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Optical transitions between valley split subbands in biased Si quantum wells
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By a tight-binding spd’s™ model, we study numerically the optical transitions involving the lowest conduc-
tion states confined in strained [001] Si quantum wells. These states belong to the fundamental and to the first
excited quantum well (QW) subbands, each one split into a doublet by intervalley interaction. Both hard wall
and finite SiGe barriers boundary conditions for the QWs are considered. Amplitudes of the doublet splittings
as a function of the well width and of a uniform electric field superimposed along the growth direction are first
investigated. Then, we study atomic contributions and parity character of the doublet wave functions to derive
selection rules for interdoublet optical transitions. Finally, we demonstrate the role of intervalley coupling and
the effectiveness of the selection rules here presented, for the interpretation of the absorption spectrum of a
n-type Si QW between SiGe barriers, evaluated at different temperatures.
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I. INTRODUCTION

Bulk silicon has six degenerate energy minima (valleys)
in the lowest conduction band along the (001) equivalent
directions at 0.85 of the distance separating the I' point from
the X points at the centers of the square faces of the Brillouin
zone. Breaking cubic symmetry, e.g., by means of uniaxial
stress or other perturbations along the [001] axis, lifts the
sixfold degeneracy into fourfold degenerate valleys in the
plane orthogonal to the perturbing field and twofold degen-
erate valleys along the [001] direction.

As first evidenced by Fowler et al.> by means of magne-
toconductance measurements in n-channel Si metal-oxide-
semiconductor field-effect transistor inversion layers, also
the twofold degeneracy can be lifted if the z valleys interact.
This happens, for instance, when Si quantum wells are
grown on a [001] substrate: heterointerfaces act as scatterers
of the electronic waves and interference effects appear® with

phases depending on 2k(z, where k is the absolute minimum
in k space of the lowest Si conduction band. The vast theo-
retical and experimental literature on the subject up to the
quantum Hall* era at the beginning of the 1980s was exhaus-
tively considered in the review.’

Recently, a renewed interest has been addressed toward
the comprehension of the nature and the control of valley
splitting in the context of nanostructures, in particular, for
potential applications in the area of spintronics® and spin-
based quantum computation.”® In fact, beyond the bonuses
derived from advances in crystal growth® and processing
technology, Si-based structures are expected to be particu-
larly promising for their weak spin-orbit coupling and long
electron spin decoherence time.'® This has strongly moti-
vated the attempts of modulating the strength of intervalley
coupling by means of external fields or specific system ge-
ometries. Even if a growing interest has been recently de-
voted to tilted or miscut heterointerface geometries,!'~!3
samples grown along the [001] direction remain the most
studied due to their compatibility with the mainstream Si
technology. Our work focuses on the optical transitions be-
tween valley split doublets in the conduction band of strained
silicon quantum wells (QWs). We have established selection
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rules based on the parity character of the doublet wave func-
tions. Possible optical experiments able to detect valley cou-
pling effects on the energy spectrum of Si QWs of different
shapes are also presented.

Early theoretical descriptions of the origin of this valley
splitting in Si exploited effective mass theory for single
heterointerfaces'* and quantum wells'> and an sp3s”™ second
neighbor tight-binding model'® for superlattices.

More recently, a detailed study of valley splitting of the
lowest conduction band in Si quantum wells has been
performed!”'® by means of a full band nearest neighbor
sp*d’s” tight-binding model and a simple analytic two band
model. The authors of Refs. 17 and 18 confirm previous
results of Refs. 15 and 16, i.e., the lift of the twofold band
degeneracy and an intervalley splitting which is different
from zero also in the absence of electric fields. Moreover,
they find sound numerical and model analytic support to the
relation AE,o (S+2)73 sin[(S+2)¢,,;,] which describes the
oscillations of the ground state doublet width as a function of
the number S of atomic Si layers composing the quantum
well; the phase ¢,,;, is related to the position of the valley

minimum k, along the A line of bulk silicon.

