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We show how one can obtain a lower bound for the electrical, spin, or heat conductivity of correlated
quantum systems described by Hamiltonians of the form H=H0+gH1. Here, H0 is an interacting Hamiltonian
characterized by conservation laws which lead to an infinite conductivity for g=0. The small perturbation gH1,
however, renders the conductivity finite at finite temperatures. For example, H0 could be a continuum field
theory, where momentum is conserved, or an integrable one-dimensional model, while H1 might describe the
effects of weak disorder. In the limit g→0, we derive lower bounds for the relevant conductivities and show
how they can be improved systematically using the memory matrix formalism. Furthermore, we discuss
various applications and investigate under what conditions our lower bound may become exact.
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I. INTRODUCTION

Transport properties of complex materials are not only
important for many applications but are also of fundamental
interest as their study can give insight into the nature of the
relevant quasiparticles and their interactions.

Compared to thermodynamic quantities, the transport
properties of interacting quantum systems are notoriously
difficult to calculate even in situations where interactions are
weak. The reason is that conductivities of noninteracting sys-
tems are usually infinite even at finite temperature, implying
that even to lowest order in perturbation theory an infinite
resummation of a perturbative series is mandatory. To lowest
order, this implies that one usually has to solve an integral
equation, often written in terms of �quantum-� Boltzmann
equations or—within the Kubo formalism—in terms of ver-
tex equations. The situation becomes even more difficult if
the interactions are so strong that an expansion around a
noninteracting system is not possible. Also numerically, the
calculation of zero-frequency conductivities of strongly in-
teracting clean systems is a serious challenge, and even for
one-dimensional systems, reliable calculations are available
for high temperatures only.1–6

Variational estimates, e.g., for the ground state energy, are
powerful theoretical techniques to obtain rigorous bounds on
physical quantities. They can be used to guide approximation
schemes to obtain simple analytic estimates and are some-
times the basis of sophisticated numerical methods like the
density matrix renormalization group.7

Taking into account both the importance of transport
quantities and the difficulties involved in their calculation, it
would be very useful to have general variational bounds for
transport coefficients.

A well known example where a bound for transport quan-
tities has been derived is the variational solution of the Bolt-
zmann equation, discussed extensively by Ziman.8 The lin-
earized Boltzmann equation in the presence of a static
electric field can be written in the form

eEvk
df0

d�k
= �

k�

Wk,k��k�, �1�

where Wk,k� is the integral kernel describing the scattering of
quasiparticles, and we have linearized the Boltzmann equa-

tion around the Fermi �or Bose� distribution fk
0 = f0��k�

using fk= fk
0 − df0

d�k
�k. Therefore, the current is given by

I=−e�kvk
df0

d�k
�k and the dc conductivity is determined from

the inverse of the scattering matrix W using �=
−e2�kk�
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vk
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−1 vk�
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. It is easy to see that this result can

be obtained by maximizing a functional8–11 F��� with
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where we used �k�Wk,k�=0, reflecting the conservation of
probability. The variational formula �2� is actually closely
related8 to the famous H-theorem of Boltzmann, which states
that entropy always increases upon scattering.

A lower bound for the conductivity can be obtained by
varying � only in a subspace of all possible functions. This
allows, for example, to obtain analytically good estimates for
conductivities without inverting an infinite dimensional ma-
trix or, equivalently, solving an integral equation �see Zi-
man’s book for a large number of examples8�.

The applicability of Eq. �2� is restricted to situations
where the Boltzmann equation is valid and bounds for the
conductivity in more general setups are not known. How-
ever, for ballistic systems with infinite conductivity, it is pos-
sible to get a lower bound for the so-called Drude weight.
Mazur12 and later Suzuki13 considered situations where the
presence of conservation laws prohibits the decay of certain
correlation functions in the long time limit. In the context of
transport theory, their result can be applied to systems �see
Appendix A for details� where the finite-temperature conduc-
tivity ��� ,T� is infinite for �=0 and characterized by a finite
Drude weight D�T��0 with

Re ���,T� = �D�T�	��� + �reg��,T� . �3�

Such a Drude weight can arise only in the presence of exact
conservation laws Cj with �H ,Cj�=0. Suzuki13 showed that
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the Drude weight can be expressed as a sum over all Cj

D =



V
�
j=0

�

CjJ�2


Cj
2�

�



V
�
j=0

N

CjJ�2


Cj
2�

, �4�

where J is the current associated with �. For convenience, a
basis in the space of Ci has been chosen such that 
CiCj�
=0 for i� j. More useful than the equality in Eq. �4� is often
the inequality12 which is obtained when the sum is restricted
to a finite subset of conservation laws. Such a finite sum over
simple expectation values can often be calculated rather eas-
ily using either analytical or numerical methods. The Mazur
inequality has recently been used heavily4,14–17 to discuss the
transport properties of one-dimensional systems.

