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We want to verify if the use of scanning tunneling spectroscopy �STS� evaluation methods developed for
inorganic samples can be justified also for the case of organic nanolayers, or if modifications are necessary.
This question arises since the traditional approaches are derived for the case of bulk samples and low voltages.
Since an organic adsorbate on a substrate presents a sample with a more complex structure and is further
characterized by a large gap in the eV range, the answer to this question is not a priori clear. After discussing
relevant quantities, i.e., the sample density of states �DOS� and local density of states, we demonstrate the use
of the simple and well-known model of a one-dimensional tunnel junction in Wentzel-Kramers-Brillouin
approximation in order to calculate the sample DOS for several STS results from literature dealing with
ultrathin organic layers. In a subsequent discussion, we conclude that the model is applicable to the orbital-
mediated tunneling process “through” organic molecules and that it can be used to evaluate such STS mea-
surements. Emanating from an estimation of the tip-sample distance, the possibility of detecting electronic
states below the highest occupied molecular orbital in STS is discussed. With several examples, we illustrate
a weakness of the normalized differential conductivity as a method of STS I�V� curve evaluation and propose
a new normalization algorithm as a solution to the problem.
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I. INTRODUCTION

The invention of the scanning tunneling microscope
�STM� in 1982 by Binnig et al.1 opened up the possibility to
investigate not only the topography of a conducting sample
at atomic resolution but also the electronic properties of such
a sample at a comparable lateral resolution. For this purpose,
scanning tunneling spectroscopy �STS� is used to obtain in-
formation about the density of electronic states �DOS� of the
surface.

Bare metal and semiconductor surfaces have already been
studied intensively since the invention of the STM. However,
today a significant part of the STM and/or STS results pub-
lished deals with the investigation of ultrathin organic adsor-
bate layers. The opportunity to tailor and control organic
molecules for special purposes opens up a new field of pro-
spective applications. The use of such molecules in organic
light-emitting diodes2,3 or organic solar cells4,5 as well as
in future devices generally referred to as “molecular
electronics”6,7 requires the investigation and understanding
of the electronic properties of organic adsorbates, especially
on metal surfaces as they are inevitably present in any elec-
tronic device. Scanning tunneling spectroscopy is a suitable
method to study these properties as it provides information
on both the empty and the filled electronic states in just one
measurement. Using the ultrahigh-resolution capabilities of
STM, this information can, in principle, be obtained on a
very local scale. However, here we do not discuss the spatial
resolution, but concentrate on the question of how can one
reliably extract the energetic position of the molecular states,
as those will influence the device performance to a large
extent. Among those electronic states, undoubtedly the high-
est occupied molecular orbital �HOMO� and the lowest un-
occupied molecular orbital �LUMO� play a major role since
it is those orbitals which define the electronic gap. Nonethe-
less, in general, molecules feature many closely neighbored

but still well-separated occupied and unoccupied states right
below the HOMO and above the LUMO.8 Several of them
are accessible in STS measurements with a typical voltage
range between ±2.5 V.9,10 It is of general interest to identify
the energetic positions of those states as well, as this can
provide valuable input to any theoretical description of the
tunneling process through organic adsorbates.

If the I�V� curve is not discussed phenomenologically in
terms of a conductance gap, there are two different ap-
proaches to the interpretation of STS spectra in literature:
Either the differential conductivity dI /dV or the normalized
differential conductivity �dI /dV� / �I /V� is used, following
the argumentation of Tersoff and Hamann11 or Stroscio et
al.,12 respectively. Besides the fact that two dissimilar meth-
ods of interpretation represent an undesirable degree of free-
dom, both methods have originally been proposed for the
interpretation of STS results on bulk inorganic samples. The
use of these methods on organic adsorbates therefore evokes
two problems: On the one hand, the sample structure is more
complex if an adsorbate is present which may affect the tun-
neling process. On the other hand, a rather large tunneling
voltage, compared to STS on inorganic samples, is necessary
to probe the molecular resonances. These differences from
the inorganic case motivate this revision of the evaluation of
STS measurements on organics.

Quite clearly, this has to involve a model of the tunneling
process. Besides the very sophisticated quantum chemistry
models already established,13,14 some simple models are be-
ing discussed in literature. Those simple models have the
clear advantages that they can promote a deeper insight in
the tunneling process and that they might be used in the daily
work of an experimentalist to analyze the measured data.15,16

Still, the fundamental question whether the same models can
be used to describe the tunneling between a metal tip and an
inorganic sample on the one hand and the orbital-mediated
tunneling into a substrate covered by organic molecules on
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the other hand has found only little attention in literature up
to now. One of the most widely discussed simple models is
the one-dimensional �1D� model of a tunnel junction that
makes use of the Wentzel-Kramers-Brillouin �WKB�
approximation17 and has first been suggested by Selloni et
al.18 and Lang.19

Here, we discuss the issues of applicability of this 1D
WKB model to the case of orbital-mediated tunneling
through a thin molecular layer on a metal substrate. For that
purpose, we use the complete 1D WKB model to calculate
the DOS, introducing a new approach to do so. Then, we
compare the DOS obtained from the full model with the
known approximate approaches, i.e., the differential conduc-
tivity �dc� and the normalized differential conductivity �ndc�.
Advantages and disadvantages of both quantities are high-
lighted. Here, we also deal with the question whether occu-
pied sample states below the HOMO can be probed by STS
at all, or whether their contribution is too weak to be noticed.
Exemplarily, four different STS measurements from litera-
ture are discussed, including examples which exhibit nega-
tive differential resistance �NDR� effects, since the NDR
phenomenon is thought to be a valuable benchmark to check
the significance of any model. While the applicability of the
model is presumed at first, an assessment of the resulting
DOS and of additional relevant parameters will later confirm
or negate this assumption.

However, to put things into the right perspective, we first
summarize the exact meaning of the terms DOS and local
density of states �LDOS� and demonstrate the relation to
quantities measured in STS, as this is an indispensable pre-
requisite for our calculations with the 1D WKB model.

