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A small change of basis in k ·p theory yields a Kane-like Hamiltonian for the conduction and valence bands
of narrow-gap semiconductors that has no spurious solutions, yet provides an accurate fit to all effective
masses. The theory is shown to work in superlattices by direct comparison with first-principles density-
functional calculations of the valence subband structure. A reinterpretation of the standard data-fitting proce-
dures used in k ·p theory is also proposed.
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I. INTRODUCTION

The Kane model for coupled conduction and valence elec-
trons in narrow-gap bulk semiconductors1–3 was first applied
to superlattices three decades ago.4 Today this model is still
used frequently for the study of medium- and narrow-gap
nanostructures.5–13 Kane’s theory has a notorious pitfall: spu-
rious solutions with large crystal momentum k, which arise
from small Hamiltonian matrix elements of order k2.7–9,11–47

Spurious propagating waves pose a serious problem, since
their presence within the energy gap changes the physical
character of the model system from semiconducting to me-
tallic.

Many schemes for eliminating the unphysical effects of
spurious solutions have been proposed �e.g., changing or
adding parameters in the Hamiltonian, or excising the of-
fending modes numerically or analytically�, but none has yet
found wide acceptance. The relative merits of the various
proposals are not discussed here. Instead, it is merely noted
that all of these schemes take the form of patches applied to
Kane’s original k ·p theory. The possibility of reconstructing
k ·p theory on a different foundation has not been consid-
ered.

This paper derives from first principles an 8�8 k ·p
Hamiltonian with no spurious solutions. The key step is a
slight change in the standard choice of basis. This allows the
adjustment-of-parameters method of Ref. 32, which was pro-
posed only as a useful approximation, to be formulated rig-
orously. The present derivation proves that—within the limi-
tations imposed by a second-order differential equation—this
method is not an approximation. That is, all terms of order k2

derived from a clearly defined basis can be included without
approximation. �The number of fitting parameters can be re-
duced with a few standard approximations,2,32,48 but that is
not a fundamental limitation of the method.� The change of
basis is applied here to the first-principles envelope-function
theory developed in Refs. 49–51. A comparison with density-
functional calculations on In0.53Ga0.47As/ InP superlattices
shows very good agreement.

In conventional k ·p perturbation theory,52,53 one uses a
unitary transformation to construct a basis in which the k ·p
coupling between the states of interest �set A� and all other
states �set B� is reduced to zero, while simultaneously renor-
malizing the masses in A and B. If A includes the highest
valence and lowest conduction states, the k ·p coupling

within A is either set to zero �in single-band effective-mass
theory3,52� or not modified at all �in the multiband Kane
theory2,3,53�.

In the present approach, a unitary transformation is used
to modify the conduction-valence k ·p interaction by only a
small amount. The coupling can be either strengthened or
weakened; its actual value is fixed �in one of several possible
choices� by setting the partially renormalized conduction-
band mass to zero. This is precisely the method used to
eliminate spurious solutions in Ref. 32. However, the inter-
face operator ordering derived here is more subtle than the
simple heuristic model of Ref. 32. The present theory also
suggests the need for a reinterpretation of the standard data-
fitting procedures used in k ·p models.

The situation encountered here is analogous to a gauge
transformation in quantum electrodynamics. Although all
gauges are equivalent in exact calculations, different gauges
may yield different predictions in approximate calculations.54

Likewise, the unitary transformation defined here would
have no effect in an exact calculation, but in a second-order
k ·p Hamiltonian of finite dimension, varying the parameters
of the unitary transformation generates a metal-insulator
phase transition in the model system. The remedy proposed
here is simply to choose transformation parameters that lie
within the physical �i.e., insulating� regime of the phase dia-
gram.

The paper begins in Sec. II with the definition and appli-
cation of the unitary transformation to bulk semiconductors.
The theory is extended to heterostructures in Sec. III and
applied to the widely used Pidgeon-Brown Hamiltonian48 in
Sec. IV. Numerical applications of the theory are presented
in Sec. V. Finally, the results of the paper are summarized
and discussed in Sec. VI.

