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The orbital magnetism is studied in graphene monolayer within the effective-mass approximation. In models
of short-range and long-range disorders, the magnetization is calculated with self-consistent Born approxima-
tion. In the zero-field limit, the susceptibility becomes highly diamagnetic around zero energy, while it has a
long tail proportional to the inverse of the Fermi energy. We demonstrated how the magnetic oscillation
vanishes and converges to the susceptibility, in going from a strong-field regime to a weak-field regime. The
behavior at zero energy is shown to be highly singular.
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I. INTRODUCTION

The monolayer graphene has a band structure analogous
to the massless relativistic particle, and its peculiar electronic
properties have attracted much interest. Recently, several ex-
perimental techniques make atomically thin graphene sheets
available,1–4 and the nature of this unique system is being
revealed. In this paper, we present a theoretical study on the
orbital magnetism of graphene including the disorder effects.

The graphene has a semimetallic electronic structure
where the conduction and valence bands touch at the
Brillouin-zone corners, K and K� points. Around the band-
touching point �set to �=0�, the low-energy spectrum has a
linear dispersion analogous to the massless Dirac fermion.
The spectrum in a magnetic field is different from that in
usual metals in that the Landau-level spacing is not even but
wider in lower energies, and is proportional to �B, not to B,
where B is the magnetic field,5 and this leads to an unusual
behavior in the orbital magnetization. The magnetism of
graphene was first studied as a simple model for three-
dimensional graphite,5 where the susceptibility of the
disorder-free graphene was calculated within the effective-
mass approximation. It was found that the system exhibits a
large diamagnetism at �F=0, expressed as a delta function of
�F at the absolute zero temperature. The graphene magnetism
was considered again in studies on the graphite intercalation
compounds, where the tight-binding model was applied for a
wide range of Fermi energies.6–9

In the presence of the disorder, it becomes nontrivial how
the magnetization behaves under this unusual electronic
structure. Particularly, it is not clear how the delta function in
the susceptibility is broadened, since we naively suppose that
the scattering is absent at �=0, where the density of states
vanishes. Moreover, we do not know how the magnetic os-
cillation is destroyed by the disorder when we go from the
high-field to the low-field regime, and how it converges to
the zero-field limit.

The effects of disorder on graphene under magnetic fields
have been examined in early theoretical studies before the
experimental discovery of graphene, where the electronic
structure,10 the transport properties,10–12 and the de Haas–van
Alphen effect13 were investigated. More recently, the
Shubnikov–de Haas oscillation was studied in disordered
graphene,14,15 and the spectral and transport properties were

examined in the presence of lattice defects under magnetic
fields.16

The purposes of this paper are to calculate the magnetiza-
tion of disordered graphene in arbitrary magnetic fields and
to obtain the perspective which connects the high-field and
zero-field limits. For the model disorder, we introduce the
short-ranged and long-ranged scatterers following the formu-
lation in Refs. 10–12, and treat the disorder effects within a
self-consistent Born approximation �SCBA�. The paper is or-
ganized as follows: In Sec. II, we briefly discuss the
effective-mass Hamiltonian and the SCBA in order to make
this paper self-contained although fully discussed previ-
ously.10 The analytic discussions of the magnetization in the
zero-field limit and the numerical calculation for finite fields
are presented in Sec. III. Discussions and conclusions are
given in Sec. IV.

II. FORMULATION

A. Hamiltonian

We start with the effective-mass Hamiltonian in an ideal
graphene in a magnetic field given by10

