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Recent time-resolved measurements of carbon nanotube �CNT� growth on Fe and Fe/Mo catalysts have
identified a maximum growth rate and temperature corresponding to the onset of small-diameter, single-wall
CNT �SWNT� formation. A simple model described here emphasizes the essential role of the SWNTs in the
growth process of CNTs. Remarkably, it shows that the growth rate �i.e., the time derivative of the length� of
a multiwalled CNT is the same as that of a SWNT at the carbon flux and diffusion coefficient corresponding
to a given temperature. Moreover, below �700 °C, the temperature above which SWNT growth is observed
for a 6 sccm �cubic centimeter per minute at STP� C2H2 flow rate, the number of walls as a function of
temperature is uniquely determined by the interplay of the incident flux of atomic C and diffusion rates
consistent with bulk diffusion. Even partial melting of the catalytic particle is unnecessary to explain the
experimental results on growth rate and number of walls. Above 700 °C, where severe catalyst poisoning
ordinarily begins, the growth rate without poisoning is consistent with recent results of Hata and co-workers
�Science 306, 1362 �2004�; Phys. Rev. Lett. 95, 056104 �2005�� for “supergrowth.”
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I. INTRODUCTION

Until recently, the growth rates of carbon nanotubes had
not been generally measured in situ and could only be de-
duced indirectly after the samples had cooled to near room
temperature. Consequently, the growth rates reported in the
literature have varied over a broad range, making it difficult
to distinguish the effects of various parameters on the growth
dynamics. Results of accurate in situ time-resolved measure-
ments are invaluable for modeling of the growth process and
hence for a fundamental understanding of how to control it.
In this paper, it is demonstrated that modeling of recent re-
sults by Puretzky et al.1 obtained from time-resolved reflec-
tivity �TRR� methods leads to unexpected insights into the
growth dynamics. The close interrelationship between
single-wall carbon nanotube �SWNT� and multiwall carbon
nanotube �MWNT� growth is also emphasized. Also, re-
cently Hata and co-workers2,3 have observed growth rates an
order of magnitude higher than those of Ref. 1, a result con-
sistent with the calculations presented here.

While the use of time-resolved spectroscopy to study
growth phenomena in carbon nanotube �CNT� research is not
entirely new,4 it is only recently that reasonably reliable tech-
niques have been developed. Bonard et al.5 used in situ field-
emission spectroscopy directly in a chemical-vapor deposi-
tion �CVD� reactor at very low pressures. Growth rates as
high as 10 �m/s were extracted but the reliability of these
results has been questioned. More recently, Geohegan et al.6

and Kim et al.7 have introduced optical techniques for in
situ, time-resolved measurements. Helveg et al.8 used
atomic-scale transmission electron microscopy to observe in
situ the growth of carbon nanofibers. It appears likely that
the growth modes of nanofibers are significantly different
from those of nanotubes with only a few walls. In Ref. 1, the
growth of dense forests of vertically aligned CNTs formed
by CVD was studied using TRR measurements and rate

equation �RE� analysis. The results of these experiments and
calculations, briefly summarized next, will be our main fo-
cus. In this paper, we focus on the kinetics and the bulk
diffusion processes �unlike the invocation of fast diffusion in
highly disordered molten state in Ref. 1� which define the
number of nanotube walls and growth rates.

The lengths of the CNTs as a function of temperature T
were determined from the heights of the dense forest of
nanotubes above the substrate on which they were formed.
The growth rates were obtained from the derivatives of these
lengths without regard to the number of walls in the tubes. At
temperatures below about 700 °C, the growth with time was
found to have an initial transient followed by a period of
either linear or relatively constant increase after which a
slow decrease ensued. This decrease is a common phenom-
enon and is usually attributed to “poisoning” of the catalyst,
perhaps by the growth of a “carbonaceous” or amorphous C
�a-C� layer on the surface of the catalyst, or by carbide for-
mation inside or on the surface of the catalyst.

For a flow rate of 6 sccm �cubic centimeter per minute at
STP�, growth rates were observed to peak sharply at
�700 °C. Above this temperature, a much stronger poison-
ing mechanism, whose origin is still uncertain, rapidly de-
creased the growth rate. Raman scattering and high-
resolution transmission electron microscopy were used to
determine the number of walls in the CNT. At T�575 °C
and a flow rate of 2 sccm, the nanotubes had between five
and ten walls, whereas at �700 °C they were either single or
double walled. The growth of these high-quality vertically
aligned carbon nanotube arrays suggests a high degree of
uniformity in the catalyst material and experimental condi-
tions.

