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Motivated by the physics of graphene, we consider a model of N species of 2+1 dimensional four-
component massless Dirac fermions interacting through a three dimensional instantaneous Coulomb interac-
tion. We show that in the limit of infinitely strong Coulomb interaction, the system approaches a quantum
critical point, at least for sufficiently large fermion degeneracy. In this regime, the system exhibits invariance
under scale transformations in which time and space scale by different factors. The elementary excitations are
fermions with dispersion relation �� pz, where the dynamic critical exponent z depends on N. In the limit of
large N, we find z=1−4/ ��2N�+O�N−2�. We argue that due to the numerically large Coulomb coupling,
graphene �freely suspended� in a vacuum stays near the scale-invariant regime in a large momentum window,
before eventually flowing to the trivial fixed point at very low momentum scales.
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I. INTRODUCTION

The physics of graphene, which has recently been realized
in experiment, has currently attracted considerable interest.1

A graphene sheet is a two dimensional �2D� hexagonal lattice
of carbon atoms, and its defining feature is the existence of
two special points in the Brillouin zone around which the
electron energy, according to band-structure calculations,
should have a linear dependence on its momentum �“Dirac
cones”�, as in relativistic theories.2 Many interesting behav-
iors, for example, the quantum Hall effect at half-integer
filling fractions, are attributed to the quasirelativistic behav-
ior of the low energy excitations.3–5

Graphene, on the other hand, differs from relativistically
invariant systems in one crucial aspect. Namely, the electro-
magnetic interaction between fermion quasiparticles is medi-
ated by the photon whose velocity c is practically infinite
compared to the fermion velocity v�c /300. The interaction
therefore is an instantaneous Coulomb repulsion which
breaks relativistic invariance.

As we shall see later, the importance of the Coulomb
interaction is controlled by the parameter

� =
e2N

16�0�v
, �1�

where N=2 is the spin degeneracy. It is similar to the fine
structure constant, but the speed of light has been replaced
by the Fermi velocity v. As the result, for graphene in
vacuum this parameter is around 3 or 4 �it is reduced if
graphene resides on a substrate with a large dielectric con-
stant�. The largeness of � makes unreliable any calculation
based on the simple perturbation theory in the interaction
strength, and seems to indicate that real graphene is hope-
lessly beyond quantitative theoretical control.

In this paper, we show that in the idealized limit �→�
the system becomes, in a certain sense, simple again. We
shall argue that, at least for sufficiently large N, and perhaps
even for N=2, �→� is a limit where the system is tuned to
quantum criticality.

Quantum critical points6 play an important role in con-
densed matter physics. In many cases, they are described by
relativistically invariant conformal field theories. The relativ-
istic invariance of these theories is not connected to the rela-
tivity of space-time, but is a manifestation of an emergent
Lorentz symmetry. In our case, the infinitely strong Coulomb
interaction destroys the relativistic invariance. Instead, we
shall see that the quantum critical point �=� is characterized
by a nontrivial dynamic critical exponent z, whose value is
computable in the large-N limit,

z = 1 −
4

�2N
+ O�N−2� . �2�

The elementary excitations are fermions with dispersion re-
lation �� pz, instead of the linear dispersion �=vp. The
Dirac cones are therefore replaced by “Dirac cusps.” More-
over, the full dynamics is invariant under the scale transfor-
mation

t → lzt, x → lx �3�

instead of the usual “relativistic” scale transformation

t → lt, x → lx . �4�

The limit �→� can therefore be considered as a nice
idealization of graphene. While it is only an idealization, we
think that its simplicity justifies our study. Moreover, one
may hope that once the limit �→� is understood, the case of
finite but large � can be accommodated by treating �−1 as a
small coefficient of a relevant deformation that takes the sys-
tem away from the critical point.