A detailed analysis of effective mass formalisms and a
comparison with atomistic tight-binding approaches for the
evaluation of valley splitting in a heterostructure can be
found in Refs. 3 and 12. The case of perfect or miscut Si
QWs in the presence of external fields has also been
studied,'? showing that the insertion of an empirical contact
potential to describe valley coupling in the effective mass
method picks up the relevant physics of the problem.

In this paper, we present an sp>d’s” tight-binding study of
the doublets generated by intervalley interaction in the fun-
damental and in first excited conduction subbands of a three
dimensional strained [001] Si QWs. Our aim is to investigate
the electronic properties and the optical transitions occurring
between the fundamental and the first excited doublets as a
function of the well width, the strength of an electric field
applied along the 7 axis, and temperature. Forbidden and
allowed transitions are thus identified and dependence of op-
tical selection rules on the field strength is discussed. Inter-
pretation of the oscillator strengths for allowed transitions in
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terms of the symmetries and shapes of the states in the well,
both in the presence and in the absence of electric fields, is
provided. Population effects on optical spectra induced by
temperature are also analyzed.

We eventually show that valley splitting tuning by means
of electric fields, temperature, and well width can be ex-
ploited to control conduction intersubband optical properties
of Si QWs.

II. SYSTEM DESCRIPTION AND METHOD

We have considered a single Si quantum well grown
along the [001] direction with tensile in-plane strain condi-
tions compatible with growth on a relaxed Si;_,Ge, substrate
with Ge concentration x,,;,=0.2. In the strained silicon re-
gion, the in-plane lattice constant, a;(s—Si), is matched to the
relaxed substrate lattice constant, a(x,,), which is evaluated
(in angstrom units) according to Refs. 19 and 20,

aH(s - S]) = a()(xsub)
= a,(Si) +0.200 326x,,,(1 — x,,3)
+[ay(Ge) — ay(Si)Ix? (1)

sub>

where a((Si) and ay(Ge) are the lattice constants of relaxed
silicon and germanium. The lattice constants along the
growth direction are changed by the Poisson effect;?!?? in
the well region, a | (s—Si) is given by

c12(81) ag(xg) — ag(Si) )
c11(Si) ay(Si) - @

a (s—Si) =a0(Si)<1 -2

Biaxial strain conditions guarantee lifting of the sixfold
degeneracy of the lowest Si conduction band into a fourfold
degenerate level corresponding to the four equivalent valleys
in the (x,y) growth plane and a twofold degenerate level
corresponding to the two equivalent valleys along the [001]
direction. Tensile in-plane strain lowers?} the energy of the
twofold degenerate valleys with respect to the energy of the
fourfold degenerate valleys. Intervalley interaction of these
two minima further splits the twofold degeneracy into a dou-
blet of nondegenerate levels.

For comparison with previous results, we have adopted
the same QW system chosen in Refs. 17 and 18. Calculations
have been performed both for a single strained silicon infi-
nite QW (hard wall) and for a system composed by a strained
Si finite QW embraced by two symmetric Siy,Geg ¢ barriers.
In the latter case, alignment of the topmost valence band
between the tensile strained silicon and the compressive
strained Sij4Ge(¢ materials is performed according to the
results of Refs. 24 and 25; the corresponding conduction
band offset is =0.3 eV, which is a commonly accepted
value.'®2® Barrier thickness is chosen so to ensure that the
wave functions confined in the Si well are exhausted well
before the system boundaries. Actually, for the above quoted
value of the conduction band offset we have verified that the
wave function amplitude in the barriers becomes negligible
within a few atomic layers. Therefore, for the states confined
in the well, we choose either periodic or nonperiodic bound-
ary conditions along the growth axis. Anyway, if periodic
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boundary conditions are not applied, a surface state band
appears with energy minima below the energy of the ground
state in the QW, thus preventing population of the QW
ground state for very low doping concentrations. In the fol-
lowing treatment of optical properties and intervalley split-
ting, we disregard surface states.