In the extensive RE analysis of their results, Puretzky et
al.1 first considered the flux of the carbon feedstock gas onto
the surface of the metal catalyst. The flux of C atoms was
estimated as
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Fc1 = Fb1p1e�–Ea1/kBT�, �1a�

with

Fb1 = 0.25S0n0�kBT/2�m�1/2, �1b�

where Fb1 is the incident molecular flux; p1 contains the
sticking coefficient, geometric factors, etc.; Ea1, the activa-
tion energy for catalytic decomposition of the feedstock ma-
terial, was found by fitting the experimental data to be ap-
proximately 0.60 eV; S0 is the surface area of the
nanoparticle; n0 is the partial density of C2H2 in the molecu-
lar flux; and m is the C2H2 mass. The parameter n0 is par-
ticularly important because it provides a means for varying
the incident C flux other than by changing the temperature
and it is easily adjusted in the experiments. After the C atoms
are produced on the surface, there are two main pathways for
the process to proceed in the low-T regime: one by surface-
bulk penetration of carbon into the catalyst where it can dif-
fuse and the other by the formation of a carbonaceous or a-C
layer that results in the long-term poisoning. The two pro-
cesses occur on widely different time scales, both of which
are much shorter than the resolution of the experiments. In
fact, the amount of the incoming flux that forms the poison-
ing layer is quite small compared to the amount going into
the catalyst for CNT growth. Hence, in the low-T regime the
process described by Eq. �1� is expected to be the rate-
determining step for the C flux introduced into the catalyst.
As discussed at length in Ref. 1, there is also a time depen-
dence introduced by the finite time it takes the carrier gas to
move through the furnace tube to the CVD sample.

The high-T poisoning was taken into account by introduc-
ing a rate equation for the growth of the number of C atoms
involved in the poisoning. This number was found to be a
strong function of T with an activation energy of �2.4 eV.
Consequently, its effect for T�700 °C is practically negli-
gible while being of crucial importance at higher tempera-
tures.

In Ref. 1, diffusion of C through the nanoparticle after
penetration of the surface was treated simply by introducing
the rate constant kt=D /R2, with D the bulk diffusion coeffi-
cient and R the radius of the nanoparticle. Finally, the num-
ber of shells in the CNT was determined by the concentration
of carbon atoms on the surface of the catalyst nanoparticle
expressed as the number of carbon monolayers.

We begin in the next section the description of the work
presented here with some considerations based on the idea
that the growth of MWNTs is intimately related to the
growth of the SWNT at the same temperature. An expression
for the number of walls that are formed is derived without
invoking any consideration of melting. In Sec. III, a RE
analysis similar to that developed by Puretzky et al.1 is in-
troduced. In Sec. IV, various calculations using the two-
dimensional �2D� diffusion equation are described. These
calculations give support to the approximation that the gas-
phase dynamics simply provides boundary conditions for so-
lution of the diffusion equation in the catalytic particle. The
paper concludes with a brief summary and discussions of
what we suggest are some of the implications of our work.

II. SWNT GROWTH AND THE NUMBER OF WALLS

The conceptual model �Fig. 1� assumed here is the same
as that first discussed by Baker et al.9 and subsequently used
by many other groups10–12 for both nanofiber and nanotube
growth. Briefly stated, a carbon-containing compound is
“cracked” on a nanoparticle catalyst and the atomic carbon
diffuses into and through the solid to the sites where the
nanotube grows. It is widely observed that on a well-
prepared catalytic particle, the radius of the CNT is essen-
tially the same as that of the particle. This is assumed here. It
is reasonable because the strain energy of curvature de-
creases rapidly with increasing tube radius.13 Also, for most
nanoparticle shapes the diffusion path to the growth sites is
minimized. We emphasize that in this paper, “SWNT” al-
ways refers to the CNT with a single wall and with radius
equal to that of the nanoparticle.14 An earlier paper15 pro-
vides a more specific description for the numerical 2D diffu-
sion calculations to be discussed in Sec. IV.

