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We develop a formalism for the evaluation of conduction eigenchannels of atomic-sized contacts from first
principles. The multiple scattering Korringa-Kohn-Rostoker Green’s function method is combined with the
Kubo linear response theory. Solutions of the eigenvalue problem for the transmission matrix are proven to be
identical to eigenchannels introduced by Landauer and Büttiker. Applications of the method are presented by
studying ballistic electron transport through Cu, Pd, Ni, and Co single-atom contacts. We show in detail how
the eigenchannels are classified in terms of irreducible representations of the symmetry group of the system as
well as by orbital contributions when the channels’ wave functions are projected on the contact atom.
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I. INTRODUCTION

The invention of the scanning tunneling microscope1 in
1981 and a consequent development in the beginning of the
1990s of the remarkably simple experimental technique
known as mechanically controllable break junction2,3

�MCBJ� led to the possibility of fabricating metallic point
contacts approaching the atomic scale. A recent paper4 sum-
marized the numerous achievements in this field. In the ex-
periments, the conductance measured as a function of the
elongation of the nanocontacts decreases in a stepwise
fashion3,5–7 with steps of order of the conductance quantum
G0=2e2 /h. Such behavior of the conductance is attributed to
atomic rearrangements that entail a discrete variation of the
contact diameter.8–11

The electron transport in metallic nanocontacts is purely
ballistic and phase coherent because their size is much
smaller than all scattering lengths of the system. According
to Landauer,12 conductance is understood as transport
through nonmixing channels,

G =
2e2

h
�
n=1

N

Tn,

where Tn’s are transmission probabilities. They are defined
as eigenvalues of the transmission matrix ��†. Here, the ma-
trix element �nm gives the probability amplitude for an in-
coming electron wave in the transverse mode �channel� n on
the left from the contact to be transmitted to the outgoing
wave in the mode m on the right. Consequently, the eigen-
vectors of ��† are usually called eigenchannels. It was shown
in the pioneering work by Scheer et al.13 that a study of the
current-voltage relation for the superconducting atomic-sized
contacts allowed one to obtain transmission probabilities Tn’s
for particular atomic configurations realized in MCBJ experi-
ments. The Tn’s are found by fitting theoretical and experi-
mental I-V curve, which has a peculiar nonlinear behavior
for superconducting contacts at voltages eV smaller than the
energy gap 2� of a superconductor.13 The origin of such
effect is explained in terms of multiple Andreev reflections.14

The analysis of MCBJ experiments within the tight-binding
�TB� model suggested by Cuevas et al.15,16 gave a strong

evidence of the relation between the number of conducting
modes and the number of valence orbitals of a contact atom.

To describe the electronic and transport properties of
nanocontacts, quite a big number of different methods which
supplemented each other were developed during the past
15 years. Early models employed a free-electron-like
approximation.9,17,18 Further approaches based on density
functional theory �DFT� used psuedopotentials to describe
atomic chains suspended between jellium electrodes.19,20 The
TB models were applied to the problem of the conduction
eigenchannels15,21 and to the study of the breaking processes
of nanowires.7 The up-to-date fully self-consistent ab initio
methods22–24 allowed one to treat both the leads and the con-
striction region on the same footing and to evaluate the non-
equilibrium transport properties as well.23–25

The scattering waves, underlying a concept of eigenchan-
nels introduced by Landauer and Büttiker,12 do not form an
appropriate basis for most of the ab initio methods. Instead,
one considers conduction channels as eigenvectors of some
Hermitian transmission matrix written in terms of local, atom
centered basis set.15,24 One of the goals of the present paper
is to establish a missing link between these approaches. Be-
low, we introduce a formalism for the evaluation of conduc-
tion eigenchannels, which combines an ab initio Korringa-
Kohn-Rostoker �KKR� Green’s function method26 for the
electronic structure calculations and the Baranger-Stone for-
mulation of the ballistic transport.27 In recent
publications,28,29 we have successfully applied this method to
the study of the electron transport through atomic contacts
contaminated by impurities. In the present paper, mathemati-
cal aspects of the problem are considered, followed by some
applications. In particular, we analyze the symmetry of chan-
nels and relate our approach to the orbital classification of
eigenmodes introduced by Cuevas et al.15

The paper is organized as follows. A short description of
the KKR method is given in Sec. II. We proceed in Sec. III
with a formal definition of eigenchannels for the case of
realistic crystalline leads attached to atomic constriction.
Section IV supplemented by Appendixes A and B �Ref. 30�
contains mathematical formulation of the method. Briefly,
using the equivalence of the Kubo and Landauer approaches
for the conductance,27,31 we build the transmission matrix
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��† in the scattering wave representation. The angular mo-
mentum expansion of the scattering Bloch states within each
cell is used further to find an equivalent, KKR representation
of the transmission operator for which the eigenvalue prob-
lem can be solved. Applications of the method are presented
in Sec. V. In particular, we focus on transition metal contacts
�such as Ni, Co, and Pd�, since experimental32–34 and theo-
retical studies35–39 of their transport properties have been at-
tracting much attention during the past years.
Experiments40–44 regarding ballistic magnetoresistance
�BMR� effect in ferromagnetic contacts are commented. A
summary of our results is given in Sec. VI.

II. ELECTRONIC STRUCTURE CALCULATION OF THE
ATOMIC CONTACTS

The systems under consideration consist of two semi-
infinite crystalline leads, left �L� and right �R�, coupled
through a cluster of atoms which models an atomic constric-
tion. In Fig. 1, a typical configuration used in the calculations
is shown—the two fcc �001� pyramids attached to the elec-
trodes are joined via the vertex atoms. We employed the ab
initio screened KKR Green’s function method to calculate
the electronic structure of the systems. Since details of the
approach can be found elsewhere,26 only a brief description
is given below.