H0 =
�

��
0 �x − i�y 0 0

�x + i�y 0 0 0

0 0 0 �x + i�y

0 0 �x − i�y 0
� , �1�

where �=p+eA, with the electron momentum operator p
and the vector potential A= �0,Bx� in the Landau gauge, and
�=�3a�0 /2, with a being the lattice constant and �0 the
hopping integral between nearest-neighbor carbon atoms. A
graphene is composed of a honeycomb network of carbon
atoms, where a unit cell contains a pair of sublattices denoted
by A and B. The Hamiltonian �1� operates on a four-

component wave function �FA
K ,FB

K ,FA
K� ,FB

K��, where FA
K and

FB
K represent the envelope functions at A and B sites for K

point, respectively, and FA
K� and FB

K� for K�.
The eigenstates are labeled by �j ,n ,k�, with the valley

index j=K ,K�, the Landau-level index n=0, ±1, . . ., and the
wave vector k along the y direction.10 The eigenenergy de-
pends solely on n as �n=��B sgn�n���n�, where ��B

=�2� / l with l=�� /eB. The wave functions are written as
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Fnk
K =

Cn

�L
exp�iky��

sgn�n��− i���n�−1,k

��n�,k

0

0
� , �2�

Fnk
K� =

Cn

�L
exp�iky��

0

0

��n�,k

sgn�n��− i���n�−1,k

� , �3�

where �n,k�x�= �2nn!��l�−1/2e−z2/2Hn�z�, with z= �x+kl2� / l
and Hn being the Hermite polynomial, and

Cn = �1 �n = 0�

1/�2 �n � 0� ,
� sgn�n� = �0 �n = 0�

n/�n� �n � 0� .
�

�4�

For the disorder potential, we consider two simple mod-
els: short- and long-ranged scatterers.10 The first is on-site
potential localized at a particular A or B site with a random
amplitude. A scatterer on A site at RA is represented as

U�r� =�
1 0 zA

*zA� 0

0 0 0 0

zAzA�
* 0 1 0

0 0 0 0
�ui��r − RA� , �5�

and that for B site at RB as

U�r� =�
0 0 0 0

0 1 0 zB
*zB�

0 0 0 0

0 zBzB�
* 0 1

�ui��r − RB� , �6�

where we introduced zX=eiK·RX and zX� =eiK�·RX with X=A
and B, and ui= ��3a2 /2�Ui with the on-site energy Ui. We
assume that the scatterers are equally distributed on A and B
sites with density ni

A=ni
B=ni /2 and the mean-square ampli-

tude 	�ui
A�2
= 	�ui

B�2
=ui
2.

Dominant scatterers in graphenes are expected to have
their potential range larger than the lattice constant for which
intervalley scattering is much smaller than intravalley scat-
tering. Further, realistic scatterers are likely to have the range
comparable to the Fermi wavelength.20–22 In the following,
however, we shall assume scatterers with potential range
smaller than the Fermi wavelength. The reason is that the
results are expected to remain qualitatively the same and,
further, that actual calculations are practically possible.

In this long-range model, a scatterer at R is expressed by

U�r� =�
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
�ui��r − R� . �7�

We assume the scatterer density ni and the mean-square am-
plitude ui

2. It was shown that the transport properties in the
short-ranged disorder and the long-ranged one are qualita-
tively similar.10–12

B. Self-consistent Born approximation

We introduce the self-consistent Born approximation for
graphene, following the formulation in Ref. 10. The self-
energy of the disorder-averaged Green’s function 	G	,	�
 is
given by


	,	���� = �
	1,	1�

	U	,	1
U	1�,	�
	G	1,	1�

���
 , �8�

with 	= �j ,n ,k�, where 	¯
 represents the average over the
impurity configurations.

In the short-range model, the self-energy and thus the av-
eraged Green’s function become diagonal with respect to 	,
and further, the self-energy is independent of 	. We then
have

	G	,	����
 = �	,	�G	��� , �9�

G	��� =
1

� − �	 − 
���
, �10�

where 
��� is the self-energy. The self-consistent equation
�8� is explicitly written as


��� =
W���B�2

2 �
n=−�

�
g��n�

� − �n − 
���
, �11�

where we introduced a cutoff function g��� which is 1 in
�����c and smoothly vanishes around �= ±�c. For example,
we can take g���=�c

	 / ����	+�c
	� with 	2. Further, W is the

dimensionless parameter for the disorder strength defined as

W =
niui

2

4��2 . �12�

The density of states per unit area is given by

���� = −
gvgs

2�2�2W
Im 
�� + i0� , �13�

where gv=gs=2, gv and gs being the valley and spin degen-
eracies, respectively.