The structure of this paper is as follows. In Sec. II, we
describe our model. We write down the renormalization
group �RG� equation in Sec. III and discuss the strong-
coupling fixed point where the scaling behavior �3� is real-
ized. The running of the fermion velocity at finite Coulomb
coupling is considered in Sec. IV. In Sec. V, we discuss finite
N and the relevance of our model to real graphene. We con-
clude in Sec. VI. While a large fraction of technical calcula-
tions presented in this paper are not new, we believe that the
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strong-coupling limit has not been previously identified as a
quantum critical point.

II. MODEL

We shall consider a system of N �2+1� dimensional ��2
+1�D� four-component massless Dirac fermions with veloc-
ity v interacting through an instantaneous three dimensional
�3D� Coulomb interaction. The Euclidean action is �in this
paper, we set �=1�

S = − �
a=1

N � dtd2x��̄a�0�0�a + v�̄a�i�i�a + iA0�̄a�0�a�

+
1

2g2 � dtd3x��iA0�2. �5�

Our notations are as follows. The fields �a are four-
component fermion fields, and a labels different species of
fermions. In real graphene, N is equal to 2 due to the spin
degeneracy. The �’s are �2+1�D Dirac matrices satisfying
	�	 ,�

=2�	
, and can be chosen as 4�4 matrices, e.g.,
�0=3 � 3, �i=i � 1. Each fermion can be thought of as a
pair of two-component fermions with opposite parities.7,8 A0
is the Coulomb potential. The action �5� contains a �2+1�D
part, which contains the kinetic term for the fermion and the
interaction between the fermion and the Coulomb potential,
and a �3+1� dimensional part, which is the kinetic term for
the Coulomb potential. A more general model was consid-
ered in Ref. 9 in the context of the quantum Hall effect. If
graphene is in vacuum �as it is the case for freely suspended
graphene sheets10�, then g2=e2 /�0, where e is the electron
charge and �0 is the vacuum permeability. In the presence of
a substrate with a dielectric constant �, the effective charge is
reduced,

g2 =
2

1 + �

e2

�0
. �6�

In Eq. �5�, we have not included any contact four-Fermi in-
teractions, which are irrelevant at weak coupling. At strong
coupling, however, these interactions develop nontrivial
fixed points.11 We shall assume that these four-Fermi inter-
actions start out with small couplings and flow to the trivial
fixed point.

We will be particularly interested in the limit of infinite
Coulomb repulsion g2→�. In this limit, there is no kinetic
term for A0 in the bare action �5�; however, an effective
kinetic term will be generated by the fermion loop. We find it
useful to keep g2 large but finite for the purpose of regular-
ization and for the discussion of the real graphene.

Without the coupling to the scalar potential A0, the theory
is that of free Dirac fermions which is invariant under the
relativistic scale transformation �4�. Our goal is to see that
after coupling to the scalar potential the system remains scale
invariant, but under a more general type of scale transforma-
tion with a �generally� fractional z.

A relativistic counterpart of our model was considered
previously. In Refs. 12 and 13, free fermions are coupled to
a gauge field A	. At sufficiently large N, infrared limit of the

new system is described by a conformal field theory. �For N
smaller than some critical value, which is still not exactly
known, it was argued that the system develops a mass gap.14�
The difference between our case and the case considered in
Refs. 12 and 13 is the lack of Lorentz invariance due to the
instantaneous Coulomb interaction. The fact that in graphene
Coulomb interaction induces a logarithmic renormalization
of the fermion velocity and leads to logarithmic corrections
in thermodynamics is well known.15 To make the paper self-
contained, we repeat some of the calculations in the litera-
ture. To start, let us state the Feynman rules that follow from
Eq. �5�.

�i� The fermion propagator is

G0�p� =
i

p”
=

ip”

p2 . �7�

Here, we use quasirelativistic notation, where p stays for
�p0 , p�� �for example, d3p�dp0dp��, p” ��0p�0+v�� · p� , p2� p0

2

+v2�p� �2, and p� is the 2D momentum vector.
�ii� The A0 propagator is the integral of the 3D propagator

g2 / �pz
2+ �p� �2� over the momentum component perpendicular

to the 2D plane, pz,

D0�p� = g2� dpz

2�

1

pz
2 + �p� �2

=
g2

2�p� �
, �8�

and is simply the 2D Fourier transform of the function
g2 / �4�r�.