In the KKR formalism, one divides the whole space into
nonoverlapping, space-filling cells, with the atoms �and
empty spheres� positioned at the sites Rn, so that the crystal
potential V is expressed in each cell as Vn�r�=V�Rn+r�. The
one-electron retarded Green’s function is expressed in terms
of local functions centered at sites Rn:

G+�Rn + r,Rn� + r�;E� = �nn�
�E�

L

RL
n�r�;E�HL

n�r�;E�

+ �
LL�

RL
n�r;E�GLL�

nn��E�RL�
n��r�;E� ,

�1�

where r, r� are restricted to the cells n and n�; r�, r� denote
one of the two vectors r or r� with the smaller or the larger
absolute value, and local functions RL

n�r ;E� and HL
n�r ;E� are

the regular and irregular solutions of the Schrödinger equa-
tion for the single potential Vn�r�. Here, the index L= �l ,m�
stands for the angular momentum quantum numbers, and
atomic units are used: e=−�2, �=1, and m=1/2. The struc-

tural Green’s function GLL�
nn��E� �structure constants� in Eq.

�1� is related to the known structure constants of the appro-
priately chosen reference system by the algebraic Dyson
equation, which includes the difference �t=�nn��LL��tL

n be-
tween local t matrices of the physical system and a reference
system. In the screened KKR method,26 we use a lattice of
strongly repulsive, constant muffin-tin potentials �typically
�4 Ry height� as reference system that leads to structure
constants which decay exponentially in real space.

Within the screened KKR method, both a constriction re-
gion and the leads are treated on the same footing. This is
achieved by using the hierarchy of Green’s functions con-
nected by a Dyson equation, so that we perform the self-
consistent electronic structure calculations of complicated
systems in a steplike manner. First, using the concept of
principal layers together with the decimation technique,45 we
calculate the structural Green’s function of the auxiliary sys-
tem consisting of semi-infinite leads separated by a vacuum
barrier. At the second step, the self-consistent solution of the
impurity problem is found by embedding a cluster with per-
turbed potentials caused by the atomic contact into the aux-
iliary system. Due to effective screening of perturbation, the
algebraic Dyson equation for the structure constants is
solved in real space.26

III. DEFINITION OF EIGENCHANNELS

The concept of eigenchannels is introduced in the Land-
auer approach to ballistic transport, where the problem of the
conductance evaluation is considered from the viewpoint of
scattering theory. Following Landauer,12 we look at the sys-
tem shown in Fig. 1 as consisting of two semi-infinite leads
�electrodes� attached to a scattering region �atomic-sized
constriction�. Far away from the scattering region, the propa-
gating states are the unperturbed Bloch waves �k

°�r ,E� of
the left �L, z→−�� and right �R, z→ +�� leads, where k
belongs to the isoenergetic surface E=constant �Fermi sur-
face, E=EF, in case of conductance� and a common notation
k= �k ,	� is used to denote Bloch vector k and band index 	.
For the eigenchannel problem, one considers incoming and
outgoing states in the L and R leads normalized to a unit flux.
The in states in L and out states in R are 
k

° =�k
° /�vk with

positive velocity vk�vk
z �0 along the z axis. The conjugated

states 
k
°*=�k

°* /��v−k� are the out states in L and in states in
R with negative velocity v−k�v−k

z �0. Here, vk
z is a z com-

ponent of the group velocity vk=�Ek /�k; a proportionality
factor between vk and vk

z related to a particular choice of
normalization of the Bloch waves is introduced further in
Sec. IV B.

The potential �V�r� describing the constriction introduces
a perturbation to the perfect conductor. Let 
k�r ,E� be a
perturbed state, which is a solution of the Lippmann-
Schwinger equation for an incoming state in L:

FIG. 1. Geometry of an atomic constriction: two fcc �001� pyra-
mids are attached via apex atoms. Conductance is calculated
between the two planes SL and SR positioned in the leads.
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k�r,E� = 
k
°�r,E� +� d3r�G0

+�r,r�,E��V�r��
k�r�,E� ,

�2�

where the integral goes over all space, and G0
+�r ,r� ,E� is the

retarded Green’s function of the perfect conductor.
Asymptotic behavior of 
k�r ,E� is

�
k�r,E��z→−� = 
k
°�r,E� + �

k�

�kk��E�
k�
°*�r,E� ,

�
k�r,E��z→+� = �
k�

�kk��E�
k�
° �r,E� , �3�

where �kk��E� and �kk��E� are transmission and reflection
amplitudes, assuming elastic scattering �Ek=E=Ek��. Ac-
cording to the Landauer-Büttiker formula,12 conductance is
given by g=g0 Tr���†�, where g0=2e2 /h, and trace goes over
incoming states �k� in the left electrode and E=EF. An
equivalent formulation with respect to incoming states
�−k�� from the right electrode reads as g=g0 Tr��†��.

Eigenchannels appear from a unitary transformation of in
and out states. Let 
 be a unitary transform of in states in L:

�

°in�r ,E��z→−�=�k
�k�E�
k
�in�r ,E�. The corresponding so-

lution 
��r� of Eq. �2� for an arbitrary r is


��r,E� = �
k


�k�E�
k�r,E� . �4�

The unitary transform 
 is defined in such a way that the
transmission matrix T=��† is diagonal in the basis �:


���†�
† = diag�T�	 , �5�

and the conductance reads as g=g0��T��EF�, where the T�’s
are transmission probabilities of eigenchannels.

The matrix �, however, is not diagonal in basis �. Follow-
ing Ref. 46, one can introduce a unitary matrix � which
satisfies the equation


��† = ��†
† = diag��T�	 ,

where all quantities are energy dependent. The solution is
�=diag�1/�T�	
�. The following properties of � can be
checked: ��†=����, �†�=�kk�; thus, � is indeed the unitary
matrix. It diagonalizes �†�:

���†���† = diag�T�	 . �6�

Matrix � performs a unitary transform of out states in R, so
that the linear combination � of incoming states in L,

�

°in�r ,E��z→−�=�k
�k�E�
k
°in�r ,E�, is reflected from the

constriction and transmitted into the linear combination � of
the out states in R, 
�

°out�r ,E��z→+�=�k��k�E�
k
°out�r ,E�,

with the transmission amplitude �T��E�, namely,

��r ,E��z→+�=�T��E�
�

°out�r ,E�.
One can show27,31 that for the Bloch states at the same

energy �Ek=E=Ek�� in the ideal leads, the following rela-
tions hold for the current matrix elements:

�
S

dS
�k
°�r,E�i�z

J�k�
°*�r,E�� =

vk

2�
�kk�, �7�

where the Bloch waves are either left 
vk� ��Ek /�k�z�0� or
right traveling �vk�0�, the operator �Jz is defined as f�Jzg
= f��zg�− ��zf�g, and the integral goes over infinite plane S
�cross section of the lead�, which is perpendicular to the
current direction z.