The steady-state16 form of the 2D diffusion equation is

�/�r�rD�T��YC/�r� + �/�z�rD�T��YC/�z� = 0. �2�

For isotropic diffusion, the concentration YC does not depend
directly on the diffusion coefficient D�T� but it does via the
boundary conditions. At the position where the CNT is grow-
ing, the flux out of the catalytic particle is given by

Fout = D�T���nr�YC/�r�out + �nz�YC/�z�out� , �3�

where nr and nz are unit vectors along r �radial� and z �axial�
directions. To simplify the discussion and for comparison
with the rate equation approach, we consider only the one-
dimensional �1D� case given by the axial term, i.e.,

FIG. 1. �Color online� Tip-growth mechanism. This was origi-
nally proposed by Baker et al. for carbon nanofibers and later used
for growth of CNTs. The immediate vicinity of the catalyst particle
is divided into three distinct regions for convenience. Region 1
includes decomposition of carbon, carbonaceous layer or other poi-
soning mechanisms, possible carbide layer, etc. Region 2 represents
the internal processes �such as diffusion� within the catalyst. Region
3 is located where the carbon gets incorporated into the CNT. The
figure also shows how the 2D solution is mapped to the 1D solution
methodology.
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Fout = �D�T��YC/�z�out. �4�

Values of D�T� are readily found in the literature, but an
approximate expression for the concentration gradient is also
required. In the systems considered, the size and composition
of the catalytic particle should remain virtually the same for
all T during an experiment and need not be considered fur-
ther here.

The flux boundary condition at the inlet boundary will
determine the carbon influx and thus control the rate of CNT
growth. This is a Neumann �gradient� boundary condition to
Eq. �2� of the following form:

��YC/�z�in = Fin/D�T� , �5�

where Fin is the input carbon flux at the interface of regions
1 and 2 of Fig. 1.

The results from the steady-state 2D diffusion calculations
of Sec. IV provide a guide for the choice of approximate
forms of �YC/�z. The simplest and most reasonable approxi-
mation to make is the linear variation of the concentration in
the axial direction through the 1D catalyst rod of uniform
diameter. This assumption would lead to the condition that
the concentration gradient is constant along the catalyst par-
ticle. This, in turn, would mean that

��YC/�z�out = ��YC/�z�in. �6�

From Eqs. �4�–�6�, we have

Fin = Fout. �7�

This is an obvious result as the mass has to be conserved for
this steady-state scenario. However, we have to account for
the area change between the inlet and outlet. Considering the
area difference for the CVD CNT process as depicted in Fig.
1, we have the following relation by adding the CVD sub-
script for clarification:

Fout,CVD = �Ain/Aout�Fin,CVD = AFin,CVD. �8�

Fin,CVD is a temperature-dependent function which depends
on the concentration of the carbon-containing gas, the tem-
perature of the furnace, and the presence of the poisoning
layer. We write Fin,CVD in terms of concentration of the
C-containing molecules in the incoming gas stream, given by
n0, and the rest of the physical mechanisms controlling the
input carbon flux are lumped into the temperature-dependent
function, f in,CVD�T�. This is only a manipulation to isolate the
effects of n0 as that can be controlled in the experiments as a
separate parameter from the furnace temperature. With this
notation, Eq. �8� can be written as

Fout,CVD = n0f in,CVDA . �9�

When all poisoning effects are neglected, f in,CVD�T� is ex-
tracted in a straightforward fashion from Eqs. �1a� and �1b�.
By variation of n0, a family of CVD growth curves can be
generated, as illustrated in Ref. 1 and demonstrated in the
next section. When poisoning is included, an effective form
of f in,CVD from a solution of the rate equations must be used.