�iii� The interaction vertex is i�0.
For the simplicity of the notations, one can perform cal-

culations using the unit system where v=1, then restore v at
the end results by dimensionality. To have analytic control,
we shall work in the large-N limit and then extrapolate to
N=2. Each fermion loop comes with a factor of N, so in the
large-N limit one has to resum the fermion loop in the photon
propagator �this is identical to the random phase approxima-
tion�. The fermion loop is naively divergent; however, in any
gauge-invariant regularization scheme �e.g., dimensional
regularization� it is convergent. The resummed Coulomb
propagator is �see the Appendix�

D�q� = 2�q� �
q2 +

N

8

�q� �2

�q2�−1

. �9�

Since D�q��1/N, even in the g2→� limit the interaction
between fermions remains weak at large N, enabling a per-
turbative calculation.

III. RENORMALIZATION GROUP AND THE STRONG-
COUPLING FIXED POINT

We shall now perform Wilson RG in our theory at the
leading nontrivial order in 1/N. We assume that the theory
has a cutoff �0, and proceed to integrate out all momenta
between �1 and �0, where �1 is smaller than �0 by an
exponential factor. The leading 1/N correction to the fermion
kinetic term comes from the one-loop fermion self-energy
graph,
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��p� = − g2� d3q

�2��3

�0�p” − q”��0

�p − q�2 2�q� � +
g2N

8

�q� �2

�q2�−1

,

�10�

where integration is over q in the momentum shell �1�q
��0. In RG, we are interested only in the contribution pro-
portional to ln��0 /�1�.

Although the integral can be computed in closed analytic
form for any � �see below�, it is instructive to consider first
the limit �=�. In this limit, we find

��p� = �0�0p0 + �1�� · p� , �11�

where �0 and �1 are represented as integrals,

�0 =
8

N
� d3q

�2��3

q0
2 − q�2

�q2�3/2�q�2�
, �1 =

8

N
� d3q

�2��3

q0
2

�q2�3/2�q�2�
.

�12�

The integrands scale as q−3; therefore, both integrals contain
the factor ln��0 /�1�. These correspond to logarithmic renor-

malization of the kinetic terms �̄�0�0� and �̄�i�i�. The fact
that these terms are renormalized differently means that the
fermion velocity changes under the RG.

However, it is easy to see that �0 and �1 contain an ad-
ditional logarithmic divergence due to the singularity of the
integrands in the limit �q� � /q0→0. This singularity can be
traced to the fact that the Coulomb interaction is unscreened
in the finite frequency, zero wave number limit. However, in
this limit the only effect of the gauge field is to phase rotate
the fermion operator �; therefore, the logarithmic singularity
associated with the �q� � /q0→0 limit should disappear in any
gauge-invariant quantity, for example, in the fermion veloc-
ity v. Indeed, the renormalization of v depends on �1−�0,
which is free from the q� =0 singularity:

�1 − �0 =
8

N
� d3q

�2��3

1

�q2�3/2 =
4

�2N
ln

�0

�1
. �13�

The RG equation for the velocity becomes

p
�v�p�

�p
= −

4

�2N
v�p� , �14�

which implies that in the limit of infinitely strong Coulomb
coupling �→�, the velocity has a finite anomalous dimen-
sion �v=−4/ ��2N�. The solution to the RG equation �14� is

v�p� = const � p−4/��2N�. �15�

Since the velocity is the slope of the dispersion curve, one
concludes that the fermion dispersion relation has the form

� = const � pz, �16�

with the dynamic critical exponent z being

z = 1 + �v = 1 −
4

�2N
+ O�N−2� . �17�

Note that the argument of Ref. 17 that requires z=1 does not
apply to our case, since the fixed point here is at infinite
Coulomb coupling g→�.