In case of the perturbed system, the orthogonality relation
holds for current matrix elements in the basis of eigenchan-
nels. Using Eqs. �3�, �5�, and �7�, we can compute it in the
asymptotic region of the right �R� lead47

�
SR

dS

��r,E�i�z
J
�

* �r,E��z→+� =
T��E�

2�
���. �8�

We note that Eq. �8� holds for any position z of the plane S.
Because the wave functions of channels are solutions of the
Schrödinger equation with a real potential corresponding to
the same energy, the flux through arbitrary plane S is con-
served �a proof is similar to that of Appendix A of Ref. 32�.

IV. CONDUCTION EIGENCHANNELS WITHIN THE KKR
METHOD

A. Evaluation of conductance

To calculate the ballistic conductance, we employ the
Kubo linear response theory as formulated by Baranger and
Stone:29

g = g0�
SL

dS�
SR

dS�G+�r,r�,EF��Jz�Jz�G
−�r�,r,EF� , �9�

where G− and G+ are retarded and advanced Green’s func-
tions, respectively, and g0=2e2 /h. The integration is per-
formed over left �SL� and right �SR� planes which connect the
leads with the scattering region �Fig. 1�. The current flows in
the z direction. The implementation of Eq. �9� within the
KKR method, related convergence tests, and further details
were discussed in a recent publication.31

In this paper, we present a further extension of Ref. 31, a
method for the evaluation of conduction eigenchannels. For
that, we will follow closely the analysis of Refs. 27 and 31,
where the equivalence of the Kubo and Landauer approaches
to a conductance problem was shown. We proceed in four
steps: �i� we remind the KKR representation of the Bloch
functions, �ii� we build up the asymptotic expansion of the
Green’s function in terms of unperturbed Bloch states of the
leads, �iii� we construct the transmission matrix T=��† in k
space, and �iv� finally, we find an equivalent representation
of the transmission matrix within the local KKR basis. Fur-
ther solution of the eigenvalue problem leads us to conduc-
tion channels. We mention here one aspect of the problem:
for realistic calculations, the planes SL and SR �see Fig. 2 for
details� are usually placed at a finite distance from the atomic
constriction. Nevertheless, we first focus on the asymptotic
limit before we discuss the realistic situation, which is con-
sidered in Sec. IV E and Appendix A.30
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B. Atomic orbitals and Bloch functions

Let r be an arbitrary point in the asymptotic region of the
lead �Fig. 2�. In the KKR method, the local, energy-
dependent basis of atomic orbitals is defined at each unit cell
n:

�L
n�r,E� = �L�r − Rn,E� = RL�r − Rn,E���r − Rn� ,

�10�

where RL’s are real regular solutions48 of the Schrödinger
equation for the potential Vn�r� at cell n, and � function is 1
inside cell n and is 0 outside it. The unperturbed Bloch func-
tion is given by expansion over atomic orbitals at all sites n
in the Born–von Kármán supercell:

�k
°�r,E� = �

nL

Ck,nL�E��L�r − Rn,E� , �11�

with Ck,nL�E�=e+ikRnCkL
� �E�. Here, the common notation k

= �k ,	� for the Bloch vector k of the first Brillouin zone
�BZ� and the band index 	 is used. The CkL

� �E� are solutions
of the KKR band structure equations49 with energy E.

Considering a waveguide geometry, we will assume the
Bloch functions to be normalized per cross section of the
Born–von Kármán supercell �see Fig. 2� with open boundary
conditions along the z axis. Thus, Ck,nL�E��1/�NxNy with
NxNy being the number of atoms per cross section, and the
orthogonality condition for Bloch waves takes the form31

�
V

d3r�k
°�r,E��k�

°*�r,E�� =
V

�NxNy�
�kk� = 2�A0��kz − kz���k�k��

= �vk���E − E���ss��k�k��
.

Here, V=LxLyLz is a volume of the supercell, A0
=LxLy /NxNz is an area of the xy unit cell in the electrode,
s ,s�= ±1 are signs of kz and kz�, relation Lz�kzkz�

=2���kz

−kz�� has been used, and velocity vk along current flow is
defined as vk=2�A0��Ek /�k�z.

Since the Bloch waves form a complete set, a back trans-
form of Eq. �11� exists:

�L�r − Rn,E� = �
k�

BnL,k�
† �E��k�

° �r,Ek�� , �12�

where k� sum runs over all k� points in the first BZ and over
all bands 	�. The † symbol means Hermitian conjugate. The
expression for BnL,k

† can be obtained50 from known matrix
Ck,nL. One can prove further that Ck,nL and BnL,k

† obey the
following orthogonality relations:

�
nL

Ck,nL�E�BnL,k�
† �E� = �kk�,

�
k

BnL,k
† �E�Ck,n�L��E� = �nn��LL�, �13�

where in the second equation a sum over k is restricted to
states with Ek=E.