II. BULK CRYSTALS

A. Hamiltonian

Consider first the case of a bulk semiconductor. It is as-
sumed at the outset that a Luttinger-Kohn �LK� unitary
transformation52,53 has already been used to eliminate the
k ·p coupling between sets A and B. Thus, the effective
Hamiltonian H for states in A is �in the LK basis�

�nk�H�n�k�� = Hnn��k��kk�, �1a�
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Hnn��k� = En�nn� + ki�nn�
i + kikjDnn�

ij , �1b�

in which En is the energy of state n at k=0, �nn�
i is the i

component of the kinetic momentum matrix, and Dnn�
ij is the

inverse effective-mass tensor �in a.u.�

Dnn�
ij =

1

2
��ij�nn� + i�ijk�nn�

k � +
1

2�
l

B ��nl
i �ln�

j

�nl
+

�nl
i �ln�

j

�n�l
� ,

�2�

where �nl=En−El. Here and below, all equations are written
�for simplicity� as if the potential energy were local, although
a nonlocal pseudopotential was used for the numerical cal-
culations in Sec. V. The term �nn�

k is a matrix element of the
Pauli spin operator, which accounts for the intrinsic magnetic
dipole moment of the electron.55

In Ref. 32, it was assumed to be permissible to treat �nn�
i

as an adjustable parameter in Eq. �1�. In this approach, �nn�
i

is replaced by �̄nn�
i =�nn�

i +��nn�
i , in which ��nn�

i has the
same symmetry as �nn�

i and vanishes when En=En�, but is
otherwise arbitrary. The Hamiltonian �1b� is then replaced by

H̄nn��k� = En�nn� + ki�̄nn�
i + kikjD̄nn�

ij , �3�

in which the matrix D̄nn�
ij is adjusted to maintain agreement

with all experimental effective masses. This constraint does

not, however, completely determine D̄nn�
ij .

To see this, consider applying Eq. �2� separately to set A
and to the subset Ann��A defined by Ann�
= 	�n�k� �min�En ,En��	En�	max�En ,En��
. A comparison of
the results for A and Ann� gives

Dnn�
ij �Ann�� = Dnn�

ij +
1

2 �
l

Ānn� ��nl
i �ln�

j

�nl
+

�nl
i �ln�

j

�n�l
� , �4�

where Dnn�
ij �Dnn�

ij �A� and Ānn�=A \Ann� is the complement
of Ann� in A. When En=En�, Dnn�

ij �Ann�� is an experimentally
measurable effective-mass parameter for the subspace Ann�.

If �nn�
i is treated as an adjustable parameter ��nn�

i

→ �̄nn�
i � and Dnn�

ij �Ann�� is assumed to be independent of

	��nn�
i 
, then D̄nn�

ij must satisfy

D̄nn�
ij ?

= Dnn�
ij �Ann�� −

1
2 �

l

Ānn� � �̄nl
i �̄ln�

j

�nl
+

�̄nl
i �̄ln�

j

�n�l
� . �5�

However, in general, it is only necessary for Eq. �5� to be
satisfied when En=En�. This still leaves some freedom of

choice in the definition of D̄nn�
ij .

In this paper, the modified Hamiltonian �3� is derived by
applying a unitary transformation eS to the original Hamil-
tonian �1�:

H̄ = e−SHeS = H + �H,S +
1

2!
��H,S,S + . . . , �6�

where S=−S† has matrix elements only within set A. The
generator S is defined by

�nk�S�n�k�� = Snn��k��kk�, �7a�

Snn��k� = kiSnn�
i + kikjSnn�

ij , �7b�

in which the linear coefficient is

Snn�
i =

��nn�
i

�nn�
. �8�

If Snn�
ij =0, the change �Dnn�

ij = D̄nn�
ij −Dnn�

ij is

�Dnn�
ij = − �

l

A ���nl
i �̃ln�

j

�nl
+

�̃nl
i ��ln�

j

�n�l
� , �9a�

in which �̃nn�
i =�nn�

i + 1
2��nn�

i . Note that if we choose
��nn�

i =−�nn�
i �for En�En��, then �̄nn�

i =0 and Eq. �9a� just
adds extra terms to the summation in Eq. �2�. Thus, if set A
comprises the highest valence and lowest conduction states,
one-band effective-mass theory is given by ��nn�

i =−�nn�
i ,

while the Kane model is given by ��nn�
i =0. �See Appendix

A for an alternative matrix formulation of this result.�
Equation �9a� can be rewritten as

