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Role of step-flow advection during electromigration-induced step bunching
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We propose a one-dimensional model based on the Burton-Cabrera-Frank equations to describe the
electromigration-induced step bunching instability on vicinal surfaces. The step drift resulting from atomic
evaporation and/or deposition is explicitly included in our model. A linear stability analysis reveals several
stability inversions as the evaporation rate varies, while a deposition flux is shown to have a stabilizing effect.
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Due to its importance for both fundamental science and
technological applications in microelectronics, research in
the field of crystal growth on semiconductor vicinal surfaces
has become increasingly active.!® Vicinal surfaces are
slightly misoriented with respect to closed-packed crystalline
planes of low indices, such as the well-studied Si(111) plane.
The atomic steps resulting from the miscut are generally mo-
bile (step flow) and subject to a number of instabilities as
step bunching or meandering.>’~!' At long times, nonlinear
dynamics lead to the formation of more or less well-
organized surface patterns. The idea to control these patterns
is appealing, a major issue being the self-organization of
nanostructures on semiconductor surfaces. A few ways to
reach this goal are currently under investigation, such as im-
posing a net atomic flux (evaporation or deposition), using
elastic stresses, or applying a constant electrical field induc-
ing an adatom drift (surface electromigration). Combinations
of these methods allow extra flexibility.®!? Surface elec-
tromigration was first observed by Latyshev et al.,'* and an
early theory proposed by Stoyanov.'* The stability of a
Si(111) vicinal surface may change according to the tempera-
ture, the sign of the net atomic flux, and the direction of the
electrical current. Three temperature regimes have been iden-
tified experimentally.'>"'® Both in the high- and low-
temperature regimes, the step bunching instability appears
when the electrical current is applied in the step-down direc-
tion. Alternatively, in the intermediate regime, it may be nec-
essary (according to the experimental conditions) to apply a
step-up current to trigger step bunching. This stability inver-
sion with respect to the direction of the electrical current is
still the subject of active research and different mechanisms
have been proposed such as sign variations of the effective
charge number (Z*) with temperature, step transparency,'*-2
and two-region terrace diffusion.”! While sign variations of
Z" with temperature have been ruled out by a recent experi-
ment of mass transport across a trench,?? the two other pos-
sibilities remain. However, due to the large number of ex-
perimental parameters and ultrahigh vacuum conditions,
direct in situ experimental measurements of adatom diffusion
at the step edges are still difficult to achieve. In this Rapid
Communication, we propose a one-dimensional model based
on the Burton-Cabrera-Frank equations?? to describe the step
flow instabilities arising when electromigration is combined
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with a net atomic flux. We first remark that, under typical
experimental conditions, the advection effects due to the
mean step velocity are comparable in magnitude with the
drift due to the electromigration current. Both effects are thus
included in our model and a linear stability analysis shows
that the interplay between them does provoke stability inver-
sions as evaporation is increased.

During evaporation or growth, the steps of Si(111) vicinal
surfaces undergo a global drift with a constant mean velocity
Vo In the frame moving at this velocity, the adatom concen-
tration C, on the nth terrace obeys the following quasistatic
equation:

Dy o
Dsaxxcn+<V0—_l>C7ch—_+F=0, (1)

€E T
where D, is the diffusion coefficient, €;=kzT/(Z"¢E) is the
electrical length, 7is the desorption time, and F is the atomic
deposition flux. As shown in Fig. 1, the electrical field reads

E=EX, with X the unit vector pointing in the step-down
direction. At terrace ends X=X, and X=X, ,, Eq. (1) is sub-
ject to the following boundary conditions:

(Dydx+ Vo — D) C,=[C,— C1], (2)

(Dsax + VO - D3/€E) Cn == V[Cn - Ceq (3)

n+l1d>

which ensure mass conservation. Here v is the step kinetic
coefficient, C;7 is the adatom equilibrium concentration at
step n, and we neglect step transparency. We can remark
from the structure of Egs. (1)—(3) that the advection and the
electromigration terms play a similar role. The associated
velocities V,, and D,/€; may be both positive or negative,