C. Asymptotic expansion of the Green’s function

Starting from the site angular momentum representation
�1� of the retarded Green’s function within the KKR method
and using Eqs. �11� and �12�, we obtain the asymptotic ex-
pansion for G+�r ,r� ,E� over the unperturbed Bloch
waves27,31

�G+�r,r�,E��z,z�→�� = �
kk�

�k
°*�r,E�Akk��E��k�

° �r�,E� ,

�14�

with r�VL, r��VR �see Fig. 2�, and

Akk��E� = �
n�VL

�
n��VR

�
LL�

Bk,nL�E�GLL�
nn��E�Bn�L�,k�

† �E� ,

�15�

or in a matrix form: A=BGB†. Formally, the k sums in Eq.
�14� are performed over all k states in the first BZ and over
all bands 	. However, since the Green’s function for r�r� is
a solution of the Schrödinger equation without a source term,
only states k ,k� at the isoenergetic surface of energy E con-
tribute to the sum in the asymptotic expansion.27,31

Therefore,

Akk��E� =
1

Nz
2 �̄�E − Ek��̄�E − Ek��Akk��E� , �16�

where �̄�E−Ek�= ��0 /S	��vk���E−Ek�. Here, Nz is the num-
ber of atom sites in Born–von Kármán supercell along the z
axis, �0= �2��3 /V0 is the volume of the first BZ, S	 is the
area of the isoenergetic surface corresponding to band 	 and
vk=�Ek /�k. For the discrete k points, the function

�1/Nz��̄�E−Ek� equals 1 if E=Ek, and is 0 otherwise. In
addition, boundary conditions for the Green’s function27 con-
strain matrix elements Akk��E� to be nonzeros only if k and
k� states are right-traveling waves �with positive velocity
along the z axis� that corresponds to the in states k in the left
lead and out states k� in the right one.

D. Transmission matrix: Asymptotic limit

We proceed further and use the asymptotic representation
�14� of the Green’s function to evaluate conductance accord-

FIG. 2. �Color online� Sketch of the system under consideration.
In a formal theory, left �SL

0� and right �SR
0� planes are placed within

the leads far away from a scattering region �asymptotic limit�. For
all points r �z�zL

0� and r� �z��zR
0� within the Born–von Kármán

supercells �cubes�, VL and VR asymptotic properties are achieved.
When implementation of the method is considered, the conductance
is calculated between the planes SL and SR positioned somewhere in
the scattering region.
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ing to Eq. �9�. Assuming the integration planes to be placed
within the leads infinitely far from the scattering region, we
obtain

g = g0 Tr�k�
VLA�EF�VRA†�EF�� , �17�

where the diagonal operators of velocities VL and VR �related
to the left and right planes� acting in the k space were intro-
duced: 
VL�R��kk�= �vk /2���kk�. Formally, the trace �Tr� in
Eq. �17� goes over all k states, and the Fermi surface is taken
into account by means of Eq. �16� where E=EF.

The velocity operators can be decomposed into sum of
two operators related to the Bloch states with positive and

negative velocities along z: V̂= V̂++ V̂−, where V̂+ is nonzero

for right-traveling waves only, while V̂− is nonzero for left-
traveling ones. In the asymptotic limit, only incoming and
outgoing k states with positive velocities contribute to the
sums in Eq. �17�. Using the relation between expansion co-
efficients Akk� and the transmission amplitudes �kk� derived
in Refs. 27 and 31,

Akk��E� = − 2�i
�kk��E�
�vkvk�

, �18�

we obtain

g = g0 Tr�k�
VL
+A�EF�VR

+A†�EF�� = g0 Tr�k�
T�EF�� ,

�19�

where a representation of T=��† in k space is given by

T�E� = �VL
+�1/2A�E�VR

+A†�E��VL
+�1/2 �20�

with a positive definite operator under square roots.
The k representation is formal but not suitable for imple-

mentation. To solve the eigenvalue problem for T=��†, the
mapping on the site-angular momentum �n ,L� space of the
KKR method should be presented. Such mapping is realized
through the expansion �11� of the Bloch functions over
atomic orbitals, so that velocity operators in k space take a
form


VL�R��kk� = �
nn��SL

0
�
LL�

Ck,nL
DL�R��LL�
nn�Cn�L�,k�

† ,

where site-diagonal operators DR and DL, defined on atomic
orbitals, are the KKR analog of velocities:51


DL�R��E��LL�
nn� = ± �nn��

SL�R�
n

dS
RL
n�r,E�i�JzRL�

n �r,E�� .

�21�

Here, the integral is restricted to the cross section of the unit
cell around site n. Now we can evaluate conductance accord-
ing to Eq. �17�. Taking into account that B†C=C†B
=�nn��LL� 
Eq. �13��, we obtain

g = g0 Tr�n,L��DLGDRG†� . �22�

Here �and further�, all matrices are assumed to be taken at

the Fermi energy, G= �GLL�
nn�	 stands for matrix notation of the

structural Green’s function introduced in Eq. �1�, and trace

�Tr� involves sites and orbitals related to the atomic plane SL
0

�Fig. 2�.
The operators DL, DR are antisymmetric and Hermitian,

thus their spectrum consists of pairs of positive and negative
eigenvalues: ±�i

0. Let U be the unitary transform of matrix D
�either DL or DR� to a diagonal form

D0 = U†DU = diag�±�i
0	 . �23�

Decomposition of operator D into two terms, D=D++D−,
related to the right- and left-traveling waves, is naturally
given in the basis of eigenvectors:

D± = UD0�±�U†, �24�

with

D0�+� = 
�+ 0

0 0
�, D0�−� = 
0 0

0 − �− � ,

where �+ ,�− are positive �non-negative� diagonal matrices.
The analog of Eq. �19� reads as

�g�z,z�→�� = g0 Tr�n,L��DL
+GDR

+G†� . �25�

Now we are ready to build the �n ,L� representation for
transmission matrix T=��†. For that, one should extract a
square root from the positive definite operator VL

+=CDL
+C†

defined on k space with the help of �n ,L� space. Namely,
because the VL

+ is positive definite, it can be represented in
the following form:52 VL

+=�L�L
†. Here, an operator �L maps

the k space on the �n ,L� space, �L : �k	→ �n ,L	. The solution
for �L is

�L = C�DL
+�1/2E ,

where E is an arbitrary unitary matrix �EE†=1� and �DL
+�1/2

=UL
DL
0�+��1/2UL

† with 
DL
0�+��1/2 being the square root of the

positive definite diagonal matrix 
Eq. �24��.
To find T=��†, we start from Eq. �19� and proceed as

follows:

g = g0 Tr�n,L���L�L
†AVR

+A†� = g0 Tr�n,L���L
†AVR

+A†�L�

= g0 Tr�n,L�
�DL
+�1/2C†�BGB†��CDR

+C†��BG†B†�C�DL
+�1/2� ,

where Eq. �15� was used. Because of B†C=�nn��LL�

Eq. �13��, we obtain

g = g0 Tr�n,L��T� , �26�

where, in the asymptotic limit, the transmission matrix T
=��† in �n ,L� representation is given by