II. CALCULATING THE CURRENT
IN A TUNNEL JUNCTION

A theoretical basis for a general treatment of the tunneling
process in a STM is given by Bardeen, known as the transfer
Hamiltonian approach.20,21 Tersoff and Hamann applied this
approach to a model of a flat surface and a spherical tip with
an atomic s-orbital symmetry �Fig. 1�, thus creating the first
quantitative model for the tunneling current in a STM.11 As a
result, one gets the following expression for the tunneling
current I in the limit of zero temperature and very low
voltages:22

I = 32�3�−1e2V�2�t�EF�R2�−4e2�R�
�

����r0
� ��2��E� − EF� .

�1�

In this equation, I depends on the average work function
�= ��t+�s� /2 of tip and sample and on the density of states
�t of the tip at the Fermi level. The sample properties are
represented by the value of the sample wave functions ��

with an energy E� at the center of curvature r0
� of the tip �Fig.

1�, constituting the LDOS. The LDOS thus represents the
charge density per unit energy at EF at a certain point above
the surface.23 From Eq. �1�, one can derive a first important
relation between the LDOS and the tunneling current I�V� at
very small bias, i.e., around EF:

dI/dV 	 LDOS�EF� . �2�

For the discussion of I�V� dependencies in STS measure-
ments on organics, where the energy gap between the
HOMO and the LUMO typically exceeds 1 eV, the limit of
V�0 is obviously inappropriate. If a sizable bias voltage is
applied, it is necessary to introduce a voltage dependence of

�at least� the sample wave functions: ��=���r0
� ,V�. An ap-

propriate description of the tunneling process would there-
fore require the calculation of the sample wave functions in
the electrostatic potential created between the sample and the
tip, which is extremely complicated, especially if the tip
shape is not known precisely.24 Thus, such an approach is not
very useful for a general discussion of STS measurements.
Instead, the standard way to introduce a voltage dependence
is to use the model of a one-dimensional tunnel junction in
the WKB approximation. The model includes a number of
approximations such as the neglect of image potential effects
and inelastic tunneling as well as the limit of zero tempera-
ture. However, by comparing the results of the full transfer
Hamiltonian calculation to the 1D WKB model in a bias
voltage range of ±2 V, Lang found a good agreement be-
tween both methods and concluded that “…The simple
model provides a good account of the qualitative features of
the results of the full calculation….”19

The respective equations express the tunneling current as
an integral over the density of states of the tip and the sample
and the barrier transmission function T which results from
the WKB approximation, assuming a trapezoidal barrier:

I�d,V� �
A�e�3

2m2 �
0

eV

T�d,V,E��s�E��t�E − eV�dE , �3�

with

T�d,�s,t,V,E� � exp�− 2�d + R�
2

3
	2m

�2



 ��t − E + eV�3/2 − ��s − E�3/2

�t − �s + eV
�� .

�4�

The quantities in these equations are illustrated in Figs. 1
and 2.

r0

R

Tip

d

Sample

FIG. 1. Schematic picture of the tunneling geometry �Ref. 11�.
The tip is assumed locally spherical with a radius R.
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To put this 1D WKB model into perspective, a short com-
parison to the Tersoff-Hamann model shall be made: The
Tersoff-Hamann model aims at a more accurate description
by considering individual sample wave functions, but gives

no answer on how the value ���� at r0
� should be calculated

and how it changes with an applied voltage. The 1D WKB
model circumvents these questions by not dealing with the
wave functions directly. Instead, a density of electronic states
is assumed where the individuality is reduced to a depen-
dency on the energy E of each state. The dependencies on E
and on V are then combined in the transmission function T
which can be seen as a measure for the charge density of
each state that reaches r0. Thus, the quantity

�s�E�T�r0,V,E� 
1D WKB

LDOS�E� �5�

is a generalized LDOS at r0 in terms of the Tersoff-Hamann
model.25 From this relation, the fundamental difference be-
tween the DOS �s and the LDOS of the sample becomes
immediately clear. Consequently, one has to clearly distin-
guish between the two terms in general, notwithstanding that
cases exist where LDOS and DOS bear a close resemblance
to each other.

Calculating the derivative of Eq. �3� with respect to V
results in three terms:

dI�d,V�
dV

� A�eT�d,V,E��s��E��t�E − eV��E=eV

+ �
0

eV

T�d,V,E��s�E�
d�t�E − eV�

dV
dE

+ �
0

eV dT�d,V,E�
dV

�s�E��t�E − eV�dE� . �6�

From substituting Eq. �5� into Eq. �6�, it is evident that
only for very small biases the statement dI /dV	LDOS
holds, in agreement with the Tersoff-Hamann model �see
above�. However, for increasing biases, this relation becomes
less and lesser valid, simply due to the explicit voltage de-

pendency of T, so that the other two terms in Eq. �6� will not
vanish.26 From this, we can already conclude that the relation

dI

dV
	 �s�eV�T�d,V,eV�  LDOS�eV� �7�

is only an approximate one. In addition, we like to note that
the restriction to small biases leads directly to the assumption
of a constant T and a constant �t, and therefore one can
approximately write

dI

dV
	 �s�eV�  DOS�eV� �8�

by the same token. Combining Eqs. �8� and �2�, one comes to
the conclusion that

dI

dV
	 DOS 	 LDOS, �9�

which explains why both quantities are mixed up frequently
when discussing STS measurements, ignoring the fact that
Eq. �9� is only valid for small voltages.

The best and most convincing example to demonstrate the
nonproportionality between dI /dV and the LDOS is the ob-
servation of an NDR, an effect that occurs especially in STS
measurements on organic molecules which are separated
from the metal substrate by a thin insulating layer.10,27 In the
respective bias voltage region the current drops, although the
voltage is increased. Consequently, the differential conduc-
tivity dI /dV becomes negative, which cannot be the case for
the DOS the LDOS, thus rendering dI /dV	LDOS and
dI /dV	DOS invalid. The NDR effect can, on the other
hand, easily be explained by the full 1D WKB model as will
be shown in Sec. III B 1.