�Dnn�
ij =

1

2�
l

A

��nl
i �ln�

j − �̄nl
i �̄ln�

j �� 1

�nl
+

1

�n�l
�

+
�nn�

2 �
l

A ��nl
i �ln�

j − �nl
i ��ln�

j

�nl�n�l

, �9b�

which shows that Eq. �5� is satisfied when En=En�, but not
�in general� when En�En�. However, the degree of freedom
corresponding to the coefficient Snn�

ij in Eq. �7� has not yet
been used. Let

Snn�
ij =

�Dnn�
ij

�nn�
, �10�

in which �Dnn�
ij has the same symmetry as Dnn�

ij and vanishes
when En=En�, but is otherwise arbitrary. This has the effect
of adding �Dnn�

ij to the value of �Dnn�
ij given by Eq. �9a� or

�9b�. In this way, one can set the parameters D̄nn�
ij for En

�En� to any desired value, including zero. This is merely a
reflection of the fact that the terms Dnn�

ij with En�En� do not
contribute to the single-band effective-mass Hamiltonian,3

since their contributions are of order k3 or higher.
As a particular example, one could choose
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�Dnn�
ij =

1

2 �
l

Ann�

��̄nl
i �̄ln�

j − �nl
i �ln�

j �� 1

�nl
+

1

�n�l
�

+
�nn�

2 �
l

A �nl
i ��ln�

j − ��nl
i �ln�

j

�nl�n�l

, �11�

which would bring Eqs. �9a� and �9b� into agreement with
Eq. �5�. However, including these terms would make subse-
quent analysis more complicated, so for simplicity the choice
�Dnn�

ij =0 is adopted in the remainder of this paper. This
choice makes little practical difference, since Eq. �11� is, in
fact, zero in the Kane model when spin-orbit coupling is
neglected in the momentum matrix,1–3,48 which is the only
example treated explicitly here.

B. Definition and elimination of spurious solutions

The preceding theory can now be used to define spurious
solutions precisely. Spurious solutions are often defined as
eigenstates of the k ·p Hamiltonian with large wave vectors,
but this definition is not completely satisfactory because spu-
rious states are sometimes found well inside the first Bril-
louin zone.32 As emphasized by Bastard,21,24 more important
than the magnitude of the wave vector is its instability with
respect to small changes of the Hamiltonian parameters. The
unitary transformation �6� allows such a change of param-
eters to be performed even when the k ·p Hamiltonian is
calculated directly from first principles.

Let the wave vector be k=k� + n̂k�, where n̂ · n̂=1, n̂ ·k�

=0, and n̂ and k� are real. A spurious solution is defined here
as a root k��E ,k�� of the secular equation

det�H̄�k� − E = �
l=0

2N

cl�E,k��k�
l = 0 �12�

that is an unbounded function of 	��nn�
i 
 for small 	��nn�

i 

and k� and for real E near the energy gap. �Here, N is the
dimension of set A.� This definition does not encompass all
possible types of spurious solutions �see, for example, those
generated by Hamiltonian matrix elements of order k4 in Sec.
V and Ref. 51�, but it does include those that can be treated
effectively by the present unitary transformation.56 This defi-
nition has the advantage of simplifying subsequent analysis
because it focuses attention on the asymptotic properties of
the secular equation at large k� rather than the general prop-
erties of the secular equation at arbitrary k�.