For the self-energy and hopping energy parameters of the
first-neighbor tight-binding sp’d>s™ Hamiltonian, we have
adopted the semiempirical parametrization of Jancu et al.?’
Biaxial strain was taken into account calculating the position
of the ions in the strained lattice and scaling the hopping
parameters with distances by means of suitable exponential
laws as indicated in Ref. 27. The parameters for the SiGe
alloys were obtained in the virtual crystal approximation.

The dimension of the crystal Hamiltonian is N X 10X 2,
where N is the total number of layers and 10X 2 is the num-
ber of orbitals in the primitive cell in each layer; the factor 2
accounts for spin degeneracy. Each layer along the [001]
direction contributes with a single atom; within the first-
neighbor approximation, only adjacent layers interact. Typi-
cal order of the matrix Hamiltonians considered in this paper
reaches 6 X 10° for the QW plus barrier systems. For the
eigenvalues evaluation reported in the following, standard
routines have been adopted. We have also investigated valley
splittings for much larger systems (N~ 10, not reported) for
which the decimation-renormalization method?® allows accu-
rate indirect diagonalization of the Hamiltonian. In the latter
case, the whole system Hamiltonian is represented on the
basis of the two dimensional Bloch sums built from atomic
orbitals.?® Then, by iterative decimation-renormalization the
matrix chain is reduced to a couple of effective layers where
the Green’s function is evaluated. From the poles of the
Green’s function, the spectral properties of the system are
obtained without explicit diagonalization of the matrix
Hamiltonian. From the Green’s function also, layer and or-
bital resolved densities of states have been deduced. Further
technical details on the method can be found in Ref. 30,
where the same tight-binding model was adopted to interpret
experimental valence intersubband spectra of SiGe hetero-
structures. The accuracy of the procedure allows us to safely
resolve energy separations of the order of 10°-107° eV, as
evidenced by the evaluation of the doublet structure in the
conduction band, and also from the numerical invariance of
the layer and orbital densities of states under x+«y transfor-
mations.

The evaluation of conduction intersubband transitions has
been performed neglecting spin-orbit interaction in order to
reduce computational time. In fact, we have checked that this
assumption does not lead to appreciable effects in the valley
splitting; spin-splitting correction to the conduction band
states confined in silicon QW systems is relevant only at the
ueV scale.® Static electric fields along the growth direction
are modeled superimposing to the system Hamiltonian an on
site potential linearly varying along the Z axis.

Intersubband optical absorption for incident light with po-
larization unit vector € and energy fiw incident on the QW
system with refractive index n (assumed independent of fre-
quency in the energy range of interest) is given by?!
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where Pij(lg)=(2/m0)|<i,l€ &-plj.k)|? is the squared modulus
of the dipole matrix element, expressed in eV, between con-
duction intersubband states j,l€> and |i,E} of energies £ y and
E;, respectively; f(E) is the Fermi distribution function. De-
tails on the calculation of the dipole matrix element in the
tight-binding model can be found in Refs. 32-34. Line
broadening effects are included in Eq. (3) by means of a
Lorentzian distribution of linewidth I'=1 meV. Sums over k
are evaluated sampling a wedge of the Brillouin zone around
the conduction minimum with up to 2.5 X 10* independent &
points.

III. RESULTS
A. Electronic structures

We have first studied the valley splitting magnitude of the
QW lowest subband as a function of the well width. The
oscillating behavior of the valley splitting and the power law
decay of the oscillation envelope with the number of atomic
layers composing the well have been reproduced (see Refs.
17 and 18). The small differences in the tight-binding param-
etrizations of Refs. 27 and 17 do not alter significantly the
valley splitting results which are essentially governed by the

position of the minimum k; of the bulk Si conduction band.
Then, we have analyzed the valley splitting doublet of the
first excited subband, both for the infinite and the finite QWs.