Model systems, due to their simplicity, often exhibit sym-
metries not shared by real materials. For example, the heat
conductivity of idealized one-dimensional Heisenberg chains
is infinite at arbitrary temperature as the heat current is con-
served. However, any additional coupling �next-nearest
neighbor, interchain, disorder, phonon, etc.� renders the con-
ductivity finite1,4–6,18–20 If these perturbations are weak, the
heat conductivity is, however, large as experimentally
observed.21,22 For a more general example, consider an arbi-
trary translationally invariant continuum field theory. Here,
momentum is conserved, which usually implies that the con-
ductivity is infinite for this model. In real materials, momen-
tum decays by umklapp scattering or disorder, rendering the
conductivity finite. It is obviously desirable to have a reliable
method to calculate transport in such situations. In this work,
we consider systems with the Hamiltonian

H = H0 + gH1, �5�

where for g=0 the relevant heat, charge, or spin conductivity
is infinite and characterized by a finite Drude weight given
by Eq. �4�. As discussed above, H0 might be an integrable
one-dimensional model, a continuum field theory, or just a
noninteracting system. The term gH1 describes a �weak� per-
turbation which renders the conductivity finite, e.g., due to
umklapp scattering or disorder �see Fig. 1�. Our goal is to
find a variational lower bound for conductivities in the spirit
of Eq. �2� for this very general situation, without any require-
ment on the existence of quasiparticles. For technical rea-
sons, we restrict our analysis to situations where H is time
reversal invariant.

In the following, we first describe the general setup and
introduce the memory matrix formalism, which allows us to
formulate an inequality for transport coefficients for weakly
perturbed systems. We will argue that the inequality is valid

under the conditions which we specify. Finally, we investi-
gate under which conditions the lower bounds become exact
and briefly discuss applications of our formula.

II. SETUP

Consider the local density ��x� of an arbitrary physical
quantity which is locally conserved, thus obeying a continu-
ity equation

�t� + �j = 0.

Transport of that quantity is described by the dc conductivity
�, which is the response of the current to some external field
E coupling to the current,


J� = �E ,

where J=�j�x� is the total current and 
J� its expectation
value. Note that J can be an electrical, spin, or heat current
and E the corresponding conjugate field depending on the
context. The dynamic conductivity ��z� is given by Kubo’s
formula �see Eq. �A1��. We are interested in the dc conduc-
tivity �=lim�→0��z=�+ i0�.

Starting from the Hamiltonian �5�, we consider a system
where H0 possesses a set of exact conservation laws Ci� of
which at least one correlates with the current, 
JC1��0.
Without loss of generality, we assume 
CiCj�=0 for i� j. For
g=0, the Drude weight D defined by Eq. �3� is given by Eq.
�4�. We can split up the current under consideration into a
part which is parallel to the Ci and one that is orthogonal,

J = J� + J�,

with J� =�i


CiJ�


Ci
2� Ci, which results in a separation of the con-

ductivity,

��z� = ���z� + ���z� . �6�

Since the conductivity ��z� is given by a current-current cor-
relation function and the current J� �J�� is diagonal �off-
diagonal� in energy, cross-correlation functions 

J� ;J���
vanish in Eq. �6�.

According to Eq. �4�, the Drude peak of the unperturbed
system, g=0, arises solely from J�:

Re ����� = �D	��� , �7�

while ���z� appears in Eq. �3� as the regular part,
Re �����=�reg���.

In this work, we will focus on �����, since the small
perturbation is not going to affect ����� much �which is
assumed to be free of singularities here, see Sec. IV� while
����=0� diverges for g→0 �see Fig. 1�. As we are interested
in the small g asymptotics only, we may neglect the contri-
bution ���0� to the dc conductivity. Hence we set J=J� and
����=����� in the following.