We now specifically consider SWNT growth. The experi-
mental determination of Tm, the temperature at which the
maximum growth rate of a SWNT occurs under the given

conditions, is essential to our approach. Applying Eq. �4� for
SWNT growth and adding the subscript SW to stand for
SWNT, we get

Fout,SW = D�T���Yc/�r�SW = D�T�ASWFin,SW�T�/D�T�

= ASWBSWfin,SW�T� . �10�

f in,SW�T� is the input flux to grow a SWNT and its form has
not yet been specified. BSW is a “normalization” constant
introduced to ensure that Fout,SW and Fout,CVD will be equal at
Tm for a given value of n0. It is important to understand the
role of BSW and the introduction of this approach should
become more obvious in the next section. Hidden within this
constant are the kinetics of the atomic interactions at the
growth interface, which determine whether a SWNT will
continue to grow or inner walls will begin to form to yield a
MWNT. Since the complex atomistic calculations that would
yield those kinetics are not yet possible, the experimental
results must be used. From Eq. �10�,

BSW = Fout,SW�Tm�/�ASWfin,SW�Tm��

= Fout,CVD�Tm�/�ASWfin,SW�Tm�� . �11�

The last equality follows from the requirement that Fout,SW
and Fout,CVD be equal at Tm. Again, from mass conservation,
Fout,CVAout,SW=Fin,CVDAin and then

BSW = Fin,CVD�Tm�ASW/f in,SW�Tm�D�Tm�

= n0Fin,CVD�Tm�/f in,SW�Tm� . �12�

Ain is the area on which the incident flux falls and Aout,SW is
the annular area from which the SWNT grows. It should be
noted that Fin,CVD in this equation contains the specific value
of n0 used in the experiments to determine Tm, i.e., 6 sccm.

To obtain the optimum growth rate of a SWNT, we need
to adjust �YC/�z via f in,SW�T� in Eq. �10�. We have studied
two functional forms �exponential dependence on tempera-
ture typical of any activation barrier� for f in,SW�T�, namely,

f in,SW�T� � D�T� �13�

and

f in,SW�T� � f in,CVD�T�D�T� . �14�

These were chosen because the total activation energies are
known and they are both greater than f in,CVD alone. The pro-
portionality constants must be chosen to give the dimensions
of flux. The second form yields a higher growth rate than the
first, but without further experimental input, a choice be-
tween the two cannot be made. In fact, calculations carried
out with both yield very similar results that fall within the
accuracy of the experimental data. The form in Eq. �14� will
be used for the calculations reported here.

Next, we make the plausible assumption that the flux to
grow a CNT with Nw walls can be expressed in terms of
Fout,SW, the flux required to grow a SWNT at that tempera-
ture. �The validity of this assumption will be substantiated
later by the agreement with experiment.� The simplest choice
would be to put Fout=NwFout,sw, but it would be too simple. It
does not take into account that the radius of each successive
wall is decreased by �R, the interlayer spacing. Instead, we
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need to consider the contribution of the individual walls and
then sum over them. In the experiments, the incoming flux is
considered to be uniform over the top surface of the catalytic
particle. Let NC,out be the total number of C atoms/s flowing
out of the catalyst into the growing CNT and let NC,SW be the
corresponding value for a SWNT. We put

NC,out = Fout,SW�A1 + A2 + ¯ + ANW�

= NC,SW�1 + A2A1 + ¯ + ANW/A1� . �15�

Ai is the annular area of the ith wall of radius Ri and thick-
ness �R. Ai is equal to 2��RRi. �R is taken to be the inter-
planar spacing in the c direction of graphite. The SWNT has
the maximum radius with R1=R and A1=2��RR1 so that
NC,SW=FinA1. Then,

NC,out = NC,SW�1 + �R − �R�/R + �R − 2�R�/R

+ ¯ + �R − �NW − 1��R�/R�

= NC,SW�NW − �1 + 2 + ¯ + �NW − 1���R/R� .

�16�

The sum in square brackets is simple and results in the ex-
pression

NC,out = NC,SW�NW − �NW − 1�NW�R/2R� . �17�

Again, putting Nout=Nin and with Rp	2R /�R, this equation
can be solved for Nw to get

NW = 0.5�1 + R1� ± 0.5��1 + Rp�2 − 4RpNC,in/NC,SW�1/2.

�18�

When NC,in=NC,SW, Nw=1 as it should. However, as
NC,in /NC,SW becomes larger than 1 with decreasing T, the
number of walls grows faster than NC,in /NC,SW because of the
decreasing radii of the inner shells, but there is a limit on the
number of walls that can be grown before the argument of
the square bracket becomes negative. This limit is just the
number that can fit into R, i.e., R /�R. In the present case,
with R=5 nm and �R=0.335 nm, NW,max
15. However, it
is unlikely that the innermost walls can form because nano-
tubes smaller than R�1 nm have not been observed. A more
likely limit is 10–12 for the walls, but then the cores may
have C in some other form such as a-C.