Within the stated limits, all coefficients cl in the secular
equation �12� are bounded �i.e., �cl�
1 in a.u.�. The roots
k��E ,k�� can therefore be unbounded only near c2N=0. For a

given direction n̂, c2N is just the product of eigenvalues d̄��n̂�
��=1,2 , . . . ,N� of the matrix D̄�n̂�� n̂in̂jD̄

ij. Hence, as
	��nn�

i 
 varies, the spurious roots k�
sp are unbounded near the

zeros of d̄��n̂�, disappearing at d̄��n̂�=0 because the order of
the secular equation is reduced. In typical cases �see Sec.
IV E�, k�

sp changes from large real to large complex values
�or vice versa� in the neighborhood of each singular point

d̄��n̂�=0.

Unphysical metallic behavior can be avoided by choosing
	��nn�

i 
 �or, in general, S� such that the spurious roots disap-
pear. As shown below, in the Pidgeon-Brown model,48 this
can be achieved for all directions n̂ by setting the

conduction-band mass parameter Ā=0, which is the choice
used in Ref. 32. This choice may not work in all models, but
one can also choose S such that Im�k�

sp��0 for all n̂ �or,
more precisely, such that �Im�k�

sp� � �k0�0, where k0 is some
chosen value�. The implementation of these choices is dis-
cussed in greater detail in Sec. IV C.

C. Velocity

Although the transformation �6� replaces � with �̄ in the
Hamiltonian, it does not do so in the velocity v=−i�x ,H,
where x is the coordinate. As shown in Appendix B, the
effective velocity v̄=e−SveS for set A is given to first order in
k by an expression of the form �1a� with

v̄nn�
i �k� = �nn�

i + ki�nn� + kj�
l

B ��nl
j �ln�

i

�nl
+

�nl
i �ln�

j

�n�l
�

− kj�
l

A ���nl
j �ln�

i

�nl
+

�nl
i ��ln�

j

�n�l
� . �13�

This shows that v̄nn��k���kH̄nn��k� even to zeroth order in
k. That is, the velocity to order k0 is �, not �̄, for both v and
v̄. In the special case ��nn�=−�nn�, Eq. �13� is equivalent to
the optical transition matrix element given in Eq. �19� of Ref.
57.

D. Implications for parameter fitting

The above results suggest the need for a reinterpretation
of prior work on experimental fitting of k ·p parameters. In a
model with a complete set of Dnn�

ij parameters, the empirical
masses and Landé g factors are not sufficient to determine H;
in fact, for En�En�, �nn�

i is arbitrary. This indeterminacy
could, in principle, be resolved by fitting v to measured os-
cillator strengths, but this is not usually done because optical
transition rates are considered to be less reliable than reso-
nance frequencies. Instead, the most common procedure is to
fix a few values of Dnn�

ij by setting the contributions from B
to zero or some other convenient value �see, e.g., Refs. 48
and 58–60�, thereby permitting a deterministic fit of �nn�

i

from frequency data.
However, this procedure is nothing but the present trans-

formation �albeit without explicit recognition that a change

of basis is involved� with D̄nn�
ij chosen for criteria other than

the elimination of spurious solutions. The outcome of the
fitting procedure is thus �̄, not � �although typically �̄���.
This shows that the production of spurious gap states by
many k ·p parameter sets is not purely a matter of experi-
mental necessity but at least partially an artifact of choices

made in simplifying the D̄ matrix. Fitting D̄nn�
ij to nonpara-

bolic effects61 fails to resolve the quandary because the O�k4�
terms needed for a correct description of nonparabolicity
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have been omitted. �Including O�k4� terms in the experimen-
tal data fitting is also of no help because it merely shifts the
indeterminacy to a larger set of parameters. In the absence
of direct measurements of �, it is not possible to distinguish
� from �̄ �i.e., to define unambiguously the original LK
basis� without using a microscopic model to calculate some
or all of the k ·p parameters �see, e.g., Refs. 62 and 63�. Of
course, the results are then only as good as the chosen model.