III. MEMORY MATRIX FORMALISM

We have seen that certain conservation laws of H0 play a
crucial role in determining the conductivity of both the un-

ω ω

Re σ(ω) Re σ(ω)

σreg(ω)

πDδ(ω)
g �= 0g = 0

FIG. 1. For g=0, a Drude peak shows up in the conductivity,
resulting from exact conservation laws. For g�0, the Drude peak
broadens and the dc conductivity becomes finite.
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perturbed and perturbed systems. In the presence of a small
perturbation gH1, these modes are not conserved anymore
but at least some of them decay slowly. Typically, the con-
ductivity of the perturbed system will be determined by the
dynamics of these slow modes. To separate the dynamics of
the slow modes from the rest, it is convenient to use a hy-
drodynamic approach based on the projection of the dynam-
ics onto these slow modes. In this section, we will therefore
review the so-called memory matrix formalism,23 introduced
by Mori24 and Zwanzig25 for this purpose. In the next sec-
tion, we will show that this approach can be used to obtain a
lower bound for the dc conductivity for small g.

We start by defining a scalar product in the space of quan-
tum mechanical operators,

�A�B� = �
0




d
A†B�i�� − 

A†�
B� . �8�

As the next step, we choose—for the moment—an arbitrary
set of operators Ci�. In most applications, the Ci are the
relevant slow modes of the system. For notational conve-
nience, we assume that the Ci� are orthonormalized,

�Ci�Cj� = 	ij . �9�

In terms of these, we may define the projector P onto �and Q
away from� the space spanned by these “slow” modes,

P = �
i

�Ci��Ci� = 1 − Q .

We assume that C1 is the current we are interested in,

�J� � �C1� .

The time evolution is given by the Liouville-�super�operator

L = �H, . � = L0 + gL1,

with �LA �B�= �A �LB�= �A�L�B�, and the time evolution of an
operator may be expressed as �A�t��= �eiHtAe−iHt�=eiLt�A�.
With these notions, one obtains the following simple, yet
formal expression for the conductivity:

���� = �J� i

� − L
�J	 = �C1� i

� − L
�C1	 .

Using a number of simple manipulations, one can show23–25

that the conductivity can be expressed as the �1,1� compo-
nent of the inverse of a matrix

���� = �M��� + iK − i��11
−1, �10�

where

Mij��� = �Ċi�Q
i

� − LQ
�Ċj	 �11�

is the so-called memory matrix and

Kij = �Ċi�Cj� �12�

a frequency independent matrix. The formal expression �10�
for the conductivity is exact, and completely general, i.e.,
valid for an arbitrary choice of the modes Ci �they do not

even have to be slow�. Only C1=J is required. However, due
to the projection operators Q, the memory matrix �11� is, in
general, difficult to evaluate. It is when one uses approxima-
tions to M that the choice of the projectors becomes crucial
�see below�.

Obviously, the dc conductivity is given by the �1,1� com-
ponent of

�M�0� + K�−1. �13�

More generally, the �m ,n� component of Eq. �13� describes
the response of the “current” Cm to an external field coupling
solely to Cn. We note that, since a matrix of transport coef-
ficients has to be positive �semi�definite, this also holds for
the matrix M�0�+K.

To avoid technical complications associated with the pres-
ence of K, we restrict our analysis in the following to time
reversal invariant systems and choose the Ci such that they
have either signature +1 or −1 under time reversal34 �. In
the dc limit, �=0, components of Eq. �13� connecting modes
of different signatures vanish. Thus, M�0�+K is block diag-
onal with respect to the time reversal signature, and conse-
quently, we can restrict our analysis to the subspace of slow
modes with the same signature as C1. However, if Cm and Cn

have the same signature, then �Cm � Ċn�=0, and thus, K van-
ishes on this restricted space. The dc conductivity therefore
takes the form

� = „M�0�−1
…11. �14�

IV. CENTRAL CONJECTURE

To obtain a controlled approximation to the memory ma-
trix in the limit of small g, it is important to identify the
relevant slow modes of the system. For the Ci, we choose
quantities which are conserved by H0, �H0 ,Ci�=0, such that

Ċi= ig�H1 ,Ci� is linear in the small coupling g. As argued
below, we require that the singularities of correlation func-
tions of the unperturbed system are exclusively due to exact
conservation laws Ci; i.e., the Drude peak appearing in Eq.
�3� is the only singular contribution. Furthermore, we choose
J=J� =C1 and consider only Ci with the same time reversal
signature as J, as discussed in the previous section.