Some physical consequences of Eq. �17� need to be men-
tioned. Since z�1, the quasiparticle is stable, since its decay
into two or more other quasiparticles is forbidden by energy
and momentum conservation. The specific heat has a power-
law behavior at small temperature T:

C�T� � T�, � =
2

z
− 1. �18�

At large N, �=1+8/ ��2N�. The first logarithmic correction
to the specific heat was computed in Ref. 18; our formula
�18� sums up all powers of log�T� /N.

The power-law behavior of the velocity �16� tells us that
at g→� the system is scale invariant with respect to the
scaling transformation �3�. In this regime, it is more conve-
nient to define the dimensions of the operators with respect
to the scale transformation �3� rather than the relativistic ver-
sion �4�. In this new scheme,

�x� = − 1, �t� = − z, �A0� = z, �g−2� = 1 − z � 0.

�19�

The last equation means that the bare kinetic term for A0 is a
relevant perturbation at the strongly coupled fixed point.

IV. FINITE COULOMB INTERACTION

Let us briefly consider the case of finite �. The loop inte-
gral in Eq. �10� can be evaluated explicitly �see the Appen-
dix�,

��p� =
4

N�2 �f0���p0�0 + f1���p� · �� �ln
�0

�1
, �20�

where

� =
g2N

16v
�21�

is the parameter measuring the importance of photon self-
energy compared to its bare inverse propagator. The func-
tions f0 and f1 in Eq. �20� are

f1��� = �− ��1 − �2/��arccos � − 1 + �/2� , � � 1

���2 − 1/��ln�� + ��2 − 1� − 1 + �/2� , � � 1,
�

�22�

f0���

= �− ��2 − �2�/��1 − �2�arccos � − 2 + �/� , � � 1

���2 − 2�/���2 − 1�ln�� + ��2 − 1� − 2 + �/� , � � 1.
�

�23�

The asymptotics of the functions f0 and f1 at large and small
� are

f1��� = ���/4�� − �2/3 + O��3� , � � 1

ln�2�� − 1 + �/2� + O��−2� , � � 1,
� �24�
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f0��� = ��2/3 + O��3� , � � 1

ln�2�� − 2 + �/� + O��−2� , � � 1.
� �25�

These functions are related by f0���=−�f1����+ f1��� and are
plotted in Fig. 1, together with the difference f1− f0. The
expressions above are consistent with those quoted in Ref.
16.

The running of the fermion velocity is governed by the
RG equation

p
�v�p�

�p
= −

4

�2N
�f1��� − f0����v�p� � �v���v�p� . �26�

Since f1���� f��� for all � �see Fig. 1�, the fermion velocity
increases monotonically as one decreases the momentum
scale. Here, �v is the anomalous dimension for the velocity
v. As expected, in the limit of infinite Coulomb coupling it
approaches the constant value found above:

lim
�→�

�v��� = −
4

�2N
. �27�

V. FINITE N AND GRAPHENE

So far, we have discussed the limit N�1 where reliable
calculations can be performed. Let us now discuss finite N,
keeping in mind that in graphene N=2. Unfortunately, there
is no reliable calculation tool that works for all values of N
and the coupling constant g; therefore, our discussion will be
mostly conjectural.

The simplest possibility is that what we saw at large N
remain qualitatively valid at all N: there are two fixed points,
an infrared unstable one at g=� and an infrared stable one at
g=0. At g=�, the system exhibits invariance with respect to
Eq. �3�, although the value of z for small N cannot be com-
puted in a reliable fashion. This possibility is illustrated in
Fig. 2. If this is the case, then real graphene �with N=2� is
always in the semimetal phase.

