchain hopping
and assume that now the intrachain terms are such that J�

	4t�. In this case, the dominant term becomes the Josephson
coupling52 and the perturbation term �Eq. �36�� is replaced by

2��

�2���2 cos 
2���,1 − ��,2�

��cos 
2���,1 − ��,2� +
1

2
cos 
2�
�,1 − 
�,2�

+
1

2
cos 
2�
�,1 + 
�,2 + 2�mx�� . �46�

The treatment parallels the one of the exchange coupling in
Sec. V A 1. The Josephson term is rewritten in the form

2�

�2���2 � dx cos 2��−�cos 2��− +
1

2
cos 2
�−� . �47�

The scaling dimension of the term cos 2��− cos 2��− is K�−
−1

+K�−
−1 and scaling dimension of the term cos 2
�− cos 2
�− is

K�−
−1+K�−. A RG analysis similar to the one inSec. V A 1

yields for K�−�1 
��−�=0 �mod �� and 
��−�= �
2 �mod ��

and for K�−�1 
��−�=0 �mod �� and 

�−�= �
2 �mod ��.

This time, interchain correlations are decaying exponentially,
and the dominant superconducting correlations are the intra-
chain ones. Since K�−�1, 
��−�= �

2 and the intrachain Sz

=1 triplet superconductivity is dominant. For K�−	1, the
dominant superconducting correlations are the intrachain sin-
glet and intrachain triplet Sz=0.

The results are summarized in Table III where the critical
exponents �� are defined by 
O��x�O��0��	�x�−��. We note
that triplet Sz=1 superconducting correlations can never co-
exist with singlet superconducting correlations.

We have tried to observe these predictions numerically
but using both the t-J model with small t�, J� and Hubbard
model with small t�. Unfortunately, for large J� / t�, the sys-
tem with open boundary conditions has edge effects due to
the proximity of the phase separation which occurs generi-
cally in the t-J model for large J / t. When edge effects are
absent and in the Hubbard model, we did not find evidence

TABLE III. The different dominant superconducting fluctua-
tions with the associated critical exponents. Josephson coupling
dominates for K�−�1 and exchange coupling dominates for
K�−	1.

Dominant interaction

Dominant
superconducting

correlations Critical exponent

Exchange coupling
�K�−�1�

Rung singlet and
rung triplet Sz=0

1

2K�+
+

K�+

2
Josephson coupling

�K�−�1�
Leg triplet Sz=1 1

2K�+
+

1

2K�+
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of the proposed predictions, i.e., we mostly found cases re-
lated to the coupled-band regime fixed point. Still, contrary
to the isotropic case which has been widely studied numeri-
cally at zero magnetization, a systematic study of the phase
diagram at zero magnetization would be necessary before
tackling the system under magnetic field. This systematic
study is out of the scope of the present paper.

VI. CONCLUSION

In conclusion, we studied the case of two fermionic
coupled chains, or ladders, under a magnetic field inducing a
Zeeman effect in the system. The first situation we addressed
was the free and strong-coupling limits. We found that large
doping-dependent magnetization plateaus occur for
“coupled-dimer” systems �with large interactions on the
rungs� and that pairing is not expected in the m=� magneti-
zation plateau phase. For a system with isotropic couplings,
we showed that m=� plateaus also exist and pairing survives
to much higher magnetizations. Furthermore, the computa-
tion of the one- and two-particle gap and bosonization inter-
pretation proved that the plateau phase is metallic, while the
system is in a superconducting state below and above this
plateau. In addition, we computed the superconducting upper
critical field which is much larger than the Pauli limit for a
wide range of the parameters of the t-J model. Supercon-
ducting correlation functions precisely agree with the
bosonization predictions up to the accuracy of our methods.
Turning to the coupled-chain regime, other interesting un-
conventional behaviors are predicted for the superconducting
correlations with, for instance, the possibility of having po-
larized triplet correlations under high magnetic fields. How-
ever, quick numerical investigation studies were not able to
find good parameters providing evidence of such predictions.

Discussion on experiments. We now briefly discuss con-
sequences for experiments. First of all, the possibility of
measuring irrational magnetization plateau would give a di-
rect access to the hole doping � which has recently been
estimated53 to be �	0.1 in the superconducting phase of
doped ladders. However, the magnetization is a global mea-
surement including the contribution of all subsystems. For
instance, the magnetization curve of SCCO has very recently

been measured,54 showing that the main contribution comes
from the chain subsystem. On the other hand, measurements
such as NMR under high magnetic field can provide local
information on each subsystem.

The superconducting critical field Hc�T� of SCCO has
been measured under high pressure20,21 and displays a strong
anisotropy and an anomalous Hc�T� curvature. Furthermore,
Hc�T� much larger than the standard Pauli limit are found,
suggesting an exceeding of the latter. The nature of the su-
perconductivity in SCCO is a long-standing debate because
of its complex structure and the requirement of high-pressure
experiments. Questions such as the nature of the pairing or
the dimensionality of superconductivity have not reached full
agreement yet. One possibility is that superconducting fluc-
tuations of the RVB type develop in the ladder subsystem,
leading to true superconducting order once these ladders are
coupled through Josephson coupling �Tc being controlled by
this coupling rather than by the magnetic energy scale J�. In
this case, our study suggests that the FFLO mechanism is
relevant at the ladder subsystem level and thus could be sta-
bilized when coupling the ladders. The other possibility
would be that the superconducting phase is really
two-dimensional,55,56 allowing other explanations of the ex-
ceeding of Pauli limit such as triplet pairing21 when H=0.
NMR measurements57 also showed that superconductivity
survives under rather high field and p-wave superconductiv-
ity was suggested. Note that our study also proposes the
possibility for the emergence at high fields of pairing chan-
nels not present at H=0 since magnetic fluctuations from
which pairing originates are strongly affected by the mag-
netic field. Lastly, we mention that anomalous curvature of
Hc�T� as found in experiments was predicted in the mean-
field approach of FFLO states in quasi-one- and two-
dimensional d-wave superconductors.4
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