III. HETEROSTRUCTURES

The next step is to extend this change of basis from bulk
crystals to heterostructures. Here, it is applied to the nonlin-
ear response theory of Refs. 49–51, in which the heterostruc-
ture is treated as a perturbation of some virtual bulk refer-
ence crystal. To first order, the effective A Hamiltonian is
H=H�0�+H�1�, where the reference Hamiltonian H�0� is
handled according to the above methods and the linear
Hamiltonian H�1� is49,51

�nk�H�1��n�k�� = �


���k − k��Hnn�
 �k,k�� , �14a�

where the sum covers independent values49,50 of  and

Hnn�
 �k,k�� = Enn�

 + ��nn��kk� + ki�nn�
i + �nn�

i ki� + kikjDnn�
ij

+ kiDnn�
ij kj� + Dnn�

ij ki�kj�. �14b�

Here, ��k� is the Fourier transform of ��R�, which is the
change in fractional weight of atom  in cell R of the het-
erostructure relative to the reference crystal. The coefficients
in Eq. �14b� are defined in Ref. 51; they have the symmetry
of site  in the reference crystal and satisfy hermiticity rela-
tions such as Dnn�

ij = �Dn�n
ji �*. The superscripts on these coef-

ficients indicate how the coordinate and momentum opera-
tors are ordered. For example, in the coordinate
representation, the term proportional to Dnn�

ij has the
BenDaniel-Duke ordering64 Dnn�

ij pi��x�pj, where p is the
momentum operator.65 For a bulk perturbation of the form
��k−k��=��kk�, operator ordering is irrelevant and only
the sums �nn�

i +�nn�
i and Dnn�

ij +Dnn�
ij +Dnn�

ij can be distin-
guished.

The unitary transformation �6� is now applied with S
=S�0�+S�1�, where S�0� is the same as Eq. �7� and S�1� is de-
fined by an expression similar to Eq. �14a� with

Snn�
 �k,k�� =

ki�nn�
i + �nn�

i ki�

�nn�
. �15�

Here, �nn�
i is only part of the change in �nn�

i , since

��nn�
i = �nn�

i − �
l

A ��nl
i Eln�



�nl

, �16a�

��nn�
i = �nn�

i − �
l

A Enl
 ��ln�

i

�n�l

, �16b�

where ��nn�
i = ���n�n

i �*. Likewise, the changes in the linear
D tensor are given by

�Dnn�
ij = − �

l

A ���nl
i �̃ln�

j

�nl
+

�̃nl
i �ln�

j

�n�l
� , �17a�

�Dnn�
ij = − �

l

A ��nl
i�̃ln�

j

�nl
+

�̃nl
i��ln�

j

�n�l
� , �17b�

�Dnn�
ij = − �

l

A ���nl
i �̃ln�

j

�nl
+

�̃nl
i �ln�

j

�n�l
�

− �
l

A ��nl
i�̃ln�

j

�nl
+

�̃nl
i��ln�

j

�n�l
� , �17c�

where �Dnn�
ij = ��Dn�n

ji �* and �Dnn�
ij = ��Dn�n

ji �*. This system of
linear equations can be solved for �� as a function of �D.
An equivalent matrix formulation of Eqs. �16� and �17� is
given in Appendix A.

IV. PIDGEON-BROWN MODEL

A. Conduction band

As an example, consider Pidgeon and Brown’s formula-
tion of the Kane model for a zinc-blende crystal.48 The set
A= 	�6c ,�8v ,�7v
 is defined in the tensor-product basis
	�S� , �X� , �Y� , �Z�
 � 	�+ � , �−�
, with spin-orbit coupling in-
cluded only to order k0.1–3,48 For the bulk reference crystal,
the relevant conduction-band �CB� constants are A=DSS

xx and
P=−i�SX

x . From Eqs. �4� and �9a� or �9b�, the values of A
and P are related to the CB effective mass mc by

1

2mc
= A +

P2

�1
= Ā +

P̄2

�1
, �18�

in which �n is the nth-order reduced energy gap:

1

��n�n =
2

3�Eg�n +
1

3�Eg + �so�n , �19�

where Eg=E6c−E8v and �so=E8v−E7v. The value of P̄=

−i�̄SX
x needed to obtain a desired change �A= Ā−A is there-

fore

P̄2 = P2 − �1�A . �20�

The selection of suitable values of �A and P̄ is discussed
below in Sec. IV C.