III. EXTRACTION OF THE DOS FROM STS
MEASUREMENTS BY MEANS OF THE 1D WKB MODEL

From the previous discussion of the 1D WKB model, it
became obvious that the LDOS depends on the respective
energy, the tip-sample distance, and the applied bias voltage.
On the other hand, the sample DOS �s�E� depends exclu-
sively on the energy. When performing tunneling spectro-
scopy at a constant tip-sample separation, there is only one
free variable, the bias voltage, and thus the quantity obtained
from the measurement should also depend on only one vari-
able. Moreover, as it has been pointed out already in the
Introduction, using STS as the material characterization
method, it is indeed the DOS that one should be interested in.
While a significant number of publications use the 1D WKB
model for the forward calculation of I�V� curves, plugging in
assumed tip and sample DOS distributions �t�E� and
�s�E�,10,19,26 we will demonstrate here that one can invert the
direction of calculation and use the model to directly calcu-
late the DOS from measured I�V� curves as a direct evalua-
tion method.28

In the following part, we will briefly explain the method
used and subsequently show the results for four examples of
STS measurements from literature.

EF
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FIG. 2. �Color online� The model of a one-dimensional tunnel
junction with a trapezoidal barrier.
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A. Solving the integral equation

The goal to calculate the sample DOS �s�E� �in terms of
the 1D WKB model� from the STS I�V� curve requires solv-
ing Eq. �3�, which is a Volterra integral equation of the first
kind. Although there is no analytical solution for this particu-
lar equation, it can be solved numerically, in principle, to any
required accuracy. A simple but efficient method is to split up
the I�V� curve into a positive and a negative voltage part and
to replace the integral by a numerical quadrature. For this
purpose and for each polarity separately, the interval
�0,Vmax� is divided into N smaller intervals of width �V and
respective voltage steps vi= i�V. The values for �s at these
points are Pi

s
ª�s�evi� and equivalently Iiª I�vi�.

Then, the integral can be approximated by a sum:

Ij = Ce�V�
i=0

j−1

T�d,�s,t,v j,evi��t�v j,evi�Pi
s. �10�

The integral kernel T�d ,�s,t ,v j ,evi��t�v j ,evi� consists of
two physical quantities, the transmission function T which is
given by Eq. �4� and the energy dependent tip DOS �t. As the
latter one is not known in most cases without further as-
sumptions, only the product of tip and sample DOS can be
calculated.

Since a flat tip DOS is assumed in most published STS
results anyway,29 we will follow this assumption here, treat-
ing �t as a constant from now on and merging it with the
prefactor C. The then unnecessary index s of Pi

s can be re-
moved, i.e., the expression “DOS” will refer from now on
always to the samples DOS, and we obtain

Ij = Ce�V�
i=0

j−1

T�d,�s,t,v j,evi�Pi. �11�

As the prefactor C contains the unknown value of the
constant tip DOS, we can, without loss of generality, set the
entire expression Ce�V equal to unity. No absolute value for
the DOS can be obtained this way, i.e., the results are on an
arbitrary scale. If we denote the N
N coefficients
T�d ,�s,t ,v j ,evi� as a matrix TN with elements Tji and
equivalently define IN= �I1 , . . . , IN�T and PN= �P0 , . . . , PN−1�T,
Eq. �11� can be written in matrix notation30 as

IN = TNPN. �12�

This system of linear equations can, in principle, be
solved by Gaussian elimination. As TN is, however, a lower-
triangular matrix, the effort is reduced to a sequential calcu-
lation of the values Pj by following the iterative rule

Pj = �Ij+1 − �
i=0

j−1

Tj+1,iPi�� Tj+1,j , �13�

with

P0 = I1/T1,0.

At least two different methods exist to calculate the coef-
ficients Tji. While the simplest approach is to set Tji
=T�d ,�s,t ,v j ,evi�, we have used the midpoint method as
recommended by Linz and set Tji=T�d ,�s,t ,v j ,e�vi

+�V /2��.31

As the I�V� curve resulting from an STS measurement is
already discretized in the form of a list of �I ,V� pairs, the
voltage steps vi and thus �V are given parameters. However,
for the practical evaluation of Eq. �13�, it is necessary to
divide the list into two subsets as mentioned above. Then, the
index j in Eq. �13� runs from 1 to N+−1 or N−−1, respec-
tively.

Advantageously, the computational effort for the DOS
calculation proposed here is negligible on today’s desktop
computers, even if performed for a large set of STS I�V�
spectra. As solving an integral equation is involved, the cal-
culation is rather noise sensitive. When dealing with very
noisy I�V� curves, a smoothing prior to the calculation might
therefore be recommendable.

Finally, we note that the two other free variables, the tip-
sample separation d and the average work function �, can
alter the result of the calculation due to their influence on T
and must therefore be discussed separately. This will be done
in the next part at hand of an analytical example.

B. Influence of d and � on the result of the calculation:
The role of the slope of T

1. Dependency of T on E, V, d, and �

The two free variables which have an influence on the
evaluation of I�V� curves �as we will call the calculation of
the sample DOS by solving Eq. �12�� are the tip-sample dis-
tance d and the work functions �s and �t, in other words,
the width and height of the tunneling barrier which influence
the transmission probability. To illustrate this effect, Fig. 3
shows T as a normalized function of E and V for two differ-
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FIG. 3. Displayed is the normalized transmission function
T�d ,�s,t ,V ,E� �Eq. �4�� for �s=�t=5 eV and two different tip-
sample distances: d=3.5 Å �solid gray� and d=1.5 Å �transparent
mesh�. The profiles of two cuts normal to the E-V plane are marked
for d=1.5 Å: T�V=const,E� �dotted line� and T�V ,E=const�
�dashed line�.
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ent tip-sample distances d. As constant prefactors have al-
ready been disregarded in the derivation of Eq. �12�, the
absolute value of T is not of interest anymore, but only the
ratio between values of T for different points �E ,V�; in other
words, the slope of T has to be considered. It is clearly vis-
ible in Fig. 3 that the overall slope increases with increasing
tip-sample distance while it decreases for a higher value of
�s,t �not shown, compare Eq. �4��.