In the zero-field limit, Eq. �11� becomes


��� = 2W�
0

�

tdt
�� − 
�g�t�
�� − 
�2 − t2 . �14�

The integral is approximately written in ���c as

MIKITO KOSHINO AND TSUNEYA ANDO PHYSICAL REVIEW B 75, 235333 �2007�

235333-2




��� = − W�� − 
�log−
�c

2

�� − 
�2� , �15�

where the branch of the logarithm must be appropriately cho-
sen. Then we can solve this equation analytically,


��� = � − �2WfL�−
i�

2W�0
��−1

, �16�

where fL�z� is the Lambert W function, which is defined as
the inverse function of z=yey, and

�0 = �c exp�−
1

2W
� . �17�

At �=0, in particular, we have


�0 + i0� = − i�0. �18�

In �����0, 
 is approximately written with the use of the
expansion fL�z�� log�z�−log log�z� for �z��1 as


�� + i0� � − 2W� log��c

�
� − i�W��� . �19�

This can alternatively be derived from Eq. �14� by assuming
���� �
�, and thus correspond to the Boltzmann limit. If W
�1, the states around �=�c are completely mixed up with
those at �=0, as expected from the imaginary part of 
 in
Eq. �19�. To avoid this undesirable situation, we assume W
�1 in the following calculation.

When the magnetic field is large enough that a Landau
level is well separated from others, Eq. �11� can be approxi-
mately solved around the energy of that level. The width of
the Landau level is estimated as 2� with

� = �2W��B. �20�

In the long-ranged model, the self-energy and Green’s
function have off-diagonal matrix elements between �j ,n ,k�
and �j ,−n ,k�. We have


	,	���� = � j,j��k,k���n,n�

d��� + �n,−n�


o���� . �21�

By introducing 
±�
d±
o, the equation becomes


+��� = W���B�2�
n=0

�
�� − 
−�g��n�

�� − 
+��� − 
−� − �n
2 , �22�


−��� = W���B�2�
n=1

�
�� − 
+�g��n�

�� − 
+��� − 
−� − �n
2 , �23�

with the same W as the short-range case �Eq. �12��. The
density of states per unit area becomes

���� = −
gvgs

2�2�2W

1

2
Im�
+�� + i0� + 
−�� + i0�� . �24�

In a high magnetic field such that Landau levels are well
separated, the width of the Landau level becomes the same
as � in Eq. �20� for the level N�0, while it is �2� for N
=0. In the weak-field limit, 
+ and 
− coincide and satisfy
Eq. �14�.

C. Magnetization and susceptibility

The magnetization is defined as

M = − � ��

�B
�

�

, �25�

where ��T ,� ,B� is the thermodynamic potential and � is
the chemical potential. By noting that the electron concen-
tration N is given by

N = − � ��

��
�

B
, �26�

we obtain the so-called Maxwell relation,

� �M

��
�

B
= � �N

�B
�

�

. �27�

We write N in terms of the density of states � as

N = �
−�

�

���,B�f���d� , �28�

with f���=1/ �1+e��−��/kBT�, and calculate M by integrating
Eq. �27� over �. After a little algebra, we obtain

M = �
−�

�

d�f����
−�

�

d��
�����,B�

�B
. �29�

In SCBA, we evaluate this by substituting � with Eq. �13� or
�24� depending on the type of the disorder. The magnetiza-
tion in a nonzero temperature is always written in terms of
that of T=0 as

M�T,�� = �
−�

�

d�−
�f���

��
�M�0,�� . �30�

The magnetic susceptibility is given by

� = � �M

�B
�

B=0
, �31�

taking the zero-field limit in Eq. �29�.