FIG. 1. Schematic side view of a vicinal surface: notations and
definitions. The electrical field is imposed in the step-down direc-
tion here.
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according to the sign of the imposed net atomic flux and
electrical current. The advection terms are usually neglected
in theoretical studies, which is equivalent to setting V|, to
zero in Egs. (1)—(3). However, on the basis of the present
experimental knowledge, it seems unrealistic to neglect ad-
vection as compared to electromigration. On one hand, the
net atomic flux varies in a rather wide range in practice
(three decades) while the mean terrace width extends over
one decade at least. As a consequence, the corresponding
values of the mean step velocity V|, typically range from
1071%to 107 ms~!. On the other hand, due to the experi-
mental uncertainties on the values of the effective charge
number Z" and, to a less extent, to the temperature influence
on the adatom diffusion coefficient Dy, estimates of the drift
velocity D,/ € are found to lie in the very same range. Ex-
cept in equilibrium conditions, the two effects are thus simi-
lar both in nature and in magnitude, so that we will keep the
V, terms in our model. At a given time ¢, the velocity of step
nis V,=Q[C,+C,_;—2C;]-V,, where the concentrations
are evaluated at X=X,,(¢), and (), represents the unit atomic
surface. The terrace lengths L,(1)=X,,,,(t)—X,(t) vary slowly
in time, with a constant mean value L,. We introduce stan-
dard step-step repulsive interactions in the adatom equilib-
rium concentration, C%/Cy=1+A(1/L}~1/L}_)), where
ksTAQ" is the step-step interaction coefficient.* Setting the
unit length to the initial terrace width L, and the unit time to
t0=L(2)/Ds, we define the dimensionless variables x=X/L,,
vo=Voto/Ly, ¢,=C,/Cy, and c;?=C:?/Cy. For these vari-
ables, the previous equations become

(O, +vo— M, —sc,+f=0, x,<x<x,, (4)

(&x + Uo— 7])Cn = P(Cn - Cflq)v X=Xy, (5)
(07x+l)0— W)an_P(Cn—Cf,L)s X =Xpt1s (6)
v, = d’P(Cn +Cp1— ZC:-’[([) —Up, X=X, (7)

with ¢““=1+a(1/E~1/_,). The system dynamics is thus
controlled by six independent nondimensional parameters:
n=Ly/ € is proportional to the electrical field, s°=Lj/(D,7)
involves the rate of desorption and f=FL2/(D,Cy) is the
atomic deposition flux, p=vLy/D, compares attachment to
diffusion, ¢=Q,C, gives the proportion of occupied sites,
and a=A/ LS measures step-step repulsion. These six param-
eters are not completely independent in practice. As a con-
sequence, when temperature is varied in a given experimen-
tal setup, the system is driven along a rather complex
trajectory in the parameter space. This trajectory is very
likely to cross a succession of stable and unstable regions, as
often observed in practice.

To provide quantitative support to this idea, we now per-
form the linear stability analysis of a uniform train of steps
traveling at a constant velocity v in the laboratory frame.
Let us remark that we keep the notation ¢ for the dimension-
less time hereafter. A general solution of Eq. (4) giving the
concentration profile on terrace n is ¢,=f/s>+ a,e"*+ B,e'%,
where 1y ,=—(vg—1)/21/2[(vy—7)*+4s*]"%. To avoid
lengthy expressions, we first set f=0 and we discuss the case
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/>0 later on. For the unperturbed system, we find that v,
obeys the following transcendental equation:

vy 25%(uy = tp) — puyusA
op dy—d,

where A=r|—ry, uyj=e"'—1, u,=e"2-1, d;=(r;+p)(ry—p)e",
and d,=(r;—p)(ry+p)e. We give an approximate expres-
sion for v in Eq. (11). The linear stability of the system is
tested by adding a small harmonic perturbation of wave
number k, on the step positions, x,=n+ee’*¥  In order to
find the dispersion relation é=o+iw, we expand the step
velocities up to the first order in the perturbation amplitude,
€<1. We obtain the following exact expression for the
growth rate:

, (8)

k\As*+a(A, + A cos k)

k) =2¢psi 2(—) ! , 9

a(k) ¢p sin B Sz(dl—dz)z )
where
A

A—=[r1d2—r2d1+2pA(r1+r2)]er1+r2+r2d2—r1d1,
p
Ay =65°(dy — d))[25°(uy — 1) = pAuy + 1y +2)],
Ay=65pA(dy—d))(1 +e"172). (10)

In the parameter space, this allows us to compute the critical
values of the parameters defining the boundaries between
stable and unstable regions. One thus has to solve the system
of two equations, Egs. (8) and (9), in the two unknowns, 7
and v,. Remarking that the condition |[vy—7|<s is always
verified for the practical values of the electrical field and net
atomic flux, we obtain analytical expressions for the velocity,

-1

=2 , 11
vo ¢psp(l+es)+s(es—1) (1)
and the growth rate,
k k\B -n) +a(B,+B k
a()zsinz(_> o= +alBy+Bycosk) )
4¢pp 2 sdj

with dy=(s+p)?e*—(s—p)?, and

(o)

(10—5) $=0.09
4t
2 L
5=0.065
0 %
-2 5=0.04
-4 $=0.001

FIG. 2. Growth rate o as a function of the wave number k,
as obtained from Egs. (12) and (13). Different evaporation rates
s are considered. Nondimensional parameters are ¢=0.2, f=0,
7=—107%, p=20.0, a=5X107°.
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FIG. 3. Stability diagram in the (s,7) plane. Solid (dotted)
curves represent 7. (7,). Nondimensional parameters are ¢=0.2,
=0, p=20.0, a=10"*. For a step-up electrical field, the horizontal
dashed line represents a trajectory as the evaporation rate increases.