Another possibility is that at sufficiently small N, the
Coulomb interaction is strong enough to induce a spontane-
ous condensation of particle-hole pairs, creating an excitonic
gap which makes the system insulating. �The alternative pos-
sibility of ferromagnetism was considered in Refs. 19 and
20.� This possibility is depicted in Fig. 3. The insulator phase

exists when N�Ncrit, but only for sufficiently strong cou-
pling g�gc�N�. When N=Ncrit, gc=�, and for N�Ncrit, the
insulator phase no longer exists; the system is in the semi-
metal phase for all g. Relativistic massless �2+1�D QED is
thought to develop a gap when number of fermion species is
below some critical value.14

If the phase diagram is as in Fig. 3, then two possibilities
exist for real graphene. If Ncrit�2, or if Ncrit�2 but the bare
Coulomb coupling �in vacuum� g�gc�N=2�, then graphene
is a semimetal. In contrast, if Ncrit�2 and in vacuum
g�gc�N=2�, then freely suspended graphene10 is an insula-
tor. All available experimental data, on the other hand, are
consistent with graphene on a SiO2 substrate being a semi-
metal. Therefore, if in vacuum graphene is insulating, then it
undergoes an insulator-semimetal phase transition as a func-
tion of the dielectric constant of the substrate.

The authors of Refs. 21 and 22 solved a gap equation with
the screened Coulomb interaction and found Ncrit�2.55. If
this is the case, then the system with N=2 develops an exci-
tonic gap at sufficiently large g. However, this result is prob-
ably not conclusive as the gap equation in Refs. 21 and 22 is

1 2 3 4 5 6

0.25

0.5

0.75

1

1.25

1.5

FIG. 1. The functions f1��� �solid line� and f0��� �dashed line�
and their difference f1���− f0��� �dotted line�. 8

8

semimetal

g

N
0

FIG. 2. The simplest phase diagram. The line g=� is a line of
infrared unstable fixed points. From any finite value of g, the sys-
tem flows to an infrared stable fixed point at g=0.

8

insulator

semimetal

g

N
0 8N crit

FIG. 3. A slightly more complicated phase diagram. For N
�Ncrit, the system is always in the semimetal phase. For N�Ncrit, it
can be in the semimetal phase �for g�gc�N�� or in the insulating
phase �for g�gc�N��.
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not systematic at small N, and also neglects the frequency
dependence in the photon propagator. Ultimately, the phase
diagram of graphene should �and could� be determined by a
direct numerical simulation of the theory.

In the rest of this section, we shall assume that the phase
diagram is as in Fig. 2, or as in Fig. 3 with Ncrit�2. The
system with N=2 and infinite Coulomb coupling should
show scale invariance �3� with a critical exponent z which
can be estimated by extrapolating Eq. �17�,

z � 0.8 for N = 2. �28�

Note that the 1/N correction to z is only 20% at N=2, giving
us hope that the 1/N expansion works reasonably well even
for N=2.

The question now is whether in real graphene � is large
enough so that the system is closed to the scale-invariant
regime. If we take the typical experimental value v
=106 m/s,3,4 then we find ��3.4, which is reasonably large
compared to 1. Therefore, one concludes that graphene is
sufficiently close to the scale-invariant regime. However, in
most experiments the graphene single layer lies on a sub-
strate, which reduces the effective Coulomb potential �Eq.
�6��. If we take the substrate to be SiO2 with �=4.5, we find
��1.25, which is only marginally larger than 1.

The above quoted value ��3.4 should be thought of as
the initial condition for the RG equation, valid at the momen-
tum scale of the order of the inverse lattice size. As we flow
to the infrared, the system deviates more and more from the
strongly coupled fixed point due to the bare kinetic term
which is a relevant perturbation. However as the initial con-
dition is relatively close to the fixed point, it will take a large
“RG time” to go to the weak coupling regime ��1. The
graphene thus remains close to the strong-coupling limit for
a large momentum range. The width of this range can be
roughly estimated as

exp�2N

4
ln 3.4� � 103, �29�

where we have used the leading 1/N result for the dimension
of the bare Coulomb kinetic term.

An additional information for the effect of finite � can be
obtained from the value of the anomalous dimension for the
velocity as given by Eq. �14� at �=3.4:

�v�3.4� � 0.7�v��� � 0.15. �30�

It is a 30% reduction of the anomalous dimension �v. In Fig.
1, we see that for the realistic � the different f1− f0 is already
a rather flat function of �; an approximate scaling behavior
can be expected.