III. MAGNETIZATION IN DISORDERED GRAPHENES

For the short-ranged disorder, Eqs. �11�, �13�, and �29�,
lead to the expression

� = −
gvgs

6�2

e2�2

�2 �
−�

�

d�f���Im
1

�� − 
����2 , �32�

where 
 is the self-energy at B=0. The derivation of this is
straightforward and is presented in the Appendix.

In the energy range ���c, we can use the explicit form
�16� for 
. At absolute zero temperature, we execute the
integral to have

���F� = −
gvgs

3�2

e2�2

�2

2W

�0
F� �F

2W�0
� , �33�

with
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F�x� = −
1

x
Im fL�− ix� +

1

2
fL

2�− ix�� . �34�

The function F�x� has the maximum at x=0 with F�0�=1,
giving

��0� = −
gvgs

3�2

e2�2

�2

2W

�0
. �35�

In the energy range �� � ��0, we use Eq. �19� and obtain

���F� � −
gvgs

3�

e2�2

�2

W

��F�
, �36�

which monotonically decreases as ��F� increases. The behav-
ior of ���F� can be roughly described as a long-tailed peak
�36� which saturates around ���0 to the value �35�.

When the disorder W becomes smaller, the peak of the
susceptibility �33� becomes narrower and higher as �0 be-
haves as �exp�−1/2W�. The integral over � rigorously be-
comes −gvgse

2�2 / �6��2�, as proven in the Appendix. This is
roughly verified by integrating Eq. �36� from −�c to �c with
the region �� � ��0 excluded and by using Eq. �17�. Thus, in
the clean limit W→0, � becomes a delta function,

���F� = −
gvgs

6�

e2�2

�2 ���F� , �37�

which agrees with the results in Refs. 5 and 7.
For the long-ranged disorder, the expression for the sus-

ceptibility in �� � ��c becomes

� � −
gvgs

6�2

e2�2

�2 �
−�

�

d�f��� Im
1

X21 −
3W

1 + W log�− �c
2/X2�� ,

�38�

with X=�−
���. The derivation is given in the Appendix.
Compared with the short-ranged case �32�, we have the extra
second term of the order of O�W�, but this gives a minor
effect since W is assumed to be small. When O�W2� is ne-
glected, the susceptibility becomes just 1−3W times as large
as in the short-ranged disorder. Accordingly, the integration
of � over � weakly depends on W, while in W→0, we again
get Eq. �37�.

In a strong magnetic field where the Landau levels are
resolved, the magnetization exhibits an oscillatory behavior
as a function of the Fermi energy and the magnetic field. The
damping of the magnetic oscillation in the disorder was dis-
cussed in a simple approximation where the scattering rate
was assumed to be constant.13 We calculate here the magne-
tization at nonzero fields in SCBA, since this kind of treat-
ment is essential in investigating the behavior at the zero
energy. We numerically evaluate Eq. �29�, in which the de-
rivative in B is taken with a finite increment �B. Here and in
the following, we take the long-ranged disorder and plot ev-
ery quantity per spin and valley. The field amplitude B is
specified by nc= ��c /��B�2�1/B, which represents how
many Landau levels are accommodated between �=0 and �c.
We set nc=100 here.

As an overview of the dependence on the disorder
strength, we plot in Fig. 1 the density of states and the mag-

netization for several W’s at zero temperature and a fixed
magnetic field. The density of states is basically equivalent to
that already obtained in Ref. 10, but we present this here to
demonstrate the relation to the magnetization. We see that
the Landau levels are separated more clearly in the lower
energy due to the larger level splitting, and the magnetization
exhibits an oscillation in the corresponding region. As W
becomes larger, the oscillatory part vanishes from the higher-
energy side. The results for the short-range disorder are not
shown, but are qualitatively similar to those for the long-
range disorder.