For the linear response in a heterostructure, there are two
independent CB partial mass coefficients, A··=A·· and A··

�where A··=DSS
xx, A··=DSS

xx, and A··=DSS
xx�, and two inde-

pendent momentum parameters, P·=−i�SX
x and P·=−i�SX

x.
Upon solving Eqs. �16� and �17� for the changes �P· and
�P· needed to obtain desired values of �A·· and �A··, one
finds

�P· = −
�1�A··

P̄
−

P·�P

P̄
−

�1
2�AEc



2�2
2P̄

, �21a�
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�P· = −
�1�A··

2P̄
−

P·�P

P̄
+

�1
2�AEv



2�2
2P̄

, �21b�

where Ec
=ESS

 and

Ev


�2
2 =

2E8v


3�Eg�2 +
E7v



3�Eg + �so�2 . �22�

If one adds Eqs. �21a� and �21b� to obtain the total linear
change �P��P·+�P· for a bulk crystal, the result is
identical to what is obtained from linear variation of the
parameters in Eq. �20�.

Equations �20� and �21� can now be inserted into Eq. �17�
to determine the changes in the other mass parameters. The
partially renormalized bulk CB Landé factor g=−i2�DS+,S+

xy

−DS+,S+
yx � is related to the fully renormalized experimental

value gc by

gc = g −
4P2

3�1
= ḡ −

4P̄2

3�1
, �23�

where

1

��n�n =
1

�Eg�n −
1

�Eg + �so�n . �24�

The change �g= ḡ−g is therefore

�g = −
4�1

3�1
�A = − � 4�so

3Eg + 2�so
��A . �25�

Likewise, the changes in the linear-response terms are

�g·· = −
4�1

3�1
�A·· −

2

3
�AEc

� �1
2

�1�2
2 −

�1

�2
2� , �26a�

�g·· = −
4�1

3�1
�A·· +

4

3
�A� �1

2Ev


�1�2
2 −

�1�v


�2
2 � , �26b�

where

�v


�2
2 =

E8v


�Eg�2 −
E7v



�Eg + �so�2 . �27�

Note that g·· is also the linear contribution to the CB Rashba
coefficient.51

When spin-orbit coupling is neglected in the remote B
states,1–3,48 one simply has g=2.48 In the original paper of
Pidgeon and Brown,48 the value of A was found to have little
effect on the calculated energy levels; therefore, it was

treated as an adjustable parameter �A→ Ā, P→ P̄�, with Ā
= 1

2 chosen for simplicity. The Landé factor, however, was
held fixed at ḡ=2. The present results show that the assump-
tion �g=0 must be regarded as an approximation because it
cannot be reduced to a unitary transformation.

According to Eq. �25�, �g will be negligible in compari-
son to �A if the spin-orbit coupling is small ��so�Eg�.
However, the Pidgeon-Brown model is often used in cases
where �so�Eg or even �so�Eg. In such cases, setting �g
=0 is no more justifiable than setting �A=0 when �P�0.
But this problem is easily resolved by using the value �25�

for �g �assuming, of course, that the correct original value of
A is known�.

The Kane interband parameter B=DSZ
xy +DSZ

yx is neglected
in the Pidgeon-Brown model48 because it corresponds to
O�k3� terms in the single-band Hamiltonian. The value of B
is not affected by the linear term Snn�

i in the generator �7�
�i.e., �B=0� because B does not depend on P. Therefore,
neglecting B is a consistent approximation in the sense that

B=0 implies B̄=0. Alternatively, one could choose �Dnn�
ij in

Eq. �10� to satisfy �B=−B, thus obtaining B̄=0 even when
B�0.