At the asymptotic infrared end of the RG flow is the
trivial fixed point �=0, near which the fermion velocity in-
creases linearly with the logarithm of the momentum �as
followed from Eq. �14� and the small � asymptotics in Eqs.
�24��,

− p
�v�p�

�p
=

g2

16�
, �31�

which translates into an increase of 1.26�106 m/s per de-
cade for graphene in vacuum. However, this regime is
achieved only at extremely low momenta after the system
has passed from the vicinity of the strongly coupled fixed
point to the trivial one.

VI. CONCLUSION

In this paper, we consider a model of N massless four-
component Dirac fermions interacting through an instanta-
neous Coulomb interaction. We show that in the limit of
infinitely strong coupling, the system shows a scale-invariant
behavior �3� which is characterized by a dynamic critical
exponent z. We obtain the value of z at large N.

We also discuss two possibilities for the phase diagram of
the system at finite N. In one of the possibilities, a part of the
phase diagram is occupied by the insulator phase. It is very
interesting if in freely suspended graphene the Coulomb in-
teraction is strong enough to open an excitonic gap. Provided
that such a gap is never opened for N=2, we argue that the
Coulomb interaction in vacuum is strong enough so that
freely suspended graphene sheets can be considered as being
in the vicinity of the strong-coupling fixed point for a large
range of momentum.

How can our predictions be tested in experiment? Assume
one could measure with high precision the quasiparticle dis-
persion curve in freely suspended graphene. If the strong-
coupling large-N limit is any guide, then one should have a
slight deviation from the linear dispersion law, perhaps ap-
proximately �� p0.85 �see Eq. �30��. For graphene on a sub-
strate, the deviation from the linear law is smaller.

Finally, we hope that this work will motivate numerical
simulations of the model �5�, which should help clarify its
phase structure.

ACKNOWLEDGMENTS

I am indebted to A. Andreev, D. Cobden, D. B. Kaplan,
and S. Sachdev for discussions. This work is supported, in
part, by DOE Grant No. DE-FG02-00ER41132.

APPENDIX: CALCULATION OF THE BETA FUNCTION
AT LARGE N

1. Coulomb propagator

To leading order in the large-N expansion, we must resum
all fermion bubble graphs in the Coulomb propagator. We
shall perform calculations in the unit system where v=1 and
restore v in final formulas when needed.

The one-loop fermion bubble diagram �Fig. 4� is

��q� = Ng2� d3k

�2��3Tr�01

k”
�0 1

k” + q”
� , �A1�

where k–=�	k	, 	=0,1 ,2. The manipulation of the Dirac
algebra proceeds in a standard fashion. We use the formulas
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1

k”
=

k”

k2 , �A2�

Tr��	�
���� = 4��	
�� − �	��
 + �	�
�� �A3�

to find

��q� = 4Ng2� d3k

�2��3

2k0�k0 + q0� − k · �k + q�
k2�k + q�2 . �A4�

We now use Feynman parametrization

1

AB
= �

0

1

dx
1

�xA + �1 − x�B�2 �A5�

to rewrite

��q� = 4Ng2�
0

1

dx� d3k

�2��3

2k0�k0 + q0� − k · �k + q�
��1 − x�k2 + x�k + q�2�2 .

�A6�

Changing the integration variable k→k−xq, the denominator
in the integrand becomes an even function of q, and one can
throw away terms odd in k in the numerator. Furthermore,
due to spherical symmetry we can replace in the numerator
k0

2→k2 /3. We find

��q� = 4Ng2�
0

1

dx� d3k

�2��3

�

−
1

3
k2 − 2x�1 − x�q0

2 − x�1 − x�q2

�k2 + x�1 − x�q2�2 . �A7�

We perform integration over k using standard formulas of
dimensional regularization