The Landau-level broadening in disordered graphene has
also been studied for a system with lattice vacancies.16 The
result becomes somewhat different from our model in that
the Landau levels around �=0 become much broader than in
higher levels, in accordance with the fact that the vacancies
give rise to impurity states around the band-touching
point.16–19 We do not have a strong scattering enhancement
at �=0 in the present effective-mass model, where the on-
site energy of the disorder potential is assumed to be much
smaller than the �-band width.

We focus on the case of W=0.02 and show in Fig. 2 the
plots of the density of states and of M /B for several different
magnetic fields. We see that the oscillation in M terminates
at a certain point and that in higher energies, M /B sticks to
the zero-field limit � shown as a dashed line. The oscillation
is observable when the Landau-level spacing ��B ��n+1
−�n � ����B�2 / �2 �� � � is larger than the energy broadening
at B=0, which is �W ��� in the Boltzmann limit �19�. Then
the condition becomes

� �
��B

�2�W
. �39�

In Fig. 2, the boundary is indicated by an arrow, which ac-
tually divides the oscillating and nonoscillating parts.
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FIG. 1. Density of states �above� and the magnetization at T
=0 �below� in the long-ranged disorder with several strength W’s.
The plot is against the Fermi energy, and the values are per spin and
per valley. Vertical dashed lines show the energies of the Landau
level in the clean limit.
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We show in Fig. 3 the renormalized density of states and
magnetization against � /��B. We can see that the Landau-
level width is almost independent of the magnetic field in
this scale, as expected from Eq. �20� in the strong-field limit,
while each level shifts toward zero energy as B becomes
smaller �nc larger�. From the real part of 
 in Eq. �19�, the
shift can be estimated as ��n�−W�n log �nc /n�. The ampli-
tude of the magnetic oscillation roughly scales as M ���B

��B, in contrast to the behavior in the nonoscillating region
where the relation M =�B is valid. This is because the gain
of the total energy U due to the magnetic field is proportional
both to the Landau-level spacing ���B� and the level degen-
eracy ��B�, which gives M �−dU /dB��B.5 The oscillation
amplitude gradually reduces as B becomes smaller, as the
level shift causes a reduction of the energy gap.

We expect that the lowest Landau gap vanishes when the
gap width is as small as the energy broadening at �=0 in
zero field or

��B � �0. �40�

This is equivalent to the condition that the first Landau level
is shifted onto �=0, or ���1 � ���B, as naturally expected.
To focus on this critical behavior, we present in Fig. 4 the

plots of the density of states and the magnetization for W
=0.1, where the condition �40� is achieved at nc�20 000.
We see that the structure of the Landau level n=0 still sur-
vives at nc=100, and M /B deviates largely from � around
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this region. Here, the magnetization at �=0 roughly scales as
M ��B. At nc=10 000, the gap collapses and the magnetiza-
tion peak almost reaches that of �, and thus M �B. If we fix
the Fermi energy at �=0 and start the magnetic field from 0,
the magnetization should exhibit the crossover from linear to
square behavior in B.

IV. DISCUSSION AND CONCLUSION

At nonzero temperatures, the magnetization as a function
of the Fermi energy, M���, is smoothed in accordance with
Eq. �30�, so that fine structures smaller than kBT are smeared
out. This effect competes with energy broadening due to the
impurity scattering, denoted here as �. We expect that the
crossover from the high-field �magnetic oscillation� to low-
field regime �M =�B� occurs when either of kBT or � ex-
ceeds the Landau-level spacing ��. In a usual two-
dimensional metal with a constant level spacing, it is known
that the disorder effects can be effectively included as the
Dingle temperature, kBTD=� /�. The reduction of the mag-
netic oscillation in disordered graphenes was studied with a
constant � and discussed with respect to the Dingle
temperature.13

In the realistic samples used in the experiment, dominant
scatterers are supposed to be screened charged impuri-
ties.20–22 There the scattering matrix elements between the
states on a Fermi surface are proportional to 1/kF, not a
constant like in our simple model. This situation is effec-
tively modeled in our calculation by assuming that the pa-
rameter W depends on �F as W�1/�F