In Fig. 1, we show the AE, (AE,;) splitting for the ground
(first excited) doublet of the finite well as a function of the
number of Si bilayers in the well and for different electric
field strengths. Each bilayer is composed by two Si atomic
layers in the anion and cation positions. For comparison,
valley splittings for the hard wall QW at zero field are also
reported. Damping of the oscillations with the well width of
both the AE, and AE, doublets is evident. In Fig. 1, we can
see that AE, and AE, oscillate with the same period and
phase. This was expected extending to the AE; doublet the
analytic considerations reported in Ref. 18 for the AE,
doublet.

A superimposed electric field 3 along the Z direction
breaks the QW symmetry. Nevertheless, for low field
strengths (eEW =< E, for the ground doublet and eEW =< E; for
the first excited doublet, where W is the well width), the
splitting oscillations persist with unchanged period and phase
(see Fig. 1). Valley splitting becomes independent of the
number of layers in the well only at high fields or large QW
widths. This effect can be understood considering the £, and
E, confinement energies and the spatial distributions of the
wave functions within the QW: at zero or low electric field,
E, and E, states have vanishing wave function at the barriers
of the well; thus, valley splittings depend on the well width
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FIG. 1. Valley splitting magnitude versus well width for the
ground [E, level, panel (a)] and first excited [E; level, panel (b)]
QW subbands. Solid lines refer to the finite QW for electric field
strengths ranging from 0 to 1 mV/A. The dotted line represents the
valley splitting for the hard wall system in the absence of electric
field.

W (see the bottom inset of Fig. 2). For higher fields, the wave
functions of the ground and of the first excited doublets be-
come confined by the triangular shaped potential originated
by the field and vanish before reaching the right interface of
the QW (see the top inset of Fig. 2). In this case, the valley
splitting is insensitive to the right interface position, i.e., to
the well width. Moreover, in the limit of high electric fields
the splittings of both the fundamental and excited doublets
tend to a common value which is independent of the well
width. This is evident in Fig. 2, where the AE, and AE,
splittings are reported as a function of the field strength. The
low field (£<0.7 mV/A) flat behavior of AE, is due to the
higher confinement energy of the excited E, doublet which
makes it less sensitive to the profile of the bottom of the QW.

For what concerns the wave functions of the doublets, as
previously found'®!” we obtain that they can be described as
product of a square well envelope function and a fast oscil-
lating function whose period (about five atomic monolayers)
is governed by the Si conduction band minima. A discussion
on point symmetry in SiGe structures can be found in Refs. 3
and 35. In the system we have studied, due to intervalley
interaction, the states of the symmetric Si QW are nondegen-
erate and thus have well defined parity. The states within the
same doublet share the same envelope function; therefore,
they must have opposite parities to preserve orthogonality.
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FIG. 2. Valley splitting magnitude for the ground (AE,, solid
line) and first excited (AE,, dashed line) doublets versus electric
field strength. The results refer to an infinite quantum well com-
posed of 31 Si bilayers, corresponding to a maximum in the oscil-
lation of the valley splitting amplitude (see Fig. 1, dotted line). The
insets report the average value of the ground and first excited dou-
blet energies, with squared modulus of the corresponding wave
functions in the absence (bottom) and in the presence (top) of an
electric field of strength of 3 mV/A. Similar results hold for the
finite well system.

Consequently, the phase of the wave function oscillations has
to agree with the even or odd character of the state. From
inspection of the orbital resolution of the wave functions
numerically obtained with our model, we find that the E, and
E, states have nonzero contributions only from the set of
orbitals s, 5", > d32_2 (even under z— —z transforma-
tion) and from the p. orbitals (odd). Because the envelope
function of the E|, doublet is even, the oscillating modulation
for the s, s°, dxy, d;2_,2 contributions to the wave function
of the Egl) even (EEJZ) odd) states has to be cosine- (sine-)
like, while it has to be sine- (cosine-) like for the p, orbital
contribution. Since the envelope function of the first excited
doublet E; is odd, the opposite holds for the states of the
corresponding excited doublet.