To formulate our central conjecture, we introduce the fol-
lowing notions. We define Mn��� as the �exact� n�n
memory matrix obtained by setting up the memory matrix
formalism for the first n slow modes Ci , i=1, . . . ,n�. Note
that the definitions of the relevant projectors P and Q also
depend on this choice, and that for any choice of n, one gets
�= �Mn

−1�11. We now introduce the approximate memory ma-

trix M̃n motivated by the following arguments: Ċi is already
linear in g, therefore in Eq. �11� we approximate L by L0 and
replace �.�.� with �.� . �0 as we evaluate the scalar product with

respect to H0. As L0�Ci�=0 and �Cj � Ċi�=0 due to time rever-

sal symmetry, one has L0Q=1 and Q�Ċi�= �Ċi�, and therefore,
the projector Q does not contribute within this approxima-

tion. We, thus, define the n�n matrix M̃n by
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M̃n,ij = lim
�→0

�Ċi� i

� − L0
�Ċj	

0
. �15�

Note that M̃n is a submatrix of M̃m for m�n, and therefore,
the approximate expression for the conductivity �

��M̃n
−1�11 does depend on n while �Mn

−1�11 is independent of

n. A much simpler, alternative derivation for M̃1 is given in
Appendix B, where the validity of this formula is also dis-
cussed.

The central conjecture of our paper is that for small g,

�M̃n
−1�11 gives a lower bound to the dc conductivity or, more

precisely,

���1/g2 = �M̃�
−1�11 � ¯ � �M̃n

−1�11 � ¯ � M̃1
−1. �16�

Here, ���1/g2 = �1/g2� limg→0 g2� denotes the leading term

�1/g2 in the small-g expansion of �. Note that M̃n�g2 by

construction. M̃� is the approximate memory matrix, where
all35 conservation laws have been included. In some special
situations, discussed in Ref. 6, one has ��1/g4, and there-
fore, ���1/g2 =�.

A special case of the inequality above is Eq. �B4� in Ap-

pendix B, as the scattering rate �̃ /� may be expressed as

�̃ /�2=M̃1.
Two steps are necessary to prove Eq. �16�. The simple

part is actually the inequalities in Eq. �16�. They are a con-

sequence of the fact that the matrices M̃n are all positive

definite and that M̃n is a submatrix of M̃m for m�n. More
difficult to prove is that the first equality in Eq. �16� holds.
To show this, we will need an additional assumption, namely,
that the regular part of all correlation functions �to be de-
fined below� remains finite in the limit g→0, �→0. In this

case, the perturbative expansion around M̃� in powers of g is
free of singularities at finite temperature �which is not the

case for M̃n���. This, in turn, implies that limg→0M� /g2

=M̃� /g2, and therefore, ���1/g2 = �M̃�
−1�11.

Next, we present the two parts of the proof.

A. Inequalities

We start by investigating the �1,1� component of the in-

verse of the positive definite symmetric matrix M̃�. It is con-
venient to write the inverse as

�M̃�
−1�11 = max

�

��Te1�2

�TM̃��
, �17�

where e1 is the first unit vector. The same method is used to
derive Eq. �2� in the context of the Boltzmann equation. The

maximum is obtained for �=M̃�
−1e1. By restricting the varia-

tional space in Eq. �17� to the first n components of �, we

reproduce the submatrix M̃n of M̃� and obtain

�M̃�
−1�11 � max

�=�
1

m
�iei

��Te1�2

�TM̃��
= �M̃m

−1�11 � max

�= �
1

n�m
�iei

��Te1�2

�TM̃��

= �M̃n�m
−1 �11.

By choosing different values for m and n�m, this proves all
inequalities appearing in Eq. �16�.

B. Expansion of the memory matrix

We proceed by expanding the exact memory matrix Mn,
where Pn=1−Qn is a projector on the first n conservation
laws, in powers of g. Using LQn=L0+gL1Qn, we obtain the
geometric series

Mn,ij��� = �
k=0

�

gk�Ċi�Qn
i

� − L0
�L1Qn

1

� − L0
	k�Ċj� .