T = �DL
+�1/2GDR

+G†�DL
+�1/2. �27�

The trace in Eq. �26� goes over all sites n and orbitals L of
the atomic plane SL

0 in the left lead �Fig. 2�. An equivalent
formula can be written for the right lead. To conclude, one
can prove that the spectrum of the obtained matrix coincides
with the spectrum of transmission matrix T 
Eq. �20�� de-
fined in k space �see Appendix B for details30�. Therefore,
solution of the eigenvalue problem for T gives us the re-
quired transmission probabilities.
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E. General case: Arbitrary positions of planes

In practical calculations of conductance with the use of
the Kubo formula, the left �L� and right �R� planes are posi-
tioned somewhere in the leads �Fig. 2�. Expression �22� is
valid in the general case and the result is exactly the same as
in Ref. 31. Operator DL in Eq. �22� is sum of the two terms:
DL=DL

++DL
−. Therefore, we can write down

g = g0 Tr�DL
+GDRG†� + g0 Tr�DL

−GDRG†� = g+ + g−,

�28�

where g+ and g− denote two contributions. In a formal
theory, when the atomic plane SL is placed in the asymptotic
region of the left lead far from the atomic constriction, the
second term g− in Eq. �28� is equal to zero. In practice, the
real space summation of current contributions includes only
a finite number of sites at both atomic planes, because the
current flow along the z direction is localized in the vicinity
of the contact. Due to numerical effort, we are forced to take
integration planes closer to the constriction in order to obtain
convergent value for the conductance with respect to number
of atoms included in summation. In addition, even better
convergence for matrix elements is required to solve the ei-
genvalue problem. A compromise can usually be achieved,
but positions of the atomic planes SL and SR do not meet the
asymptotic limit criterion. However, since the electron cur-
rent through the structure is conserved, any position of the
planes is suitable for the calculation of conductance. If SL is
placed somewhere in the scattering region, we have to sum
up all multiple scattering contributions. We show in Appen-
dix A �Ref. 30� that all multiple scattering contributions in
the direction of the current cause g+, whereas all scattering
contributions in the opposite direction give rise to g−. Thus,
the first term, g+, in Eq. �28� is always positive, while the
second one, g−, is always negative. To make this statement
clear, an illustration of scattering events is shown in Fig. 3
assuming a simple free-electron model. In the region of the
lead where the potential is a small perturbation with respect
to the bulk potential, the contribution to the conductance due
to g− is 1 order of magnitude smaller than g+.

To find transmission probabilities of eigenchannels, one
has to apply the procedure introduced in the previous section
independently for both terms g+ and g−. We refer to Appen-
dix A �Ref. 31� for a mathematical justification. Expression
for conductance takes a form

g = g0 Tr�n,L��T+� + g0 Tr�n,L��T−� , �29�

with

T± = ± �±DL
±�1/2GDRG†�±DL

±�1/2. �30�

We show in Appendix A �Ref. 30� that all eigenvalues of T+

are either positive or zero, whereas all eigenvalues of T− are
negative or zero. To identify transmission probabilities Tn of
channels, the spectra of operators T+ and T− have to be ar-
ranged in a proper way. Then transmission of the nth channel
is given by Tn=�n

+−�n
−, where ±�n

± are positive and negative
eigenvalues of the operators T+ and T−, respectively. The
Tn does not depend on the positions of the left �SL� and
right �SR� planes, while �n

± are z dependent. In the asymptotic

limit ��n
−�zL→−�→0 and Tn= ��n

+�zL→−�, so that the Landauer
picture is restored.

In the general case, the direct way to find the pairs of
eigenvalues is not evident without a back transform to the k
space. However, from the point of view of applications to the
extremely small symmetric atomic contacts, same as the ones
we are studying in this work, the problem is easy to handle.
Since the number of contributing eigenmodes is limited, the
pairs of eigenvalues can be found by symmetry analysis of
the eigenvectors of T+ and T−. Namely, using the symmetry

properties of the structural Green’s function GLL�
nn� and current

matrix elements DLL�
nn� , one can show that the channel’s trans-

mission Tn bounded between 0 and 1 is defined by eigenval-
ues �n

+ and �n
−, which belong to the same irreducible repre-

sentation of the symmetry point group.

FIG. 3. �Color online� �a� A model steplike potential for the
free-electron gas within the L /S /R structure having two-
dimensional periodicity. The electrons moving with energy E=EF

from the leads �L and R� are scattered at the potential step U. The k�

momentum is conserved, while the momentum kz along the z axis is
k0= 
2mE−k�

2�1/2 in the leads and k1= 
2m�E−U�−k�
2�1/2 in the S

layer. �b� A multiple reflection of the incoming state from the R lead
wave e−ik0z within the spacing layer S, where it is a linear combi-
nation ��z�=�+�z�+�−�z�=�e−ik1z+�e+ik1z of two functions. If zL

1 is
the position of one of the planes taken for the conductance evalua-
tion, transmission T�k�� of channel k� is proportional to the current
j=��z�i�Jz�

*�z�=2k0=2k1���2−2k1���2= j+− j−, which is the sum of
two terms �positive and negative� due to contributions from two
functions, �+�z� and �−�z�. The value �=� /�= �k1−k0� / �k1

+k0�e+2ik1a has a meaning of the reflection coefficient of the S /R or
S /L interface. However, if the plane is chosen in the asymptotic
region of the lead, at point zL

0, transmission T�k���2k0 contains
only one positive contribution.
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V. APPLICATIONS OF THE METHOD

In recent papers,28,29 we have verified the method de-
scribed here by studying systematic changes in the conduc-
tance of metallic constrictions in the presence of defect at-
oms. Illustrative examples presented below focus on single-
atom contacts made of pure metals such as Cu, Ni, Co, and
Pd.