B. Valence band

1. Zero spin-orbit coupling

For the valence band, consider first the case without spin.
There are four independent �15v parameters:66 L=DXX

xx , M
=DXX

yy , N=DXY
xy +DXY

yx , and K=DXY
xy −DXY

yx . From Eqs. �4� and
�9a� or �9b� we have

L0 = L − P2/Eg� = L̄ − P̄2/Eg�, �28a�

M0 = M = M̄ , �28b�

N0 = N − P2/Eg� = N̄ − P̄2/Eg�, �28c�

K0 = K − P2/Eg� = K̄ − P̄2/Eg�, �28d�

where �see Eq. �4� L0�L�A0� is the parameter L evaluated
for the subset A0= 	�15v
, and Eg��E1c−E15v=Eg+ 1

3�so is
the energy gap in the absence of spin-orbit splitting. Under
these conditions �1=Eg�, so the bulk changes are simply

�L = �N = �K = − �A, �M = 0. �29�

Likewise, for the linear response, �M··=�M ··=0 and

�L·· = �N·· = �K·· = −
1

2
�A·· , �30a�

�L·· = �N·· = �K·· = − 2�A·· . �30b�

Again, the total bulk linear variation �L��L··+�L··

+�L·· is consistent with Eq. �29�. However, the interchange
of CB and valence-band �VB� operator orderings in Eq. �30�
is a feature that was not predicted by the simple model of
Ref. 32 �where only the numerical value of P was changed,
and all terms with the ordering X·· were excluded67�.

Although it vanishes in bulk, the linear VB momentum
does have one independent constant R·=−i�XY

z �with R·�
−i�XY

z =−R·�.51 This term is not affected by the change �16�;
i.e., �R·=�R·=0.

2. Nonzero spin-orbit coupling

In the Kane model,1–3,48 spin-orbit coupling is included to
order k0 by adding the perturbation Hso= 1

3�so�I ·�� to the
Hamiltonian for set A= 	�6c ,�8v ,�7v
, where I is the orbital
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angular momentum operator.66 When working in a basis that
diagonalizes Hso,

1–3,48 it is convenient to define the following
linear transformation of the mass parameters:66

�1 = −
2

3
�L + 2M�, L = −

1

2
��1 + 4�2� , �31a�

�2 = −
1

3
�L − M�, M = −

1

2
��1 − 2�2� , �31b�

�3 = −
1

3
N, N = − 3�3, �31c�

� = −
1

3
�K + 1�, K = − 3� − 1. �31d�

Here, �1, �2, �3, and � are the modified Luttinger parameters
introduced by Pidgeon and Brown.48 Upon applying Eq. �4�
to the subset A0= 	�8v
, one finds the relations48

�1
0 = �1 + 2P2/3Eg, �32a�

�2
0 = �2 + P2/3Eg, �32b�

�3
0 = �3 + P2/3Eg, �32c�

�0 = � + P2/3Eg, �32d�

where �1
0, �2

0, �3
0, and �0 are the original Luttinger

parameters66 for �8v. The Luttinger parameter q0=q is ne-
glected in the Kane model because �to leading order� it is
proportional to the spin-orbit splitting of the remote B
states.68 Since q is independent of P, it is not affected by the
unitary transformation �6�.

It is also convenient to introduce a linear transformation
of the form �31� for the parameters �1

0, �2
0, �3

0, and �0 in Eq.
�32�. When this is done, one finds that the parameters L0, M0,
N0, and K0 are related to L, M, N, and K by expressions
similar to those given earlier in Eq. �28�. The only difference
is that the �15 energy gap Eg� is replaced �see Eq. �32� by the
�8 gap Eg.

Now consider using Eqs. �4� and �9a� or �9b� to determine
how the effective-mass parameters change when the unitary
transformation �6� is applied. For the �8v submatrix, the re-
sults are similar to Eqs. �28� �with Eg�→Eg� and �32�:

Q8
0 = Q8 − P2/Eg �33a�

=Q̄8 − P̄2/Eg, �33b�

where Q is any member of the set 	L, N, K, − 3
2�1, −3�2,

−3�3, −3�
 �M does not depend on P�. The subscript 8 is
added to emphasize that Eq. �33� holds for �8v only. Here Q8

0

is an original Luttinger parameter, while Q8�Q and Q̄8 are
the modified Luttinger parameters before and after the uni-
tary transformation.