The discussion on how the recovery of � is influenced by
the slope of T will, for the sake of clarity, be preceded by an
illustration of the general impact of the transmission function
on the tunneling current. We will therefore discuss two cases
which can be associated with either the dashed or dotted
thick line in Fig. 3 �note that the argumentation given here is
again only valid for the case of a constant tip DOS�.

Dashed line in Fig. 3. The tunneling current carried by
electrons in a state X with an energy EF�Ex�EF+eV,
V0, decreases with increasing voltage due to the decreas-
ing tunneling probability: dIx /dV�0. However, for negative
voltages and EFExEF−e�V�, V�0, the respective current
increases with increasing negative voltage: dIx /dV0. This
asymmetry with respect to V=0 includes the possibility of a
decrease of the entire tunneling current with increasing volt-
age for positive bias polarity, while such a NDR effect can be
excluded for negative bias.

Dotted line in Fig. 3. For constant bias, the tunneling
probability for electrons decreases quasiexponentially with
its energy. This does not necessarily apply also to the respec-
tive contribution to the tunneling current which is weighted
by the number of electrons at each energy �the DOS�. The
small tunneling probability for electrons in low-energy states
means, however, that a large proportion of the increase in the
current with increasing negative voltage can be attributed to
the effect described in the dashed line case above and not to
the current through states at E=EF−e�V�. To what extent
these states contribute to the current nevertheless will be dis-
cussed for real experiments in Sec. IV C.

2. Choice of � and d for the evaluation procedure

From the discussion in the last part, we can conclude that
the evaluation of experimental I�V� curves by means of Eq.
�12� requires the choice of specific values for d and �s,t and
thus for the slope of T. If, as in most cases, these values have
not been measured in a separate experiment, they have to be
estimated. Here, we analyze to what extent a recovered DOS
curve in itself allows to determine those values.

As both parameters d and �s,t have a comparable �but
inverse� influence on the slope of T, it is, as a matter of fact,
impossible to specify both values independently.32 �An ap-
proach to estimate d and �s,t from experimental I�V� curves
is given by Rosink et al. for the case of a flat tip and sample
DOS.16� Therefore, we decide to simplify the discussion by
keeping �=�s=�t constant at the reasonable value of 5 eV
and discussing the DOS recovery exclusively in dependency
on d.

Thereby, the argumentation given in the previous part is
the basis for the following analysis, where we discuss two
scenarios, one for positive and one for negative bias polarity,
in order to define rules for the determination of d.

First scenario: Unoccupied DOS. A potential NDR effect
at positive bias can be explained by a rise of the tunneling
barrier with increasing voltage. This rise and, therefore also
the NDR effect, increase with increasing tip-sample distance
�see dashed line in Fig. 3�. If an I�V� curve with a NDR is
evaluated and the chosen value for d is too low, the calcu-
lated rise of the barrier and thus the decrease of I�V� are
weaker than in the measurement. To compensate for that and
to generate a stronger decrease of the current, a negative
value for � is obtained in the NDR region.33 The �obvious�
demand for a positive DOS thus imposes a lower bound for
d, if a NDR effect has been observed.

Second scenario: Occupied DOS. For negative bias, the
current inevitably increases with increasing negative voltage.
If, in the evaluation of an I�V� curve, the value for d is too
high, this effect is overestimated. To compensate for that and
to artificially decrease the current to the value measured,
parts of the DOS below EF are calculated to be negative. In
this case, the demand for a positive DOS imposes an upper
bound for d.

Without any additional information, the value for d which
should be used to evaluate a given I�V� curve cannot be
determined more precisely than within the limits of the upper
and the �potentially existing� lower bound.

To illustrate the influence of different tip-sample distances
on the evaluation of I�V� curves, we choose an analytical
example. In a first step a model DOS curve is created, which
nevertheless exhibits general properties of a real molecular
DOS, namely, well-separated and broadened resonances. Af-
terward, the STS experiment for d=5 Å, �=5 eV is simu-
lated by calculating an I�V� curve with Eqs. �3� and �4� �Fig.
4�a��. In a second step, the resulting I�V� curve is evaluated
by means of Eq. �12�. This is done not only for the correct
value of d=5 Å but also for d=3 Å and d=6 Å, thus dem-
onstrating the effect described above by showing that parts
of the calculated DOS at positive or negative bias become
negative �Fig. 4�b��. In this analytical example, the upper and
lower bounds for d have almost the same value of about 5 Å,
leaving only this correct value of 5 Å as an option. However,
as we will show subsequently, this is not necessarily the case
in the evaluation of real STS measurements.

To complete the discussion of the results given in Fig.
4�b�, we would like to point out that, on the one hand, almost
no shift of the peak positions between the dI /dV plot and the
three DOS curves can be observed, but on the other hand, the
relative height of the peaks is strongly affected by the tip-
sample distance chosen. By the same token, we like to em-
phasize that if the usual approximation dI /dV	DOS �Eq.
�9�� is chosen, the occupied states appear with strongly de-
creased intensity.

IV. PRACTICAL APPLICATION OF THE 1D WKB MODEL

A. Calculation of the sample DOS
for experimental I„V… curves

Since we have set up rules to identify the maximum range
for the tip-sample distance from an I�V� curve given, we can
now continue by analyzing and evaluating I�V� curves from
real STS experiments on organic thin films.
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The goal to find a unique DOS curve belonging to an STS
measurement is opposed by the uncertainty in the determina-
tion of d. As even comparably small variations in d lead to
strong changes in the relative heights of the DOS peaks �Fig.
4�b��, one should not expect the relative peak heights in the
examples discussed in this section to be an accurate repre-
sentation of the true sample DOS peak heights in the experi-
ment, although the complete 1D WKB model and not only
the differential conductivity �Eq. �9�� is used for the calcula-
tion.

The applicability of the 1D WKB model will now be ana-
lyzed considering two criteria.

�1� Are the values found for the upper and lower bounds
of the tip-sample separation reasonable if compared to ex-
perimental findings?

�2� Is the DOS curve obtained for a value d within these
bounds physically meaningful?

The discussion of the second criterion will be based on
the interpretation given in the respective publications.