III. CALCULATIONS OF GROWTH RATES
AND NUMBER OF WALLS

Application of the above equations is straightforward and
can be illustrated using the rate equation approach from Ref.
1 summarized in the Introduction. We define Fin,CVD by Eq.
�1�, namely,

Fin,CVD = Fc1 = 0.25S0n0�kB/2�m�1/2p1T1/2 exp�− Ea1��kBT�

= n0f in,CVD�T� , �19�

The incoming flux is for C atoms that are actually incorpo-
rated into the nanoparticle. A small fraction of the C that
produces long-term poisoning will be neglected. Also, S0 is
the area of the nanoparticle so that in these equations the flux
is for the actual assumed area rather than for the unit area.

Consider first the growth of a SWNT in the temperature
range below 700 °C. The radius of the nanotube, the areal
density of C atoms �3.82�1015/cm2� in graphene, the diffu-
sion coefficient, and the inlet flux are known. Also, from the
experiments the maximum growth rate and the temperature
Tm, at which it occurs, have been established for the SWNT
growth. As already mentioned, the T dependence of the inlet
flux is �exp�−0.60 eV/kT�.1 For the diffusion rate of C in
bulk Fe,17,18 D0=0.1–0.5 cm2/s and the activation energy is
1.4–1.6 eV.

Figure 2 gives the results for Fin,CVD, Fout,SW, and NW from
Eqs. �19�, �10�, and �18�, respectively. By comparing Fout,SW
to Fin,CVD, it is seen that for T�700 °C, the CVD flux is too
large for only a SWNT to grow at steady state even at the
maximum rate that has been established. Consequently, first
tubes with two, then three, etc. walls must begin to form. The
number of walls at any T is given by Eq. �18�, which in-
volves only the ratio NC,in /NC,SW and the radius. On the other
hand, in the high-T regime above 700 °C, Fin,CVD has fallen
below Fout,SW. This means that not enough carbon is being
supplied to grow a SWNT at the optimum rate for these
temperatures even when high-T poisoning is not considered.
In this model, only SWNTs are formed in this high-T regime
and generally grow at less than the maximum rate. The rate
that could be achieved if C was supplied at the optimum rate
is quite high; we will return to this in the last section.

The curve labeled NW�1� in Fig. 2 shows the number of
walls as a function of temperature obtained by following the
fitting procedure of Ref. 1, to which we refer the reader for
the details. There is no natural cutoff in NW at low tempera-
tures. Curve NW�2� gives the number of walls obtained from
Eq. �18�. There is a natural cutoff in NW�2� as T is lowered
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FIG. 2. Comparison of the incoming CVD flux, denoted here by
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number of walls as calculated from Eq. �10�. At 700 °C, the two
fluxes are just equal and so a SWNT grows. For T�700 °C, the
CVD flux exceeds the diffusion flux and multiwall tubes form. For
T�700 °C, only SWNTs grow but the growth rate is greatly re-
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and there is no need to introduce the fitting procedure de-
scribed at length in Ref. 1 or the need to introduce near
melting in a highly disordered region.

We emphasize that NW is not required to be an integer,
which suggests some interesting consequences. Except for
the SWNTs, the innermost wall of all MWNTs may be de-
fective, and often quite so. For example, for NW=2.5 two
essentially perfect outer walls might be expected, but with
the third wall half filled with C vacancies and catalytic atoms
incorporated into that wall. This is obviously too complex an
issue to be interpreted based solely on continuum calcula-
tions and other explanations involving atomistic processes
can surely be developed.

Figure 3 depicts how the SWNT growth rate varies with
temperature as the incoming flux of C is changed via the
parameter n0. In these calculations, the high-T poisoning is
still not included. The curve labeled GSW,opt �which can be
obtained from Fout,SW through a conversion factor� shows the
growth rate when the supply of C is exactly optimum to form
a SWNT. To the right of this line, SWNTs still form but the
growth rate is slowed because C is not supplied fast enough
to keep pace with the temperature dependence of diffusion.
In the case of 6 sccm flow rate, the growth curve has been
extended to lower temperatures to the left of the GSW,out line.
At these temperatures, multiwalled nanotubes are formed
and the number of walls can be determined via Eq. �18�.
However, even in these lower-T regions the lengths of the
MWNTs are determined by the growth rate of the SWNT, as
will be demonstrated shortly.