2 in the long-range
model. Then we expect that the susceptibility in the Boltz-
mann limit �36� becomes ��1/�F

3 . From the experimental
value of the mobility of monolayer graphene, we estimate
W�70/�F

2 , where �F is measured in units of meV.
The magnetization becomes highly singular at zero energy

in our model, because the energy broadening, �0, is expo-
nentially small here. In the case of charged impurities, how-
ever, the scattering rate at zero energy may not be small since
the screening effect is strongly suppressed due to the lack of
the density of states.21,22 We need a self-consistent calcula-
tion including the screening and the disorder to study such a
case. This is out of the scope of this paper and left for a
future study.

The experimental measurements of the magnetization of
two-dimensional electron systems were performed on the
semiconductor heterostructures by using the superconducting
quantum interference device23,24 or using the torque magne-
tometer.25–28 We expect that the detection of the graphene
magnetism is also feasible with those techniques.

To summarize, we have studied the magnetization in
graphene monolayer in the presence of the disorder with the
effective-mass model and the self-consistent Born approxi-
mation. The susceptibility ���F� has a sharp diamagnetic
peak around zero energy even in the disorder and a long tail
proportional to the inverse of the Fermi energy. We have
demonstrated that with the decrease of the magnetic field, the
magnetic oscillation vanishes, and M /B converges to � as
the Landau gaps are smeared out.

Note added in proof. Recently, we became aware of re-
lated works, Refs. 30 and 31, where the magnetic suscepti-
bility for the two-dimensional Dirac fermion model is calcu-
lated by assuming that the scattering rate is energy-
independent.
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APPENDIX: SUSCEPTIBILITY

We present here the derivation of the susceptibility in
SCBA for the short-ranged disorder �Eq. �32�� and for the
long-ranged disorder �Eq. �38��. For the short-ranged case,
we obtain from Eqs. �13� and �29�,

� = −
gvgs

2�2�2W
�

−�

�

d�f����
−�

�

d�� Im ��2
���,B�
�B2 �

B=0
.

�A1�

Let us introduce a variable X=�−
 to write 
 as a function
�X ,B� as


��,B� � 
̃�X,B� =
W���B�2

2 �
n=−�

�
g��n�
X − �n

. �A2�

By using �

�B =− �X

�B , the derivative of 
 can be written in terms

of those of 
̃ as

�
��,B�
�B

= 1 +
�
̃�X,B�

�X
�−1

�
̃�X,B�
�B

. �A3�

The second-order derivative can be derived similarly as

�2


�B2 = �1 +
�
̃

�X
�−1 �2
̃

�B2 − 2
�2
̃

�X�B
� �


�B
� +

�2
̃

�X2� �


�B
�2� .

�A4�

Equation �A2� can be explicitly written as


̃�X,B� =
W

2
�th�0�

2
+ �

n=1

�

h�n�t�� , �A5�

where �t= ���B�2=2�2eB /� and h�x�=2Xg��X� / �X2− t�.
When �Im X � ���B, h�t� is regarded as smooth with re-

spect to increment �t, and we can use an approximation

�th�0�
2

+ �
0�n��

h�n�t��
= �

0

�

h�t�dt −
��t�2

12
h��0� +

1

2
h����� , �A6�

where O��t3� is neglected. Then we have
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̃�X,B� − 
̃�X,0� = −
W

24
h��0���t�2, �A7�

which leads to

� �
̃

�B
�

B=0,
= 0, �A8�

� �2
̃

�B2�
B=0

= −
W

6
�2e�2

�
�2 1

X3 . �A9�

With Eqs. �A1�, �A3�, and �A4�, we obtain

� =
gvgs

3�2

e2�2

�2 �
−�

�

d�f���Im �
−�

�

d���1 +
�
̃�

�X�
�−1� 1

X�3�
B=0

,

�A10�

where 
̃� X� are functions of ��. Integration in �� can be
executed with the aid of

d�� = �1 +
�
̃�

�X�
�dX�, �A11�

and finally obtain

� = −
gvgs

6�2

e2�2

�2 �
−�

�

d�f���Im �1

X2�
B=0

, �A12�

which is Eq. �32�. We can derive the identical equation start-
ing from the general formula based on the linear-response
theory.29