�18�

Note that this is not a full expansion in g, as the scalar
product �8� is defined with respect to the full Hamiltonian
H=H0+gH1. We will turn to the discussion of the remaining
g dependence later.

In general, one can expand

L1 = �
m,n

mn�Am��An�

in terms of some basis Am in the space of operators. There-
fore, Eq. �18� can be written as a sum over products of terms
with the general structure

�A�Qn
1

� − L0
�B	 . �19�

In the following, we would like to argue that such an expan-
sion is regular for n=� if all conservation laws have been
included in the definition of Q. As argued in Appendix B, we
have to investigate whether the series coefficients in Eq. �18�
diverge for �→0. The basis of our argument is the follow-
ing: as Q� projects the dynamics to the space perpendicular
to all of the conservation laws, the associated singularities
are absent in Eq. �19�, and therefore, the expansion of M� is
regular.

To show this more formally, we split up B=B� +B� in Eq.
�19� into a component parallel and one perpendicular to the
space of all conserved quantities, �B��= P��B�. With this no-
tation, the action of L0 becomes more transparent:

1

� − L0
�B� =

1

�
�B�� +

1

� − L0
�B�� . �20�

As we assume that all divergencies can be traced back to the
conservation laws, we take the second term to be regular. It
is only the first term which leads in Eq. �19� to a divergence
for �→0, provided that �A�Qn�B�� is finite. If we consider the
perturbative expansion of Mn��, where Pn=1−Qn projects
only to a subset of conserved quantities, then finite contribu-
tions of the form �A�Qn�B�� exist and the perturbative series
in g will be singular �see also Appendix B�. Considering M�,
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however, Q� projects out all conservation laws, and there-
fore, by construction Q��B��=Q�P��B�=0. Thus, the first
term in Eq. �20� does not contribute in Eq. �19� for n=� and
the expansion �18� of M� is therefore regular.

The only remaining part of our argument is to show that
in the limit g→0 one can safely replace �.�.� with �.� . �0.
Here, it is useful to realize that �A �B� can be interpreted as a
�generalized� static susceptibility. In the absence of a phase
transition and at finite temperatures, susceptibilities are
smooth, nonsingular functions of the coupling constants, and
therefore, we do not expect any further singularities from
this step. If we define a phase transition by a singularity in
some generalized susceptibility, then the statement that sus-
ceptibilities are regular in the absence of phase transitions
even becomes a mere tautology.

Combining all arguments, the expansion �18� of M���
→0� is regular, and using �Ċi�Q�= �Ċi� �see discussion before

Eq. �15��, its leading term, k=0, is given by M̃�. We, there-
fore, have shown the missing first equality of our central
conjecture �16�.

V. DISCUSSION

In this paper, we have established that in the limit of small
perturbations, H=H0+gH1, lower bounds to dc conductivi-
ties may be calculated for situations where the conductivity
is infinite for g=0. In the opposite case, when the conduc-
tivity is finite for g=0, one can use naive perturbation theory
to calculate small corrections to � without further complica-
tions.

The relevant lower bounds are directly obtained from the
memory matrix formalism. Typically,26–28 one has to evalu-
ate a small number of correlation functions and to invert
small matrices. The quality of the lower bounds depends
decisively on whether one has been able to identify the
“slowest” modes in the system.

There are many possible applications for the results pre-
sented in this paper. The mostly considered situation is the
case where H0 describes a noninteracting system.26 For situ-
ations where the Boltzmann equation can be applied, it has
been pointed out a long time ago by Belitz29 that there is a
one-to-one relation of the memory matrix calculation to a
certain variational ansatz to the Boltzmann equation �see Eq.
�2��. In this paper, we were able to generalize this result to
cases where a Boltzmann description is not possible. For
example, if H0 is the Hamiltonian of a Luttinger liquid, i.e.,
a noninteracting bosonic system, then typical perturbations
are of the form cos �, for which a simple transport theory in
the spirit of a Boltzmann or vertex equation does not exist to
our knowledge.

Another class of applications are systems where H0 de-
scribes an interacting system, e.g., an integrable one-
dimensional model6 or some nontrivial quantum-field
theory.30 In these cases, it can become difficult to calculate
the memory matrix and one has to resort to using either
numerical6 or field-theoretical methods30 to obtain the rel-
evant correlation functions.