The growth rates in the more complex case when high-T
poisoning is allowed can be found by including the relevant
terms in the system of rate equations and repeating the cal-
culations leading to Fig. 3 for all temperatures. The results
are shown in Fig. 4. The curves were obtained by first solv-
ing the full set of rate equations including the term which
gives the time dependence of the source expansion men-

tioned in the Introduction. The maximum CNT growth rate
with respect to time for the range of temperatures indicated
was then determined. The very quick onset of poisoning
above 700 °C is striking. The extension to the left of the
curve labeled 6 sccm beyond the GSW,opt curve was generated
from the rate equations by determining the atomic C concen-
tration at the catalyst-gas phase interface. It reflects the ef-
fects of poisoning which drastically reduce the amount of
atomic carbon that enters the catalyst particle. The curve
labeled GSW,opt was generated from the gradient of the C
concentration and the diffusion coefficient as in Eq. �4�. It is
plotted here to show how closely it coincides with the
growth rate curve, including poisoning, in the region below
700 °C. There is no difference between the two curves to
within the accuracy of the experimental data. This indicates
that in this low-temperature regime, multiwalled CNTs are
growing at the (temperature dependent) maximum rate of
SWNTs.

Figure 5 shows the data from Fig. 4 for the 6 sccm case
compared to the experimental data taken directly from Fig.
13 of Ref. 1. A small adjustment has been made to both
calculated curves to bring them into closer coincidence with
the experimental data. This was done simply by varying the
number of C atoms per micron of SWNT growth and has no
fundamental significance since the areal density of C in
graphite sheets is well established. The purpose of this figure
is to demonstrate that the growth rates of all the CNTs grown
really are controlled by the SWNT rate. The solid curve was
generated by the calculations of Ref. 1 which assume melt-
ing or near melting to obtain the number of walls, while the
dashed curve was obtained from the calculations described
here that assume only solid-state diffusion throughout.
Again, the differences between the two curves are hardly
discernable.

Before turning to calculations with the 2D diffusion equa-
tion, it is interesting to consider the results of Hata and
co-workers2,3 and ask if a growth rate of �2 �m/s for
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SWNTs is possible from these calculations once the high-T
poisoning is eliminated. In Fig. 3, it can be seen that if C is
supplied at a fast enough rate at T�750 °C there is no dif-
ficulty in attaining very high growth rates. However, solubil-
ity limits, melting of the CNT, etc., can be expected to come
into play. It would require a flux of C atoms into the CNT of
2.4�106 C/s to achieve �2 �m/s. We estimated the upper
limit imposed by solubility considerations to be �106 C/s
for Ni �Ref. 19� and it could easily be higher for Fe and Fe
compounds.

IV. DIFFUSION CALCULATIONS

The numerical techniques used in the 2D diffusion work
are the same as those of Ref. 15, although the shape of the
nanoparticle has been changed to that shown in Fig. 6. This
shape is probably more representative of the particles pre-
pared by premelting thin metallic films deposited on insulat-
ing substrates, as is commonly done in most CVD experi-
ments. Also, it readily shows the likely symmetry between
tip- and root-growth modes. In the actual calculations, the
axial symmetry of the problem is fully utilized. The small
stub of a SWNT shown on the figure is introduced primarily
to facilitate the calculation of the C flux into the growing
nanotube and the gradient of the concentration.

As in Ref. 15, the sample is divided into three main re-
gions �see Fig. 1 for a schematic�. The gas-phase reactions
above and at the catalytic particle’s surface and the formation
of solid-phase compounds at that surface are confined to re-
gion 1. Whereas little information about these processes was
available previously, the work of Ref. 1 has enabled many of
them to be included in a quantitative analysis. We find that
the most important of these processes can be incorporated as
boundary conditions on region 2, where the diffusion equa-
tion in the nanoparticle is actually solved. Region 3 is the
interface between the catalyst and the nanotube and though
little is still known about it in detail, it appears from first-
principles calculations20–23 that the bonding between carbon
and transition metals that form good catalysts is nearly as
strong as the C-C bonding in the nanotubes. The C atoms are
able to make a transition from the nanoparticle to the nano-

tube without having to overcome a significant activation
barrier.