The above considerations are confirmed by our numerical
results for the wave function amplitude of the states confined
in the finite and infinite wells. For instance, for the case of a
128 monolayer width infinite well, we report in Figs. 3(a)
and 3(c) the wave function amplitude, at field £=0, of the
lower level E(()l) belonging to the E, doublet. Ef)l) results to be
even and Fig. 3(a) [Fig. 3(c)] shows the total contribution to
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FIG. 3. Wave function amplitude of the even E(()I) state for the

infinite quantum well with thickness of 128 monatomic layers. Plots
(a) and (b) refer to the even orbital contribution (s, s*, d,,, and
ds,2_2) at £=0 and E=1 mV/A, respectively. Plots (c) and (d) refer
to the odd orbital contribution (p.) at £=0 and £=1 mV/A, respec-
tively. Cosine and sine functions with analytic expressions indicated
in the insets are superimposed to the wave functions of E(()]) to
evidence phases and period of the oscillations as discussed in the
text. The center of the well is set at z=0. Similar results hold for the
Eéz)’ E(ll), and E(lz) levels.

the oscillating modulation of the wave functions from the
even (odd) orbitals. To evidence phase and period of the
wave function oscillations, we have superimposed in Figs.
3(a)-3(d) even and odd harmonic functions as indicated in
the corresponding insets. We also find that period and phase
of the oscillations are unaffected by the presence of an elec-
tric field [see Figs. 3(b) and 3(d)] even if it breaks the QW
symmetry and modifies the wave function envelope.

B. Optical properties

Let us now consider the optical transitions between the
levels of the ground doublet Ef)l),Ef)z) and the levels of the
first excited doublet E(ll),E(lz). Since low doping concentra-
tions are needed to resolve the doublet structure, we will
focus on transitions occurring in a small neighbor of the
bottom of the conduction band. Intersubband transitions be-
tween the fundamental and first excited subband are induced
only by light incident parallel to the growth plane;*¢ thus the
polarization vector & in Eq. (3) is chosen along the Z axis.
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FIG. 4. Dipole matrix elements for intersubband transitions be-
tween the doublet (E(l),Ef)z)) and the doublet (E(l),E(Iz)) as function
of the electric field. A 31 bilayer thick silicon infinite quantum well
is considered. The results refer to the bottom of the conduction band
and polarization vector € along the Z axis. Solid (dashed) lines in-
dicate transitions between states with equal (opposite) parity for £
=0. In the inset, even (e) and odd (o) parities of the states at zero
field and forbidden and allowed transitions at zero field are
sketched. For allowed transitions, the dipole matrix element in-
creases with the field due to the confinement of the states in nar-
rower spatial regions.

As also reported in Refs. 3, 17, and 37, we find numeri-
cally that the parity of the ground state is an alternating func-
tion of the well width. As already noticed, within each dou-
blet the states have opposite parities. Since for incident light
polarized along the Z axis the dipole operator is odd for re-
flection in the xy plane, at zero field light couples only states
with opposite parities (see the inset of Fig. 4). Numerical
calculations of the dipole oscillation strength at the bottom of
the conduction band for the (Eél),Ef)z))—»(E(ll),E(lz)) transi-
tions confirm this statement: we find that at zero field the
parity selection rules are respected with great precision.