We can show that the susceptibility in the present system
has a “sum rule,” where the integration of ���� over � is a
constant, independent of the disorder strength. From Eq.
�A12�, we have

�
−�

�

��T,��d� = �
−�

�

��0,��d�

= −
gvgs

6�2

e2�2

�2 �
−�

�

d��
−�

�

d�� Im � 1

X�2�
B=0

= −
gvgs

6�2

e2�2

�2 �
−�

�

d�� Im �1

X2�
B=0

. �A13�

By replacing the integrating variable � with X, this becomes

�
−�

�

�d� = −
gvgs

6�2

e2�2

�2

1

2i
�

C

dX�1 +
�
̃

�X
� 
̃ + X

X2

= −
gvgs

6�2

e2�2

�2

1

2i
�

C

1

X
= −

gvgs

6�

e2�2

�2 , �A14�

where integration path C is a circle with an infinite radius

with clockwise direction, and we used 
̃�O�1/X� for large
�X�.

The susceptibility for the long-ranged disorder �38� can be
derived in a similar way to the short-ranged case, while the
procedure is rather complicated. From Eqs. �24� and �29�, we
obtain

� = −
gvgs

2�2�2W
�

−�

�

d�f����
−�

�

d�� Im �1
2

�2

�B2 �
+���,B�

+ 
−���,B���
B=0

. �A15�

We introduce a variable X±=�−
± and define 
±

� 
̃±�X+ ,X− ,B�, with


̃+ � W���B�2�
n=0

�
X−g��n�

X+X− − �n
2 , �A16�


̃− � W���B�2�
n=1

�
X+g��n�

X+X− − �n
2 . �A17�

The derivatives of 
 can be written in terms of 
̃ as

�
i

�B
= Aij

�
̃ j

�B
�A18�

and

�2
i

�B2 = Aij� �2
̃ j

�B2 − 2
�2
̃ j

�Xk�B

�
k

�B
+

�2
̃ j

�Xk�Xl

�
k

�B

�
l

�B
� ,

�A19�

where i , j ,k , l=±, repeated indices indicate summation, and
the matrix A is defined as

�A−1�ij � �ij +
�
̃i

�Xj . �A20�

We can calculate the derivatives of 
̃± at B=0 in a similar
way to the short-ranged case, and then obtain those for 
±

through Eqs. �A18� and �A19�. As a result, we have

� �2

�B2 �
+ + 
−��
B=0

=
1

1 + 	 + 2�
�2e�2

�
�2 1

X3

�−
W

6
+

1

1 − 	

W2

2
−

2�

�1 − 	�2

W2

4
� ,

�A21�

where X� limB→0 X+=limB→0 X−, and

	 = 2W�
0

�

tdt
g�t�

X2 − t2 , �A22�

� = 2W�
0

�

tdt
− X2g�t�
�X2 − t2�2 . �A23�

Substituting Eq. �A21� in Eq. �A15�, this becomes
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� = −
gvgs

6�2

e2�2

�2 �
−�

�

d�f����
X�−��

X���

dX�

�Im
1

X�3�− 1 + 3W 1

1 − 	�
−

��

�1 − 	��2�� ,

�A24�

where 	� and �� have the argument X� for X in Eqs. �A22�

and �A23�, and the integration in �� has been replaced by
d��= �1+	�+���dX.

In the region �� � ��c, Eqs. �A22� and �A23� can be ap-
proximately written as 	�−W log�−�c

2 /X2� and ��W. By
substituting them in Eq. �A24�, we can execute the integra-
tion in X� to obtain Eq. �38�. Here the expression of the
integrand is valid only for �� � ��c while the integration runs
over all �, but this is justified since the integral converges.
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