In Ref. 15, the boundary condition �BC� at the top surface
was taken in the Dirichlet form in which the mass fraction of
atomic carbon was fixed even though the temperature was
varied. However, in a CVD process the mass fraction at the
top surface cannot be held fixed easily while the temperature
of the catalyst is varied. Instead, a flux BC can be introduced
and the T variation taken from the results of Ref. 1, or more
explicitly, from Eq. �19�. A flux BC at the outlet position
where the SWNT is growing could also be introduced but it
was found to lead to numerical instabilities. Therefore, the
assumption in Ref. 15 of a mass fraction of 0.001 where a
nanotube is growing �the exact value used is not critical� was
used. At all other positions, the flux into or out of the particle
is zero.

In Fig. 6, the concentration of C in the catalyst during the
growth of a SWNT at 700 °C on a particle of 5 nm radius is
shown. The flux was chosen to give the optimal growth rate
�see Fig. 3� for a flow rate of 6 sccm. The horizontal scale is
in nanometers and in the calculations the thickness of a wall
is taken to be 0.335 nm, the interplanar separation along the
c axis in graphite. In the vertical spectrum bar at the right, it
can be seen that the C concentration at the top of the catalyst
is �0.80 C/nm3 or �8�1020 C/cm3. There are 8.50
�1022 Fe atoms in a cm3 so the atomic fraction is �0.95
�10−2 and the mass fraction is 0.002.

Now, exactly the same diffusion calculation �T, flux, etc.,
unchanged� can be carried out for a MWNT, e.g., with four
walls. From such a calculation, the length of this MWNT
increases at approximately a quarter of the rate of the SWNT.
At first sight, this seems reasonable but it is in disagreement
with the experimental results in Fig. 5. According to our
model, it is not possible to grow a MWNT under exactly the
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FIG. 5. Comparison of the calculated growth rates with the ex-
perimental data. The calculated curves have been adjusted to pro-
vide close agreement with the experimental data, as discussed in the
text.

FIG. 6. Spherical nanoparticle shape used in the diffusion cal-
culations. The axial symmetry evident in the figure is utilized
throughout the actual calculations. The nanotube “stubs” are used to
aid in the calculation of the fluxes. The color bar indicates that the
concentration is quite uniform throughout most of the catalytic
nanoparticle and the variable u represents the carbon concentration.
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same conditions used for the growth of a SWNT. The only
way to grow a multiwalled tube on this nanoparticle is to
increase the incident flux �via the flow rate� at 700 °C or
reduce the growth temperature, as dictated by data like those
in Fig. 2.

Some results from the 2D diffusion calculations are sum-
marized in Fig. 7. We define a “normalized” SWNT growth
rate by dividing the number of C atoms per second going
into the nanotube by 1.2�106, the number of atoms required
to grow a SWNT of 5 nm radius at 1 �m/s. It is useful to do
this because the diffusion calculation cannot determine the
number of walls. On the figure GSW,opt, the optimal growth
rate of a SWNT, is repeated. To the left of this curve, the
normalized growth rate gives the rate if all of the C atoms
could be incorporated in a SWNT. However, a growth rate
greater than GSW,opt at a given temperature cannot be
achieved, so that CNT growing under these conditions must
form MWNTs, as already discussed. The number of such
walls is determined by dividing the normalized growth rate
by GSW,opt. The actual growth rate as a function of T is indi-
cated by the heavier curves.

The calculated points shown by diamonds are for the case
when high-T poisoning is not included. The T dependence of
the input flux �top surface BC� is given by Eq. �19�. For the
more complicated case that high-T poisoning is included �tri-
angles�, the input C flux must be obtained from a solution of
the full set of rate equations, which determines the T depen-
dence of the poisoning function and therefore of the C flux
on the top surface.

The agreement between the diffusion results and those
from the rate equation approach is excellent. This reenforces
our contention that solid-state diffusion is sufficient to ex-
plain the experimental results. It also seems to justify the
assumption that the results of processes in region 1 can be
incorporated simply by modifying the boundary conditions at
the interface with region 2.

It should be understood, however, that the details of our
model are tailored to the results of Ref. 1 and the extent to
which the model may apply to other situations can only be

determined after much more experimental and computational
work.