B,
ps?

S=(s+ p)i(s—1)e* —dpse’ + (s —p)*(s + 1),
s°e

B, =—65dy[(s + p)e** + p—s], By=125’dspe’. (13)

Depending on the physical parameters, the growth rate
o(k) assumes negative or positive values. In the latter case,
the one-dimensional train of steps is linearly unstable. The
variations of the growth rate with the perturbation wave
number k are displayed in Fig. 2 for different values of the
evaporation parameter s. The electrical field is imposed in
the step-up direction here (7<<0). For s=0.001 all the modes
are stable, while the large wavelengths are unstable for s
=0.04. At higher evaporation rates, all the wave numbers are
unstable. Note that for s=0.09, the most unstable mode is
obtained for k= (step-pairing instability). Using Egs.
(11)—(13), we obtain the analytical expression for the bound-
ary lines 7,(s) separating the stable and the step bunching
regions in the (s, 7) plane:

Bz+B3>
a.

B, (14)

77c=U0+(

In addition, one shows that step-pairing instability be-
comes the most unstable mode for 7,=v,+a(B,-3B5)/B,.

log10 s*)

-8 ) 0 3 log | O(p)

FIG. 4. Critical value of the nondimensional evaporation rate s"
as a function of the attachment vs diffusion parameter p for f=0
(log-log scales).
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The stability diagram representing the boundaries between
the stable and unstable regions is shown in Fig. 3. For typical
values of the step-up electrical field (500 V/m), % assumes
small negative values (lower than 1072 in magnitude) which
lie slightly below the horizontal axis in the (s,7) plane.?
Since the evaporation rate s becomes larger as temperature is
increased, the system is stable both at low and high tempera-
tures and it becomes unstable in the intermediate temperature
range. Indeed, this succession of stability reversals is ob-
served experimentally for step-up currents.!>'8 In the un-
stable regions, both for step-up and step-down currents, step
bunching is superseded by the step-pairing instability for
large electrical fields. Moreover, the bunching regions pro-
gressively reduce in size as the step-step interaction coeffi-
cient a is decreased. As shown by Egs. (13) and (14), the
location of the vertical asymptote s=s" solely varies with the
attachment vs diffusion parameter p. These variations are
represented in Fig. 4. A maximum is obtained for p=1,
when the attachment length d=D,/v is comparable to the
terrace width L. For attachment-limited dynamics, p<1, we
find that s"=(12p)"4, while s"=(12/p)"? for diffusion-
limited dynamics, p>1. As discussed above, |7/ <1072 in
practice, so that the highest critical value of the evaporation
rate is very close to s=s". Since the desorption time reads
m=L3/(s’D,), we respectively obtain 7*=(L3/12vD,)"?, and
7' =vL}/12D? in the attachment-limited and the diffusion-
limited regimes. This implies that s~ strongly depends on the
miscut angle.
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FIG. 5. Stability diagrams in the (s, f-f) plane. Horizontal axes

f=fy correspond to zero net flux. On the left (right) side of the

vertical axes, the electrical current is step-up (step-down). Solid
lines represent the boundaries between stable and unstable regions.
The regions below the dotted lines are unphysical (f<<0). Nondi-
mensional parameters are ¢=0.2, p=1.0, a=10"*, and we set (a)
7=%5.0x107, (b) 7=+5.0X 1073
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Let us discuss now the case of a nonzero deposition flux,
f>0. The drift velocity reads

(s>= e’ = 1)
sp(1+e) +5%(e = 1)

vo=—2¢p (15)
It vanishes when the deposition and evaporation fluxes com-
pensate, f=f,=s>. We first consider the case of a step-up
current. The step bunching instability occurs only when
evaporation dominates deposition, f<f,, as shown on the
left side of Fig. 5. On the other hand, for a step-down cur-
rent, the instability may occur both for f<f, and f>f,,
depending on the values of the physical parameters. From
Fig. 5, it is also clear that increasing the deposition flux
has a stabilizing effect, whatever the direction of the electri-
cal field. Since a~ L;?, after Eq. (14) the stability threshold
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1.=v, for large L, values. Thus measurements of the step
velocity V|, could provide direct estimates of the effective
charge number, Z"=(VykzT)/(DeE).

In conclusion, we have shown that advection cannot in
general be neglected as compared to electromigration. We
have identified a set of six nondimensional parameters gov-
erning the system evolution. For step-up electrical currents,
two stability inversions have been found as evaporation in-
creases. Numerical simulations of our model equations are
currently performed to investigate nonlinear regimes, such as
coarsening dynamics, oscillating modes and spatiotemporal
chaos. %7
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