An important special case are situations where H0 is char-

acterized by a single conserved current with the proper sym-
metries, i.e., with overlap to the �heat, spin, or charge� cur-
rent J. For example, in a nontrivial continuum field theory
H0, interactions lead to the decay of all modes with excep-
tion of the momentum P. In this case, the momentum relax-
ation, and therefore, the conductivity at finite T, is deter-
mined by small perturbations gH1 like disorder or umklapp
scattering which are present in almost any realistic system.

As M̃�=M̃1 in this case, our results suggest that for small g
the conductivity is exactly determined by the momentum re-

laxation rate M̃PP=lim�→0i(Ṗ���−L0�−1�Ṗ),

� =
�PJ

2

M̃PP

for g → 0. �21�

Here we used J� = P�P �J� / �P � P� with �PJ= �P �J� and we
have restored all factors which arise if the normalization con-
dition �9� is not used. In Appendix C, we numerically check
that this statement is valid for a realistic example within the
Boltzmann equation approach.

A number of assumptions entered our arguments. The
strongest one is the restriction that all relevant singularities
arise from exact conservation laws of H0. We assumed that
the regular parts of correlation functions are finite for �=0.
There are two distinct scenarios in which this assumption
does not hold. First, in the limit T→0, often scattering rates
vanish, which can lead to divergencies of the nominally
regular parts of correlation functions. Furthermore, at T=0,
even infinitesimally small perturbations can induce phase
transitions—again a situation where our arguments fail.
Therefore, our results are not applicable at T=0. Second,
finite-temperature transport may be plagued by additional di-
vergencies for �→0 not captured by the Drude weight. In
some special models, for instance, transport is singular even
in the absence of exactly conserved quantities �e.g., nonin-
teracting phonons in a disordered crystal8�. In all cases
known to us, these divergencies can be traced back to the
presence of some slow modes in the system �e.g., phonons
with very low momentum�. While we have not kept track of
such divergencies in our arguments, we, nevertheless, be-
lieve that they do not invalidate our main inequality �16� as
further slow modes not captured by exact conservation laws
will only increase the conductivity. It is, however, likely that
the equality �21� is not valid for such situations. In Appendix
C, we analyze in some detail within the Boltzmann equation
formalism under which conditions Eq. �21� holds. As an
aside, we note that the singular heat transport of noninteract-
ing disordered phonons, mentioned above, is well described
within our formalism if we model the clean system by H0
and the disorder by H1 �see the extensive discussion by
Ziman8 within the variational approach, which can be di-
rectly translated to the memory matrix language; see Ref.
29�.

It would be interesting to generalize our results to cases
where time reversal symmetry is broken, e.g., by an external
magnetic field. As time reversal invariance entered nontrivi-
ally in our arguments, this seems not to be simple. We, nev-
ertheless, do not see any physical reason why the inequality
should not be valid in this case, too. One example where no
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problems arise are spin chains in a uniform magnetic field,31

where one can map the field to a chemical potential using a
Jordan-Wigner transformation. Then one can directly apply
our results to the time reversal invariant system of Jordan-
Wigner fermions.
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APPENDIX A: DRUDE WEIGHT AND MAZUR
INEQUALITY

In this appendix, we clarify the connection between the
Drude weight and the Mazur inequality, mentioned in Sec. I

The Drude weight D is the singular part of the conductiv-
ity at zero frequency, Re ����=�D	���+�reg���. It can be
calculated from the relation

D = lim
�→0

� Im ���� .

It has been introduced by Kohn32 as a measure of ballistic
transport, indicated by D�0.

Using Kubo formulas, conductivities can be expressed in
terms of the dynamic current susceptibilities33 ��z� using

��z� = −
1

iz
„�T − ��z�… , �A1�

where ��z� is the current response function

��z� =
i

V
�

0

�

dteizt
�J�t�,J�0��� , �A2�

�T =� d�

�

�����
�

, �A3�

and �T is a current susceptibility. The conductivity may be
calculated by setting ����=��z=�+ i0�. Relation �A3� is a
well known sum rule, and for all regular correlation func-
tions one has �T=��0�. In the presence of a singular contri-
bution to ����, one easily identifies the Drude weight with
the expression �T−��0�. For this difference, Mazur12,13 de-
rived a lower bound. Furthermore, Suzuki13 has shown that
�T−��0� may be expressed as a sum over all constants of
the motion Ci present in the system,36