� ddk

�2��d

1

�k2 + ��n =
1

�4��d/2

�n −
d

2
�

��n�
1

�n−d/2 , �A8�

� ddk

�2��d

k2

�k2 + ��n =
1

�4��d/2

d

2

�n −
d

2
− 1�

��n�
1

�n−d/2−1

�A9�

to obtain

��q� =
g2N

�

�q� �2

�q2 � dx�x�1 − x��1/2 =
g2N

8

q�2

�q0
2 + v2�q� �2

,

�A10�

where in the last expression we have restored v. The re-
summed Coulomb propagator is

D�q� = 2�q� � +
g2N

8

�q� �2

�q2�−1

. �A11�

2. Correction to fermion propagator

We now compute the 1/N correction to the fermion self-
energy �Fig. 5�:

��p� = − g2� d3q

�2��3

�0�p” − q”��0

�p − q�2 D�q� . �A12�

The integral is naively linearly divergent at large q, but to
leading order in q the integrand is an odd function of q.
Therefore, the integral is only logarithmically divergent and
can be evaluated by expanding in p�q. One finds

��p� = Z0�0p0 + Z1�ipi, �A13�

where

Z0 = g2� d3q

�2��3

q0
2 − �q� �2

q4 D�q� , �A14�

Z1 = g2� d3q

�2��3

q0
2

q4D�q� . �A15�

Introducing spherical coordinates, q0=q cos � and �q� �
=q sin �, one can then write

Z0 =
4

�2N

�

2
�

0

�

sin �d�
cos2 � − sin2 �

sin ��1 + � sin �� � dq

q
,

�A16�

Z1 =
4

�2N

�

2
�

0

�

sin �d�
cos2 �

sin ��1 + � sin �� � dq

q
,

�A17�

where �=g2N /16. The integral over dq in a spherical shell
�1�q��0 yields ln��0 /�1�. The angular integral can be
taken explicitly and results in Eqs. �20�, �22�, and �23�.

q

k+q

k
FIG. 4. The photon polarization diagram.

p

q

p-q

FIG. 5. The fermion self-energy diagram.

D. T. SON PHYSICAL REVIEW B 75, 235423 �2007�

235423-6



1 K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V.
Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad.
Sci. U.S.A. 102, 10451 �2005�.

2 G. W. Semenoff, Phys. Rev. Lett. 53, 2449 �1984�.
3 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.

Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firson,
Nature �London� 438, 197 �2005�.

4 Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature �London�
438, 201 �2005�.

5 V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95, 146801
�2005�.

6 S. Sachdev, Quantum Phase Transitions �Cambridge University
Press, Cambridge, 1999�.

7 H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20 �1981�;
195, 541�E� �1982�.

8 H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 193, 173 �1981�.
9 J. Ye and S. Sachdev, Phys. Rev. Lett. 80, 5409 �1998�.

10 J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J.
Booth, and S. Roth, Nature �London� 446, 60 �2007�.

11 I. F. Herbut, Phys. Rev. Lett. 97, 146401 �2006�.
12 S. Templeton, Phys. Lett. 103B, 134 �1981�.
13 S. Templeton, Phys. Rev. D 24, 3134 �1981�.
14 T. Appelquist, D. Nash, and L. C. R. Wijewardhana, Phys. Rev.

Lett. 60, 2575 �1988�.
15 J. González, F. Guinea, and M. A. H. Vozmediano, Nucl. Phys. B

424, 595 �1994�.
16 J. González, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. B

59, R2474 �1999�.
17 I. F. Herbut, Phys. Rev. Lett. 87, 137004 �2001�.
18 O. Vafek, Phys. Rev. Lett. 98, 216401 �2007�.
19 N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B

72, 174406 �2005�.
20 J. Nilsson, A. H. Castro Neto, N. M. R. Peres, and F. Guinea,

Phys. Rev. B 73, 214418 �2006�.
21 E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy,

Phys. Rev. B 66, 045108 �2002�.
22 H. Leal and D. V. Khveshchenko, Nucl. Phys. B 687, 323 �2004�.

QUANTUM CRITICAL POINT IN GRAPHENE APPROACHED… PHYSICAL REVIEW B 75, 235423 �2007�

235423-7