Copper serves mainly for test purposes. It is a representa-
tive of the noble metals and has electronic properties similar
to Ag and Au, for which a lot of experimental results9,32,53–56

as well as DFT based calculations21,23 are available. In par-
ticular, a large number of experiments for alkali metals32,56,57

�Li, Na, and K� and noble metals �Au, Ag, and Cu�,32,54–56

employing different techniques under room and liquid-He
temperatures, show that conductance histograms have a
dominant peak very close to one conductance quantum G0
=2e2 /h and smaller peaks close to integer values.

However, for transition metal contacts �examples of
which are Ni, Co, and Pd�, the situation differs
significantly.32,55 Only one broad maximum centered some-
where between 1G0 and 3G0 is usually observed in conduc-
tance histograms.4,56 That is a signature of the nontrivial de-
composition of conductance consisting of more than one
perfectly transmitting channel,15,16 since for transition metal
atoms d states of different symmetries are available at the
Fermi level. The question on half-integer conductance quan-
tization has been addressed.33,58 However, recent
experiments59 do not confirm this hypothesis, thus pointing
to the conclusion that the electron transport through ferro-
magnetic contacts can never be fully spin polarized. Another
issue is a large magnetoresistance �MR� effect40,42 observed
for metallic point contacts made of different magnetic mate-
rials. This field is known to be full of controversy. There is
still a continuing discussion on whether or not the enormous
MR values found experimentally could be of electronic
origin35,37,60–64 or the effect is just due to atomic rearrange-
ments in the neck region of a contact as a response to the
applied magnetic field.65,66 Extensive discussion on this topic
can be found in the recent paper by Marrows.67 We will
comment further on the above issues.

A. Computational details

An atomic configuration of a constriction used in our cal-
culations is presented in Fig. 1. The single-atom contact was
modeled by a small cluster attached to the semi-infinite fcc
�001� leads. The cluster consists of two pyramids joined via
the vertex atoms separated by a distance a0 /�2. Here, a0 is
the experimental lattice constant of fcc metals: 6.83 a.u. for
Cu, 6.66 a.u. for Ni, 6.70 a.u. for Co, and 7.35 a.u. for Pd.
The metals under consideration do not have a tendency to
form chains.68 An atomic bridge is most likely to be broken
just after the single-atom limit is achieved. Thus, a configu-
ration shown in Fig. 1 resembles one of limiting configura-
tions of point contacts which could appear in the MCBJ
experiments.

Our calculations are based on DFT within the local den-
sity approximation. The of Vosko-Wilk-Nusair parametriza-
tion �Ref. 69� for the exchange and correlation energy was

used. The potentials were assumed to be spherically symmet-
ric around each atom 
atomic sphere approximation �ASA��.
However, the full charge density, rather than its spherically
symmetric part, was taken into account. To achieve well con-
verged results, the angular momentum cutoff for the wave
functions and the Green’s function was chosen to be lmax
=3 that imposed a natural cutoff 2lmax=6 for the charge den-
sity expansion. In the case of heavy element Pd, the scalar
relativistic approximation70 was employed. For the conduc-
tance calculation, the surface Green’s function was computed
using a small imaginary part Im E=0.04 mRy and about
250 000 k points were taken in the two-dimensional Brillouin
zone. Instead of integration over planes, current matrix ele-
ments �21� were averaged over atomic layers as described in
detail in Ref. 31. A typical error in the calculation of con-
ductance was �5%.

B. Symmetry analysis of eigenchannels

To understand the relation between the electronic struc-
ture and the transport properties of atomic contacts, we con-
sider the energy-dependent total transmission, T�E�, and its
decomposition to the conduction eigenchannels, Ti�E�. Re-
sults are shown in Figs. 4, 6, 8, and 9 for the case of Cu, Ni,
Co, and Pd point contacts, respectively. The investigated
structure �Fig. 1� has a C4v symmetry. Further, we denote
individual channels by the indices of irreducible representa-
tions of this group using notations of Ref. 71, common in
band theory. In addition, each channel can be classified ac-
cording to the angular momentum contributions when the
channel wave function is projected on the contact atom of
the constriction. This is very helpful since the channel trans-
mission can be related to the states of the contact atom.15 For
example, the identity representation �1 of the C4v group is
compatible with the s, pz, and dz2 orbitals �here, z is perpen-
dicular to the surface and passes through the contact atom�,
while the two-dimensional representation �5 is compatible
with the px, py, dxz, and dyz orbitals. The basis functions of
�2 and �2� are dx2−y2 and dxy harmonics, respectively.

C. Cu contacts

The energy-dependent transmission of Cu atomic contact
�shown in Fig. 1� is presented in Fig. 4 together with the

FIG. 4. �Color online� Energy-dependent transmission and its
decomposition to the conduction eigenchannels for the Cu single-
atom contact shown in Fig. 1.
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eigenchannel decomposition. At the Fermi energy, the calcu-
lated conductance value is G=1.01G0. It mainly consists of
one open channel of �1 symmetry which arises locally from
s, pz, and dz2 orbitals when the wave function is projected on
the contact atom. This result is in good agreement with a lot
of experiments32,56 mentioned previously as well as with
other calculations involving different approaches.21,23 The
additional twofold degenerate channel has �5 symmetry.
Transmission of this channel increases at energies above the
Fermi level �EF� together with an increase of the px , py con-
tribution to the local density of states �LDOS� at the contact
atom. However, at E�−1.5 eV below the EF, the �5 channel
is built mainly from the dxz ,dyz orbitals of the Cu atom.

We would like to point out that in the case of noble met-
als, the conductance of single-atom contact is not necessarily
restricted to one channel. An example of a configuration
which has more channels �but still has only one Cu atom at
the central position� is presented on the top of Fig. 5. Be-
cause of the larger opening angle for incoming waves as

compared with the preceding case, conductance of such sys-
tem is G=2.57G0 with major contribution from four chan-
nels �Fig. 5 and its caption�. The value 2.57G0 correlates
with a position of the third peak in the conductance histo-
gram of Cu, which is shifted from 3G0 to smaller values.32,56

As is seen from the presented example, conductance quanti-
zation does not occur for the metallic atomic-sized contacts.
In general, even for noble metals, conduction channels are
only partially open32 in contrary to the case of quantum point
contacts realized in the two-dimensional electron gas where a
clear conductance quantization was observed.72

For illustration, we present in Fig. 5 probability ampli-
tudes of the eigenchannels ��i�r��2 in real space resolved
with respect to atoms of the second plane �S-2� below the
surface. We see that the wave functions of the first and fourth
channels with the highest symmetry ��1� obey all eight sym-
metry transformations of the C4v group, while two different
wave functions of the double degenerate channel ��5� are
transformed to each other after some symmetry operations.