We use the 1D WKB model to calculate the sample DOS
for four different STS measurements from literature. If only
the differential conductivity dI /dV is given in the publica-

tions, the respective I�V� curves are obtained by integration
�not shown here�. We focus especially on reports demonstrat-
ing negative differential resistance, because this is the phe-
nomenon for which the 1D WKB model is frequently used as
an explanation and which is therefore most useful in demon-
strating the functionality of our calculation. A second reason
is given by the fact that for measurements with NDR, an
upper and a lower bound for d can be found.

A reasonable value of 5 eV is chosen for �s,t �except for
cases �a� and �b� in Fig. 5, where a value for �s of 4 or
4.7 eV, respectively, was assumed by the authors
themselves10,27�. It is important to mention that a guess for �
that deviates by a few 100 meV from the real value has only
a weak influence on the values of the upper and lower
bounds for d and none at all on our conclusions. To avoid
ambiguity, we consequently show the DOS which was cal-
culated using the upper limit for d, although this is not nec-
essarily a good guess as will become clear later. The reason
for this choice lies in the fact that the upper limit is given in
all four cases, while a lower limit can only be specified if an
NDR is observed.

The results of the evaluation with the 1D WKB model
which are displayed in Fig. 5 are summarized here briefly.

�a� The first example in Fig. 5 shows the evaluation of an
STS measurement from Repp et al. for individual pentacene
molecules on an ultrathin NaCl layer on Cu�111�.27 A NDR
effect was observed and explained by the decoupling of
metal substrate and molecules due to the NaCl layer. In this
example, the upper and lower limits for d obtained from the
calculation do overlap. As can be seen in Fig. 5, the DOS in
the NDR region is slightly negative if calculated for the up-
per limit of d=4.2 Å. The lower value for d, for which the
NDR effect can be explained properly by the model is, in a
clear contradiction, at approximately 10 Å.

�b� The second example shows the evaluation of an STS
measurement on a C60 double layer on Au�111� from Grobis
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et al.10 The separation of the second monolayer from the
substrate leads again to an NDR effect. The upper limit for d
is 8.3 Å, while the lower limit is 3.5 Å. A strong asymmetry
in the density of occupied and unoccupied states is visible,
while the asymmetry in the dI /dV plot is weaker.

�c� The third example shows a STS result for a CoPc layer
on Au�111� from Barlow et al.34 As no NDR effect was ob-
served, no lower bound for d can be determined. Figure 5
shows the DOS for the upper bound d=8.3 Å. Again, a high
asymmetry in the height of the peaks in the density of filled
and empty states is visible for this particular value of d.

�d� The last example, an STS investigation by Tsiper et
al., shows the result for a monolayer of 3,4,9,10–perylene-
3,4,9,10–tetracarboxylicdianhydrid �PTCDA� on Au�111�.35

The upper bound for the tip-sample distance was found to be
d=4.8 Å. The asymmetry in the relative height of the
HOMO and LUMO peak in the DOS is small compared to
those in examples �b� and �c�.

Apparently, in all calculations the density of the occupied
states is higher than those of the unoccupied states. This will
be discussed in more detail in the next section.

B. Discussion of results and comparison
to the differential conductivity

The results shown in Fig. 5 allow us to draw a number of
reliable as well as speculative conclusions. Among the
former ones is the fact that the upper and, if detectable, the
lower bound for the tip-sample distance have a physically
realistic value �a value of 4 Å has been found for PTCDA on
S-GaAs�001� �Ref. 36��. Furthermore, the position of the
DOS peaks is virtually identical to the position of the respec-
tive peaks in the dI /dV curve for all examples shown. This is
important as it means that the interpretation of the dI /dV
peak positions given in the respective publications remains
valid also for the calculated DOS. Obviously, the asymmetric
transmission function T is barely influencing the positions of
the peaks, while a strong influence on the relative height of
the peaks is evident. In all examples, the calculated density
of occupied states is higher than the density of unoccupied
states, whereas a comparably weak opposite trend is visible
in the respective differential conductivity plots. The strength
of the asymmetry found in the calculated DOS curves is
directly related to the tip-sample distance used: A compara-
bly large value for d leads to a strong slope of T and thus to
a pronounced asymmetry in the DOS.

It is, however, dangerous to discuss the peak heights in
the DOS as well as in the dI /dV plots without further con-
siderations. Constraints are given by the fact that the peak
heights can be influenced by other effects than the 1D WKB
transmission function alone, namely, by the specific geom-
etry of the involved orbitals which may not be entirely con-
sistent with the 1D WKB model and thus result in transmis-
sion factors which are specific for each orbital.13 A second
aspect is a degeneracy of orbitals and the so-called “level
bunching,” both resulting in a high density of states in a
small energy region that cannot be resolved by STS and thus
appears as one large peak �see, for example, Ref. 37 for
electron spectroscopy results�. For these very reasons, a DOS

can contain peaks of quite different height. As we see it,
however, there is no physical reason for the general suppres-
sion of unoccupied states as it is present in all examples in
Fig. 5; we rather attribute this effect to a value of d chosen
too high for the calculation.

With these qualifications, the asymmetry in the dI /dV as
well as in the DOS curves can be explained consistently if
one assumes the value of d=0 and thus T=const �resulting in
Eq. �9�� to be �definitely� too small and, on the other hand,
the value of the upper bound d=dmax to overestimate the real
tip-sample distance in the experiments. To illustrate this con-
sideration, Fig. 6 shows again the STS results of Grobis et al.
�Fig. 5�b�� in comparison to the DOS curve for the upper and
the lower limit for d. The DOS calculated for the lower limit
d=3.5 Å exhibits a better balance in the height of the occu-
pied and unoccupied DOS peaks than the dI /dV plot or the
DOS curve for d=8.3 Å, respectively. Recapitulating, one
has to state that with the considerations mentioned above, a
value of less than 5 Å for the tip-sample distance represents
a much better estimation than the calculated upper bound of
8.3 Å in examples �b� and �c�.