To observe transitions between states with the same par-
ity, it is necessary to break the z— —z symmetry. For this
reason, we have investigated the oscillation strength of these
transitions when an electric field along the growth direction
is superimposed (see Fig. 4). Our results indicate that even
for strong electric fields no appreciable oscillation strength is
transferred to the transitions which are forbidden at zero
field; in fact, they remain much weaker than the allowed
ones. This is rather surprising if one considers that at £
=<3 mV/A the wave functions are confined in the left por-
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FIG. 5. Intersubband absorption spectra for a silicon finite QW
with Sij4Geg¢ barriers. Well width is 10 bilayers and the carrier
concentration in the well region is 7.5X 10~7 A2 per layer. kT
ranges from 0.2 to 2 meV. Energy separations for the E, and E,;
doublets and Fermi energies calculated at k7=0.2 meV and kT
=2 meV are summarized in the inset (not to scale). Solid and
dashed arrows refer to allowed and forbidden transitions, respec-
tively. Energies are expressed in meV.

tion of the well by the triangular potential generated by the
field [also see Figs. 3(b) and 3(d)].

We now show that the above selection rules obtained nu-
merically can be verified by absorption measurements. In
fact, at low fields the valley splitting magnitudes of the E,
and E, doublets are not equal (see Fig. 2). Therefore, the
allowed (EE)I)HE(ID,EE)Z)HE(IZ)) and the forbidden (EE)I)
—>E(12),Ef)2)—>E(11)) transitions may occur at quite different
energies. For instance, as can be argued in Fig. 1, for QW
systems with well width of =10 bilayers, the transition en-
ergy differences are of the order of a few meV and then the
related absorption peaks can be experimentally resolved.

A possible experiment is suggested by the results of Fig. 5
where we have reported the intersubband optical spectra of a
10 bilayer finite QW at different temperatures. At chosen
doping concentration, subband population can be selectively
controlled by thermal energy and thus the signature of al-
lowed and forbidden transitions can be monitored. Let us
consider in fact, the inset of Fig. 5. It refers to a carrier
concentration in the well region of 7.5X 107 A2 per layer.
At low temperatures (kKT<0.2 meV), the Fermi energy lies
below the E(()Z) level and carriers are not thermally excited in
this state. Therefore, one single absorption peak due to the
Egl)—>E(ll) transition (113 meV) is expected in the optical
spectrum, the Ef)l)—>E(12) (125.5 meV) transition being for-
bidden. Increasing the temperature, the Fermi energy de-
creases but now carriers can be thermally promoted in the
Ef)z) level; at kT=2 meV, we find £,=-0.3 meV and because
the AE, separation is 3.5 meV, we have Eéz)—Ef)l) <2kT (see
inset). Then, also the Ef)z)—>E(12) transition (122.1 meV)
should give a peak in the spectrum, while no signal for the
forbidden Eﬁ)z)—>E(11) transition (118.6) is expected. The in-
tersubband absorption spectra evaluated at finite tempera-
tures, sampling the QW k space around the conduction mini-
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mum and reported in Fig. 5, support the above consider-
ations. At 7=<0.2 meV, only the Egl)—>E(ll) signal is present;
increasing 7, oscillator strength is transferred from the Egl)
HE(II) to the EE)Z)HE(IZ) transition. No absorption for the
forbidden transitions (125.5 and 118.6 meV) is found in the
explored range of temperatures.

IV. CONCLUSIONS

We have adopted a tight-binding Hamiltonian to investi-
gate the valley splitting of confined subbands in strained in-
finite Si QW systems and in strained Si/SiGe QW systems
with finite height barriers. The splittings are due to the inter-
action between the two conduction valley minima along the
growth direction of the silicon crystal. We have studied the
energy separation of the fundamental and first excited doub-
lets as a function of the well width both for symmetric QWs
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and for QWs with uniform electric field superimposed along
the growth direction. Results for the wave functions of the
confined states have been reported and their symmetry prop-
erties in the presence and in the absence of an electric field
discussed in detail. We have then studied the optical transi-
tions between states of the fundamental and of the first ex-
cited doublets. Guided by symmetry arguments and numeri-
cal calculations, we have predicted selection rules for these
transitions. Finally, the evaluated intersubband absorption
spectrum here presented for a realistic n-type Si/SiGe QW
system at different temperatures suggests possible absorption
measurements involving transitions between valley split Si
levels.
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