D = �T − ��0� =



V
�
n=0

�

CjJ�2


Cj
2�

. �A4�

Thus, the Drude weight is intimately connected to the pres-
ence of conservation laws: only components of the current
perpendicular to all conservation laws decay and any conser-
vation law with a component parallel to the current �i.e., with
a finite cross correlation 
CjJ�� leads to a finite Drude weight
and, thus, ballistic transport. The relation between the Drude

weight and Mazur’s inequality has been first pointed out by
Zotos et al.14

APPENDIX B: PERTURBATION THEORY FOR 1/�

Let us give an example of a naive perturbative derivation
�see also Ref. 6� to gain some insight about what problems
can turn up in a perturbative derivation as the one presented
in this work. According to our assumptions, the conductivity
is diverging for g→0, and therefore, it is useful to consider
the scattering rate ���� /� �with the current susceptibility ��
defined by

���� =
�

����/� − i�
. �B1�

If J is conserved for g=0 �i.e., for J=J�, see above�, the
scattering rate vanishes, ����=0, which results in a finite
Drude weight. A perturbation around this singular point re-
sults in a finite ����. In the limit g→0, we can expand Eq.
�B1� for any finite frequency � in � to obtain

�2 Re ���� = Re ���� + O��2/�� . �B2�

We can read this as an equation for the leading order contri-
bution to ����, which now is expressed through the Kubo
formula for the conductivity. By partially integrating twice,

in time, we can write ����= �̃���+O�g3� with

Re �̃��� = Re
1

z

1

V
�

0

�

dteizt�
�J̇�t�, J̇�0���0�z=�+i0, �B3�

where J̇= i�H ,J�= ig�H1 ,J� is linear in g, and therefore, the
expectation value 
¯�0 can be evaluated with respect to H0

�which may describe an interacting system�. Thus, we have
expressed the scattering rate via a simple correlation function
of the time derivative of the current.

To determine the dc conductivity, one is interested in the
limit �→0 and it is tempting to set �=0 in Eq. �B3�. We
have, however, derived Eq. �B3� in the limit g→0 at finite �
and not in the limit �→0 at finite g. The series Eq. �B2� is
well defined for finite ��0 only, and in the limit �→0, the
series shows singularities to arbitrarily high orders in 1/�.

At first sight, this makes Eq. �B3� useless for calculating
the dc conductivity. One of the main results of this paper is

that, nevertheless, �̃��=0� can be used to obtain a lower
bound to the dc conductivity

��� = 0� �
�2

�̃�0�
for g → 0. �B4�

APPENDIX C: SINGLE SLOW MODE

In this appendix, we check whether in the presence of a
single conservation law with finite cross correlations with the
current the inequality �16� can be replaced with the equality
�21�. This requires us to compare the true conductivity,
which, in general, is hard to determine, to the result given by

M̃1. Thus, we restrict ourselves to the discussion of models
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for which a Boltzmann equation can be formulated and the
expression for the conductivity can be calculated at least nu-
merically. In the following, we first show numerically that
the equality �21� holds for a realistic model. In a second step,
we discuss the precise regularity requirement of the scatter-
ing matrix such that Eq. �21� holds.

To simplify numerics, we consider a simple one-
dimensional Boltzmann equation of interacting and weakly
disordered Fermions. Clearly, the Boltzmann approach
breaks down close to the Fermi surface due to singularities
associated with the formation of a Luttinger liquid, but in the
present context, we are not interested in this physics as we
only want to investigate properties of the Boltzmann equa-
tion. To avoid the restrictions associated with momentum and
energy conservation in one dimension, we consider a disper-
sion with two minima and four Fermi points,

�k = −
k2

2
+

k4

4
+

1

10
. �C1�

The Boltzmann equation reads

vk

dfk
0

d�k
E = �

k�qq�

Skk�
qq��fkfk��1 − fq��1 − fq�� − fqfq��1 − fk�

��1 − fk��� + g2�
k�

	��k − �k���fk�1 − fk��

− fk��1 − fk�� = �
k�

Wkk��k�, �C2�

where the inelastic scattering term Skk�
qq�=	��k+�k�−�q

−�q��	�k+k�−q−q�� conserves both energy and momentum.
In the last line, we have linearized the right-hand side using
the definitions of Sec. I. The velocity vk is given by vk

= d
dk�k. The scattering matrix splits up into an interaction

component and a disorder component, Wkk�=Wkk�
0 +g2Wkk�

1 .
As we do not consider umklapp scattering, Wkk�

0 conserves
momentum, �k�Wkk�

0 k�=0, and one expects that momentum
relaxation will determine the conductivity for small g.