Example �a�, on the other hand, has to be seen as an
exception to the entire consideration given here as no con-
sistent result for the DOS �which always includes small
negative parts independent of the value for d� can be ob-
tained with the 1D WKB model at all. To explain this result,
one can either assume that the model gives no quantitatively
correct description of the tunneling process in the rather
complex case of a molecule adsorbed on an ultrathin insulat-
ing layer, or that the assumption of a flat tip DOS is not
entirely consistent with the experimental conditions. As,
however, both explanations are rather speculative, we will
not give any further discussion.

After the analysis given here, two statements can be seen
as evident: The 1D WKB model can be used successfully to
evaluate STS I�V� curves taken on organics and, by a rather
simple argumentation, we found the tip-sample distance to
be more likely below 5 Å for the cases studied.

Despite the remaining uncertainty in estimating a suitable
value for the parameter d, we would like to point out that our
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algorithm for the DOS deconvolution is superior to existing
methods, especially the simple use of the dI /dV as DOS
approximation, for a number of reasons.

If the orbital-mediated tunneling process is rationalized
by a combination of the 1D WKB model and additional
transmission factors for each orbital which depend on the
geometry of the respective orbital, both effects contribute to
the measured STS I�V� curve. Compared to the differential
conductivity �Eq. �9��, the evaluation procedure presented
here offers the possibility to eliminate the general influence
of the tunneling barrier described by the 1D WKB model.
This, in turn, allows us to derive quantitative information on
the effects related to the orbital geometry or to level bunch-
ing as mentioned above. Such effects would otherwise only
be accessible by highly sophisticated quantum chemistry
calculations.13,38 The evaluation via the 1D WKB model can
further be used when the measurements are carried out with
a variable tip-sample separation, thus avoiding a very com-
plicated process including several empirical modifications.39

Finally, it is more satisfactory from a general point of view to
discuss the sample DOS as the result of a STS measurement,
even if the model used for its calculation does not include all
aspects of the orbital-mediated tunneling, than to discuss the
dI /dV curve alone �Eq. �9��.

These conclusions can now be used to gain a valuable
insight into an effect which is often said to limit the capabil-
ity of STS in general.

C. Slope of T: Can deep states be probed?

It is frequently stated to be virtually impossible or at least
very challenging to observe occupied sample states which
are below the HOMO or the onset of the valence band in
STS, as the tunneling current at negative bias is carried
mainly by electrons with an energy close to the Fermi level/
the upper valence band edge �in a metal/semiconductor� or
by electrons in the HOMO �if molecules are involved�.26,40

This effect is attributed to the energy dependent tunneling
probability T�E� which favors electrons with higher energies

�see Fig. 3�. Although, in principle, the effect cannot be de-
nied, our calculations indicate that it is still possible to gain
information on low-lying states.

For a quantitative analysis, we plot the ratio T�V ,EF

+eV� /T�V ,EF� as a function of V for d=5 Å �Fig. 7�. For a
given negative voltage Vx, this quantity represents the ratio
of the current through a state with an energy Ex=EF+eVx
�equals the Fermi level of the tip� to the current through a
state localized at the Fermi energy �of the sample�. The graph
in Fig. 7 can, however, also be used to estimate the current
ratio between a first state �e.g., the HOMO� at an energy
EH�EF and a second state with an energy EH−1�EH at a
respective bias voltage of VH−1= �EH−1−EF� /e, which is the
more relevant case for organic samples:

IH−1

IH
�VH−1� =

T�VH−1,EH−1�
T�VH−1,EH�

� �T�VH−1,EH−1�
T�VH−1,EF� ���T�VH,EH�

T�VH,EF� � . �14�

If the function in Fig. 7 is simply denoted as y=y�V�, the
above quantity is given by y�VH−1� /y�VH�. To give an ex-
ample, the current through a state at 1 eV below EF would,
according to Fig. 7, be approximately 3.2 times higher than
that through a state at 2 eV below EF �at the relevant bias
voltage of −2 V�, and therefore both states should give clear
fingerprints in a current-voltage measurement. We conclude
that for a tip-sample distance of 5 Å or below, the slope of
the transmission function is simply too small to entirely sup-
press the current through occupied states below the HOMO,
which is the probable explanation for the significant number
of experiments in which states below the HOMO could be
measured successfully.9,41,42

As the effect which is discussed here strongly depends on
T, which in turn depends on the tip-sample distance d, we
suggest that a smaller tip-sample separation should generally
give better access to states at lower energies. Unfortunately,
the combination of a small tip-sample distance with a high
bias voltage necessary to probe states far below EF results in
an extremely high tunneling current, which, in most cases,
will render this approach useless from a practical point of
view.

V. ROLE OF THE NORMALIZED DIFFERENTIAL
CONDUCTIVITY

A. Examples and discussion

The analysis of STS evaluation procedures given in this
paper would not be complete without a discussion of the ndc,
a method that has first been suggested by Stroscio et al.12

The original aim of the ndc was the direct comparison of
STS results taken at different tip-sample separations. How-
ever, due to a number of interesting properties, the ndc rap-
idly became a common tool for the presentation and inter-
pretation of STS results, thus coexisting in literature with the
simple differential conductivity. Without further discussion,
the method was also transferred to the case of STS on or-
ganic samples.9,41,43,44
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The introduction of the ndc was paralleled by an analysis
by Lang19 who found that for a simple model DOS, the peak
position recovered by �dI /dV� / �I /V� was closer to the real
values than the dI /dV peak position, thus justifying the use
of the ndc. Later, the ndc was discussed in terms of the 1D
WKB model by Feenstra et al. who concluded that it tends to
cancel out the exponential dependencies of I and dI /dV on V
and d.40 The context in which the ndc is viewed is therefore
rather broad. It reaches from the mentioned cancellation of
exponential backgrounds40,45 to the assumption that the ndc
is a direct measure for the sample LDOS or DOS,9,43 while a
few publications also refer to the capability of the ndc to
enhance features in regions with small tunneling current,44

which is reasonable as the ndc can also be denoted as
d ln I /d ln V. As we can directly calculate the DOS using the
1D WKB model, an analysis of these issues is feasible.