V. SUMMARY AND DISCUSSION

An expression is derived for the growth of a MWNT in
terms of the SWNT at the same temperature. The observed
maximum growth rate of a SWNT at �700 °C is used to
calculate the T-dependent gradient of the concentration. This
gives the SWNT growth rate at all other T and allows the
number of shells to be calculated directly from the assump-
tion of steady-state growth and without requiring melting to
occur. The growth rate �rate of increase of length� of a mul-
tiwalled tube is the same as that of a SWNT at a given
temperature. However, the innermost wall may be very im-
perfect. Inclusion of high-temperature poisoning produces
growth rates almost identical to those of Ref. 1.

Calculations with the 2D diffusion equation demonstrate
that high-T poisoning can be included via the BC at the top
surface. The implication is that the poisoning mechanism
operates just above and at the surface of the catalyst and not
throughout any extended region in the catalyst itself.

A. Growth rate and GSW,opt

The growth rates calculated here are a bit higher than the
measured ones, but not as high as those of Ref. 1. In that
reference, it was assumed that there are 1015 C atoms/cm2 in
a graphene sheet, but a more precise calculation gives greater
than three times that number and this makes a significant
difference in the calculated lengths. Even better agreement
could be obtained by a slight modification of the input flux,
but this would also require revising the treatment of the high-
T poisoning term and this has not been done because of
uncertainties in other aspects of the experiments and calcu-
lations. For example, what role does the nonuniformity of the
growth rates across extended areas of the nanotube “blanket”
play? Is “wiggling” of individual nanotubes important?

Our mapping out of the GSW,opt curve is dependent on
only one experimental value at 700 °C and two assumptions
and it would be very interesting to know how well our pro-
posed curve agrees with experimental results at other tem-
peratures.

B. Supergrowth

The growth rates for SWNTs obtained by Hata and co-
workers when high-T poisoning is suppressed are not incon-
sistent with our calculations. Their experiments were carried
out on Fe catalysts and the flow rates of ethylene �C2H4�
they used were much higher than those for acetylene �C2H2�
that were used in Ref. 1. Acetylene is known to be a much
more efficient source of C than is ethylene for this type of
experiment.24 The radii and uniformity of size of the cata-
lytic particles were not discussed in Ref. 2. We speculate that
the upper limits on growth rates are probably determined by
solubility limits and the tendency for nanotubes to begin to
come apart at temperatures around 800 °C. However, there
are substantial differences in the solubility of C in Ni and Fe
compounds and it would be interesting to investigate the role
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of the catalyst in “supergrowth.” Also, Fig. 3 indicates that
the flow rate must be carefully adjusted to the temperature in
order to attain the maximum growth rate. On the other hand,
if the flow rate is too great at a given temperature, multiwall
tubes will begin to form.

C. Melting controversy

There is an ongoing controversy over the role of melting,
or lack thereof, in CNT growth. Recently, many authors25–28

have concluded that it is necessary to assume that the nano-
particle is molten or has a melted layer at the surface. Other
works conclude that molten nanoparticles are not necessary
and that surface diffusion processes dominate the growth
kinetics.29–32 The diffusion coefficients used in the present
work are those appropriate to a solid, and apparently in the
size range of the catalytic particles used there is no need to
assume the much faster diffusion characteristic of a liquid or
a highly disordered region. The conclusion that melting oc-
curs is probably motivated in large part by the distortion of
the catalytic particle that is observed in many experiments.
We suggest that this elongation is caused by the strong bond-
ing between the transition-metal atoms and the carbon atoms,
together with the fact that at most temperatures the inner

wall of the CNT is defective because of the growth dynamics
spelled out by our model. We note that the authors of Ref. 2
did not observe any catalyst trapped in their rapidly grown
SWNTs.

We also speculate that the growth mode observed for
nanofibers8 may be related to the tendency to incorporate
catalyst atoms into the inner wall as suggested above.
Clearly, the enormous fluctuation in the apparent size of the
catalyst particle is not consistent with mass conservation un-
less the catalyst atoms are confined to a thin interfacial re-
gion. This makes our interpretation of our results in terms of
a defective innermost wall, highly susceptible to the incor-
poration of metal catalyst atoms, more plausible.
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