For the numerical calculation, we discretize momentum in
the interval �−� /2 ,� /2�, kn=n	k=n� /N with integer n. �At
the boundaries, the energy is already too high to play any
role in transport.� The delta function arising from energy
conservation is replaced by a Gaussian of width 	. The
proper thermodynamic limit can, for example, be obtained
by choosing 	=0.3/�N. The numerics shows small finite size
effects.

In Fig. 2, we compare the numerical solution of the Bolt-
zmann equation to the single mode memory matrix calcula-
tion or, equivalently,29 to the variational bound obtained by
setting �k=k in Eq. �2�,

�̃ =

��
k

vk
i k

df0

d�k
	2

�
k,k�

kWkk�k�
=

��
k

vk
i k

df0

d�k
	2

g2�
k,k�

kWkk�
1 k�

. �C3�

As can be seen from the inset, in the limit of small g, one
obtains the exact value for the conductivity, which is what
we intended to demonstrate.

Next we turn to an analysis of regularity conditions which
have to be met, in general, by the scattering matrix Wkk� such
that convergence is guaranteed in the limit g→0. According
to the assumptions of this appendix, for g=0, the variational

form of the Boltzmann equation �2� has a unique solution �̄k

�up to a multiplicative constant�, with F��̄k�=�,

�k�Wkk�
0

�̄k�=0 and �kvk�̄kdf0 /d�k�0.
In the presence of a finite, but small g, we write the so-

lution of the Boltzmann equation as �=�̄+��, where ��

has no component parallel to �̄ �i.e., �k�̄k�k
�df0 /d�k=0�.

On the basis of the two inequalities

F��̄� � F��� , �C4�

�W� = �̄g2W1�̄ + ��W�� � �̄g2W1�̄ , �C5�

one concludes that Eq. �21� is valid, i.e., that

lim
g→0

F��̄�
F���

= 1

under the condition that

lim
g→0

�
k

vk�k
df0

d�k
= �

k
vk�̄k

df0

d�k

or, equivalently,

lim
g→0

�
k

vk��,k
df0

d�k
= 0. �C6�

We, therefore, have to check whether �� becomes small in
the limit of small g.

Expanding the saddle point equation for Eq. �2�, we ob-
tain

0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20
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g
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1

σ̃
,σ

σ̃
/σ

FIG. 2. Comparison of the result of a single mode memory
matrix calculation �solid line� �Eq. �C3�� to the full numerical solu-
tion of the Boltzmann equation �dotted line� for T=0.05 and N
=500. The memory matrix is always a lower bound to the Boltz-
mann result and converges toward it as the disorder strength g is
reduced, as shown in the inset �ratio of the single mode approxima-
tion to the Boltzmann result�.
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�
k�

Wkk�
0

�k�
� = vk

df0

d�k

�
k�k�

�̄k�g
2Wk�k�

1
�̄k�

�
k�

vk�
df0

d�k�
�̄k�

− �
k�

g2Wkk�
1

�̄k�

+ O�g2W1��,��W0��� .

As by definition �� has no component parallel to �̄, we can
insert the projector Q, which projects out the conservation
law in front of �k

�, on the left-hand side. We, therefore,
conclude that if the inverse of W0Q exists, then �� is of

order g2, Eq. �C6� is valid, and therefore, also Eq. �21�. In
our numerical examples, these conditions are all met.

Under what conditions can one expect that Eq. �C6� is not
valid? Within the assumptions of this appendix, we have ex-
cluded the presence of other zero modes of W0 �i.e., conser-
vation laws� with finite overlap with the current. However, it
may happen that W0 has many eigenvalues which are arbi-
trarily small such that the sum in Eq. �C6� diverges. In such
a situation, the presence of slow modes which cannot be
identified with conservation laws of the unperturbed system
invalidates Eq. �21�.
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