We abstain, however, from a detailed and exact math-
ematical analysis of the different properties of the ndc, but
discuss two theoretical as well as two experimental examples
in order to illustrate the relevant effects �Fig. 8�. In all cases,
the normalized differential conductivity is calculated without
any empirical modification �broadening or offset46,47� that
was developed to deal with the inherent problem of the ndc
in a conductance gap, where the denominator �I /V� is close
to zero. Instead, the respective part of the plot �which does
not hold any information anyway� is not displayed in Fig. 8.
We will now give a short analysis of the examples in Fig. 8
which are chosen to represent different scenarios.

�a� An STS measurement on a model DOS is simulated
using the 1D WKB model. The DOS consists of four Gaus-
sians: Two large peaks, centered at +3 and −3 eV, respec-

tively, provide a background on which two �identical�
smaller peaks at +1 and −1.5 eV are imposed. In a real ex-
periment, the background might stem from several broad
resonances �level bunching� outside the energy window ob-
served. In the resulting ndc curve, the background is strongly
reduced and the peaks are clearly visible; however, the posi-
tion of the peaks is shifted by a rather large value of 0.5 and
0.3 eV inward if compared to the peaks in the DOS.

�b� The model DOS in the second example is similar to
the one shown in Fig. 4, but with a decreased height of the
inner peaks. This resembles a real STS measurement in
which the contribution of HOMO and LUMO to the current
is strongly suppressed for reasons �mentioned in Sec. IV B�
which go beyond the 1D WKB model.13 One finds again a
strong peak shift and, in addition, the small peaks to be more
accentuated in the ndc than in the DOS. This illustrates the
tendency of the ndc to level the peak heights within one
single measurement.

�c� For the measurement from Grobis et al.10 �Fig. 5�, the
ndc changes the relative heights of the peaks belonging to a
double peak structure drastically, while the peak positions
are affected only weakly if compared to the DOS.

�d� If the ndc is calculated for the STS results from Tsiper
et al. �Fig. 5�, it shows a shift of the peak at 1.3 eV, while
the −2.2 eV peak remains almost unchanged. Another effect
is the change in shape of the Au�111� surface state around
−0.5 V which turns from a broad feature in the DOS to a
clear peak in the ndc.

These examples offer a differentiated view onto the us-
ability of the normalized differential conductivity for the
evaluation of STS I�V� spectra on organics, as desired prop-
erties are paralleled especially by unwanted peak shifts.
These shifts are caused by the partially extremely high slope
of the normalization function �I /V� that changes at maxi-
mum by a factor of 12 in a 0.3 V region in example �c�,
which clearly exceeds the real slope of the transmission
function �see Fig. 7�. For this reason, it becomes clear that
the ndc is not a useful replacement for the calculation of the
DOS with the 1D WKB model in the case of organic
samples. However, it cannot be denied that a subsequent nor-
malization of the DOS can be useful in some cases, espe-
cially if peaks are hidden by a background or if they appear
too weak as they contribute only weakly to the tunneling
current �Figs. 8�a� and 8�b��.

In the last part of this paper, we will outline a normaliza-
tion method that can be used on the DOS and which has the
useful properties of the ndc, while the problematic peak
shifts are avoided to a large extent.

B. Normalization method

Our aim is to develop a method that, on the one hand,
reduces the influence of potential backgrounds in the DOS
curve recovered and, on the other hand, emphasizes rather
small peaks in regions with a low density of states. It is
obviously impossible to determine the exact position of a
peak with an unknown shape which is situated on a nonlinear
background and thus visible as a shoulder only. As a suffi-
cient and yet simple way to estimate the peak position, none-
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FIG. 8. �Color online� Four examples of an STS evaluation us-
ing the normalized differential conductivity. Examples �a� and �b�
are evaluations of I�V� curves calculated for a model DOS with the
1D WKB model �d=5 Å, �=5 eV�. Examples �c� and �d� show
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al. �Ref. 35� �see Fig. 5�. The DOS shown was calculated for d
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ndc always approaches unity at V=0.
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theless we propose to evaluate the second derivative of the
DOS with respect to energy, which is a measure for the
change in the slope of the DOS, and thus, roughly spoken, a
measure for its local curvilinearity. Normally, the maximum
of a peak is also the point of maximum curvilinearity, and if
shoulders are considered, the x value of maximum curvilin-
earity is a good measure for the position of the original peak
�Fig. 9�.

The sign of the second derivative indicates whether the
slope is increasing �positive sign� or decreasing �negative
sign�. The positions of peaks and shoulders in the DOS are
characterized by the latter case. Therefore, we propose that
DOS peaks can be identified by looking exclusively at the
positive parts of the quantity −�d2� /dE2� as illustrated in
Fig. 9.

In order to emphasize small DOS peaks, an additional
normalization of −�d2� /dE2� by the DOS ��E� seems appro-
priate. Therefore, we finally end up with the following quan-
tity to evaluate:

−
d2��E�/dE2

��E�
. �15�

Although peak identification is, in principle, possible us-
ing this expression, the calculation of the third derivative48 of
a measured I�V� curve is not satisfactory from a practical
point of view as it will, almost certainly, produce only noise.
However, as we will outline here, the explicit calculation of
the second derivative of the DOS can be easily avoided by
applying small modifications to the concept introduced so
far. First, the second derivative is expressed as central second
difference quotient:

��x + �x� + ��x − �x� − 2��x�
��x�2 . �16�

Second, if we now drop the constant factor ��x�2 and use
the sum of the right and left points of the interval �x+�x ,x
−�x� for the normalization �rather than the central value�,
expression �15� can be written as

2��x� − ���x + �x� + ��x − �x��
��x + �x� + ��x − �x�

. �17�

As the constant offset of −1 plays absolutely no role in
finding the maxima of expression �17�, we will neglect it and
finally end up with:

2��x�
��x + �x� + ��x − �x�

. �18�

In the implementation, our method works on datasets
which are given as a list of N scalar values �the DOS curve�:
�Vi ,�i� ,0� i�N. As the main goal of the algorithm is the
detection of peaks in the DOS, the result is called peak en-
hanced curve �pec�. Following Eq. �18�, every value �i is
divided through the average value of two �not necessarily
closest� neighbors �i−n and �i+n. If �i marks the center of an
isolated peak, both �i−n and �i+n should be smaller, making
2�i / ��i−n+�i+n�1 �Fig. 10�. The new �normalized� value at
the ith data point is now found by varying n within reason-
able limits while searching for the maximum:

peci = max
0�n�nmax

2�i/��i−n + �i+n� . �19�

As a result, two values are calculated for each DOS value
�i: A normalized value peci and the value ni for which peci is
maximal. The parameter nmax should be chosen in a way that
�V=Vi+nmax

−Vi−nmax
equals approximately the width of a

single peak at its base. Considering thermal broadening as
well as broadening by inelastic effects, a value between 0.3
and 0.6 eV for �V seems reasonable. However, the function-
ality of the algorithm is rather tolerant with respect to the
exact value of nmax. The lower bound of n=0 guarantees that
peci will never drop below 1. To avoid unphysical peaks
resulting from noisy DOS curves, it is recommended to set
all peci values for which ni falls below a certain threshold
parameter �for example, 0.3nmax� also to 1. This has the ef-
fect of a tunable filter, making further smoothing usually
dispensable.

It has to be pointed out that the resulting curve is not a
measure for the sample DOS anymore, but its primary aim is
the identification of peaks �=molecular resonances� even if
they are small or veiled by a background. The pec algorithm
works rather locally as only the DOS in the interval
�Vi−nmax

,Vi+nmax
� has an influence on the normalization of �i,

while in the ndc the total conductivity influences the result
on a global scale.49 The functionality of the pec algorithm is
illustrated for the four examples from Fig. 8 in Fig. 11. Be-
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sides the rather small peak shift in the pec that occurs if the
peaks are highly asymmetric or only present as a shoulder,
two issues are evident: The height of small peaks is indeed
enhanced compared to the DOS �Ref. 50� �Figs. 11�a� and
11�b�� and the pec peaks are narrower than the peaks in the
DOS. This “deconvolution” is visible especially in Fig. 11�c�
where the double peak structure is clearly resolved. The
background reduction as well as the narrowing of peaks can
be understood if one keeps the similarity to the second de-
rivative of the DOS in mind: Only if the first derivative is
positive and decreasing or negative and increasing is the pec
larger than 1.

A remaining problem is the handling of the boundary
points of the �Vi ,�i� dataset. We choose a method that in-
volves only a small modification, thus keeping the clear and
simple functionality of the pec algorithm. The value for nmax
is decreased for the border points in a way that i−nmax0 as
well as i+nmax�N. As a result, the first and the last points of
the pec always approach 1. The detection of peaks at the very
ends of the voltage range in the measurement is therefore
rather difficult using the pec. However, in the examples
given here, there is no peak within the range of approxi-
mately 0.3 V from the ends of the voltage range and thus the
algorithm is fully usable.

VI. CONCLUSION

While the experimental method of scanning tunneling
spectroscopy has successfully been extended from the inves-
tigation of inorganic samples to the investigation of thin or-
ganic layers, some specific properties of these samples, es-
pecially the rather large tunneling voltage necessary to probe
the molecular resonances and the large conductance gap
which is observed frequently, represent serious problems for
the interpretation and understanding of such measurements.

The 1D WKB model, on the other hand, is a well-known and
simple description of the tunneling process which gives in-
sight into the main properties of the elastic tunneling spec-
troscopy, the voltage and energy dependent transmission
probability, and the tip influence. There was, however, no
clear quantitative answer to the questions whether this model
can also successfully be applied to STS on organics, and how
strong the results are affected by the transmission function.
Caused by this precariousness, the role of the normalized
differential conductivity as a compensation of the transmis-
sion function was not clear as well.

After outlining the necessary steps, we have used the
complete 1D WKB model to evaluate a set of STS measure-
ments by calculating the respective sample DOS. Following
a simple argumentation based on the assumption of an en-
tirely positive DOS and a relative symmetry in the height of
DOS peaks at positive and negative voltages, we found that
the tunneling barrier parameters d and � have comparable
and physically meaningful values for the examples investi-
gated. We could, however, show that it is impossible to de-
termine both values exactly and independently. Nevertheless,
the 1D WKB model can be applied to three of the four cases
investigated, and by inductive reasoning we conclude that it
is a suitable method for the evaluation of STS results on
organics in general. The parameters that have been found for
the tunneling barrier allow us to estimate the contribution of
molecular resonances below the HOMO to the tunneling cur-
rent. According to our results, the contribution cannot be
neglected, thus supporting the idea that these resonances can
be observed in STS, indeed.

For a number of examples, we have compared the calcu-
lated DOS curves to the normalized differential conductivity
of the respective I�V� curve, thus checking the different
properties and functionalities that are attributed to this evalu-
ation method. Although, according to our results, the ndc
cannot be seen as a direct measure for the sample DOS, and

E-E (eV)F

(a) (b)

(d)(c)

FIG. 11. Two artificial DOS curves and two
DOS curves calculated from experimental mea-
surements are evaluated with the pec algorithm.
Both experimental DOS curves are recovered for
d=3.5 Å and �=5 eV. The respective param-
eters for the pec are �a� �V=0.5 V, �b� � V
=0.5 V, �c� �V=0.35 V, and �d� �V=0.6 V. An
offset has been added to the entire DOS curve in
�c� prior to the pec calculation to suppress the
noise in the gap region effectively. The cutoff
threshold for narrow peaks is 0.3nmax in all four
cases.
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despite the occurrence of significant peak shifts, the ndc nev-
ertheless exhibits interesting and useful properties. As the
ndc can therefore be merely seen as a mathematical method
to detect peaks, we have outlined a different method that has
the useful properties of the ndc but avoids strong peak shifts
and that can be used on the DOS after the recovery with the
1D WKB model.

Note added in proof. Recently, we became aware that
somewhat similar results were published by Koslowski et
al.54 Note that they also discuss an approach to the calcula-

tion of the DOS by exploiting the 1D WKB model and Vol-
terra equations, but that there is no discussion on the impli-
cations for scanning tunneling spectroscopy on organic
nanolayers, which is the major aim of our paper.
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