D. Transition metal contacts

We turn to transition metals, and consider the ferromag-
netic Ni assuming a uniform magnetization of the sample.
Transmission T�E� split per spin of a Ni contact is shown in
Fig. 6. A shift �0.8 eV along the energy axis between trans-
mission curves is seen that is in agreement with exchange
splitting of the Ni d states. Similar computational results re-
garding transmission of Ni constrictions were reported by
Solanki et al.,36 Rocha et al.,24 and Smogunov et al.39 Ex-
change splitting estimated from their works varies from
0.8 to 1.0 eV, but fine details differ because of different
atomic configurations and employed methodologies. In this
regard, exchange splitting about 2.0 eV observed in transport
calculations of Jacob et al.37 in the case of Ni contact seems
to be overestimated.

The shift in energy due to different spins is observed as
well for the transmissions of individual channels �Fig. 7�. We
see from Fig. 7 and Table I that at the Fermi energy the
spin-up �majority� conductance of Ni contact is mainly de-
termined by one open �1 channel �similar to the case of Cu�,
while three partially open channels, of �1 and �5 symme-
tries, contribute to the spin-down �minority� conductance.
The minority �5 channel arises locally from dxz and dyz

FIG. 5. Wave functions ��i�r��2 �probability densities� of the
four dominating eigenchannels for the pyramidal Cu contact shown
on the top. Wave functions resolved to atoms are visualized two
atomic planes below the surface plane �S-2�. Colors from white to
black correspond to consequently decreasing positive values. Trans-
mission probabilities of channels are T1=0.90 ��1�, T2=T3=0.71
��5�, and T4=0.08 ��1�, which are summed up to conductance G
=2.57G0. Further details are given in the text.

FIG. 6. �Color online� Spin-dependent transmission as a func-
tion of energy for the Ni single-atom contact shown in Fig. 1.
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states, rather than from px and py states whose contribution to
the spin-down LDOS at the Fermi energy is much smaller
�Fig. 7�. The calculated conductance, G=1.20G0, correlates
with a position of the wide peak in the conductance histo-
gram of Ni centered between 1G0 and 2G0.56,59

Within the energy range shown in Figs. 6 and 7 �±2 eV
around EF�, we count six eigenmodes of different symme-
tries for both spins. At energies well above the Fermi level

�E�1.0 eV�, the spin splitting of Ni sp states is lost, and the
picture is similar to what we have seen for Cu. Three chan-
nels are present: one open �1 �spz-like� channel with trans-
mission around 0.9 and a partially open double degenerate
�5 �px , py� channel whose transmission increases monotoni-
cally as a function of energy. However, below the Fermi
energy, all eigenmodes Ti�E� display a complicated behavior
�Fig. 7, upper plots� that reflects a complex structure of the

TABLE I. Transmission probabilities of eigenchannels at the Fermi energy of Ni and Co atomic contacts
shown in Fig. 1 for two different �P and AP� orientations of magnetizations in the leads. Only transmissions
of the dominant channels are presented. Magnetoresistance ratio defined as MR= 
�GP−GAP� /GAP�100% is
given in the last line.

Channel

Ni Co

P AP P AP

�↓� spin �↑� spin �↑� or �↓� spin �↓� spin �↑� spin �↑� or �↓� spin

T1 ��1� 0.68 0.84 0.82 0.36 0.89 0.58

T2=T3 ��5� 0.35 0.06 0.31 0.14 0.07 0.09

T4 ��2� 0.17

Transmission 1.44 0.96 1.45 0.83 1.03 0.76

MR ratio −17% +23%

FIG. 7. �Color online� Spin-
and energy-dependent transmis-
sion decomposed to conduction
eigenchannels for the Ni atomic-
sized constriction in comparison
with the symmetry projected local
density of states at the contact
atom �i.e., apex atoms in Fig. 1�.
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LDOS projected on orbitals of the contact atom �Fig. 7, bot-
tom plots�. Below EF, the existing s, pz, and dz2 states are
strongly hybridized, giving rise to two channels of �1 sym-
metry at energies about E�−1.0 eV and E�−1.5 eV for
minority and majority spins, respectively. A clear correlation
between the symmetry projected LDOS and Ti�E� is seen for
the pure d channels, �2 �dx2−y2� and �2� �dxy�. For example,
the minority spin dx2−y2 resonance centered around E=
−0.7 eV and majority spin dx2−y2 resonance at E=−1.3 eV
reflect themselves as peaks in the transmission of the minor-
ity and majority �2 channels. The same is valid for the dxy
states at E=−1.1 eV �spin down� and E=−1.7 eV �spin up�,
that causes the increase of transmission of the �2� channel at
the same energies. However, even at the resonances, the �2
and �2� channels are only partially open because the dx2−y2

and dxy orbitals are spread perpendicular to the wire �z� axis,
that prevents effective coupling with the neighboring atoms.

Our results for Co constriction are presented in Fig. 8. As
compared with Ni, the shift between the spin-up and spin-
down T�E� curves becomes larger ��1.7 eV� because of the
stronger exchange field of cobalt. At the Fermi energy, ma-

jority spin conductance is still dominated by one highly
transmitted �1 channel �Table I�, while for the minority spin
the dx2−y2 resonance is pinned to the Fermi level and results
in the additional �as compared with Ni� channel of �2 sym-
metry. Thus four channels with moderate transmission prob-
abilities contribute to the minority spin conductance
�Table I�.

Figure 9 shows the results for Pd. According to recent
theoretical predictions,73 monatomic Pd wires might exhibit
magnetic properties. However, in this work we considered
nonmagnetic solution, since a coordination number even for
the contact atom was already big enough �Fig. 1� to suppress
magnetism.73 Pd is isovalent to Ni. The Fermi level crosses
the partially filled d band. Therefore, the eigenchannel de-
composition resembles the minority spin channels of Ni.
However, due to a larger occupation number, transmission
curves are shifted �0.5 eV downward in energy as com-
pared with spin-down Ni modes. The conductance G
=1.41G0 is a sum of three channels. This value is in agree-
ment with the conductance histogram of Pd,74 which shows a
broad maximum around �1.7G0.

We turn back to Ni and Co contacts, and consider a situ-
ation when a relative orientation of magnetizations in the
leads is antiparallel �AP�, so that an abrupt atomic-scale do-
main wall is formed as shown in Table II. We see from Table

TABLE II. Spin magnetic moments �in �B� at atoms forming Ni
and Co contacts shown in Fig. 1 for the parallel �P� and the anti-
parallel �AP� orientation of magnetizations in the leads. Bulk mag-
netic moments are 0.62�B for Ni and 1.62�B for Co.

Atom

Ni Co

P AP P AP

Surface 0.66 0.66 1.78 1.78

Contact−1 0.70 0.69 1.83 1.83

First contact 0.68 0.54 1.76 1.64

Second contact 0.68 −0.54 1.76 −1.64

Contact+1 0.70 −0.69 1.83 −1.83

Surface 0.66 −0.66 1.78 −1.78

FIG. 8. �Color online� Spin- and energy-dependent transmission
decomposed to conduction eigenchannels for the Co single-atom
contact shown in Fig. 1.

FIG. 9. �Color online� Eigenchannel decomposition of the trans-
mission for the Pd contact shown in Fig. 1.
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I that, both for Ni and Co, the AP conductance reflects the
structure of the minority spin channels and consists of a �1
channel and a �5 channel. For the atomic configuration
shown in Fig. 1, we obtained “optimistic” MR values: −17%
in the case of Ni and +23% in the case of Co, which are quite
small in accordance with our previous study.35 However, the
precise MR values as well as transmission curves for Co
differ from the results reported in our earlier work because of
the different geometrical configurations of atomic contacts.
The reason is that the transmission of d-like channels is quite
sensitive to the exact geometry.35 We mention here that a
more accurate full-potential approach and an improved de-
scription of the electron correlations for localized d electrons
can somewhat affect presented results. That is also valid for
the effects of atomic relaxations which were neglected. In
particular, the exact values for the transmission probabilities
and MR at the Fermi level reported in this study for different
systems could be slightly changed. However, more precise
calculations obviously will not affect the physical results of
the present work.

Evident conclusions follow from presented examples.
First, in contrast to earlier studies,33,58 the ferromagnetic Ni
and Co contacts do not show any tendency to close one spin
channel. On the contrary, both spin channels contribute to the
conductance that gives only moderate magnetoresistance val-
ues. Independent of the geometry of the atomic contact, the
minority spin channel will include a sum of fractional con-
tributions from many modes because the d states are always
present at the Fermi level. That agrees with later experiments
by Untiedt et al.,59 where the absence of conductance quan-
tization for ferromagnetic Fe, Co, and Ni contacts was
clearly confirmed.

Second, an abrupt, atomic-scale domain wall pinned to
the constriction does not show an impressive MR effect. For
a fixed atomic configuration, the P and AP conductances are
of the same order. Most likely that more sophisticated calcu-
lations, involving relaxation effects and noncollinear mag-
netic moments in the domain wall, will not be able to change
this statement.75,76 A recent research77 toward transport in
nanocontacts with noncollinear moments shows that ener-
getically preferable noncollinear magnetic order results in a
larger domain wall width as compared to the abrupt, collin-
ear wall considered in the present paper. That leads to weak-
ened scattering of electrons and a further reduction of the
MR values.

Turning to the experimental situation on BMR effect in
ferromagnetic contacts, we point out that large MR
values41,42 were usually measured for much thicker constric-
tions �as compared with atomic-sized contacts� with resis-
tance in the range of hundreds of Ohms. It is believed,65,66

that such experiments suffer from many unavoidable artifacts
induced by magnetomechanical effects that mimic the real
MR signal, which would come from the spin-polarized trans-
port alone. However, recent studies by Sullivan et al.43 and
Chopra et al.44 on Ni and Co atomic-sized contacts report
BMR values in the range of 200%–2000%, with discussion
on the electronic origin of the effect due to domain wall
scattering. In spite of the fact that attempts to minimize mag-
netostrictive effects were undertaken, we just can repeat65

that a natural explanation of these43,44 and similar
experiments34,40 is that, due to magnetization reversal pro-
cesses, unstable in time atomic constriction changes its con-
tact area when magnetic field is applied. Characteristic steps
and jumps in the measured field-dependent conductance
�Fig. 4 of Ref. 43� or resistance �Fig. 3a of Ref. 44, Fig. 3 of
Ref. 34� are distinct evidence of atomic reconstructions and
fractional changes of the contact cross section. For example,
just eliminating one contact atom from the configuration
shown in Fig. 1 changes the conductance of a Ni constriction
from 1.2G0 �chain of two atoms, see Table I� up to �2.8G0
�one contact atom only, see Ref. 29�, thus producing �130%
MR. Further increase of a contact area can give arbitrarily
high MR values, that supports the hypothesis on the me-
chanical nature of the effect.

VI. CONCLUSIONS

To summarize, we have presented a formalism for the
evaluation of conduction eigenchannels of metallic atomic-
sized contacts from first principles. We have combined the
ab initio KKR Green’s function approach with the Kubo lin-
ear response theory. Starting from the scattering wave formu-
lation of the conductance problem, we have built a special
representation of the transmission matrix in terms of local,
energy and angular momentum dependent basis inherent to
the KKR method. We have proven that solutions of the ei-
genvalue problem for the obtained matrix are identical to
conduction eigenchannels introduced by Landauer and Büt-
tiker. Applications of the method have been presented by
studying ballistic electron transport through Cu, Pd, Ni, and
Co single-atom contacts. The symmetry analysis of eigen-
channels and its connection to the orbital classification
known from the tight-binding approach was discussed in de-
tail. Experiments on the electron transport through magnetic
contacts were commented.
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