However, when Eqs. �4� and �9a� or �9b� are applied to
the �7v submatrix, the results are different:

Q7
0 = Q7 − P2/�Eg + �so� �34a�

=Q̄7 − P̄2/�Eg + �so� . �34b�

In the Kane model, Q7�Q8�Q, but clearly Q7
0�Q8

0 and

�when P̄2� P2� Q̄7� Q̄8. Such differences also occur in the
�7v��8v submatrix, where the parameters are given in terms
of the above results by Q78

0 = 1
2 �Q7

0+Q8
0�, Q78= 1

2 �Q7+Q8�,
and Q̄78= 1

2 �Q̄7+ Q̄8�. The changes in Q for each submatrix
are therefore given by

�Q8 = −
�1�A

Eg
, �Q7 = −

�1�A

Eg + �so
,

�35�

�Q78 =
1

2
��Q7 + �Q8� .

The result Q7
0�Q8

0 merely reflects that the Luttinger pa-
rameters for �7v are different from those for �8v. �This fact is
sometimes used to obtain an experimental fit for P.16,18,69�
However, the result �Q7��Q8 shows that the unitary trans-
formation �6� does not preserve the initial equality of the
modified Luttinger parameters in the �8v, �7v, and �7v
��8v submatrices.

The latter result is hardly surprising, because the modified
Luttinger parameters are known to have different values in
each submatrix when spin-orbit coupling is treated
exactly.70–72 The inequality �Q7��Q8 is therefore nothing
new from a physical standpoint. Nevertheless, it does serve
to show that the standard experimental data-fitting
procedure—namely, treating P as a fitting parameter and de-
fining the modified Luttinger parameters for all of set A from
the �8v Luttinger parameters via Eq. �32�—is not equivalent
to a simple unitary transformation. Instead, as P is varied
during the fitting, one must invoke the additional approxima-
tion of replacing �Q7 with �Q8 in order to preserve equality
of the modified Luttinger parameters in all submatrices.

The assumption that the modified Luttinger parameters
have the same value in all submatrices even when P is
treated as a fitting parameter will be referred to as the
Pidgeon-Brown approximation �PBA�, since these authors
seem to be the first to use it explicitly48 �although this ap-
proximation is implicit in the theory of Kane1–3�. The valid-
ity of the PBA was studied by Boujdaria et al.,73 who found
that it works well in many materials.74 However, it should be
noted that the error

�Q8 − �Q7 = −
�1

�1
�A = − � 3�so

3Eg + 2�so
��A �36�

in making the replacement �Q7→�Q8 is of the same order
as �g in Eq. �25�. In Sec. IV A, it was argued that �g is not
generally negligible. The error in �Q7 is negligible in the
present context not because �A is small �although it usually
is�, but because this error affects primarily only the spin-orbit
splitoff �7v band. This band is typically not of direct experi-
mental interest48 unless �so�Eg, in which case the error �36�
is negligible.
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In a heterostructure, the linear changes are similar to the
spin-zero expressions �30�. In keeping with the PBA, only
the �8 results are given here:

�Q·· = −
�1�A··

2Eg
−

�1�A

2Eg
�E8v



Eg
−

�1Ev


�2
2 � , �37a�

�Q·· = −
2�1�A··

Eg
+

�1�AEc


Eg
� 1

Eg
−

�1

�2
2� . �37b�

The present method could, of course, be used without the
PBA; this possibility is discussed below in Sec. IV D.

C. Choice of parameters

Procedures for choosing P̄ to avoid real spurious solutions
have not yet been specified. In Sec. II B, it was shown that
spurious roots k�

sp disappear at the zeros of the eigenvalues

d̄��n̂� of the matrix D̄�n̂�= n̂in̂jD̄
ij. In the Pidgeon-Brown

�PB� model, D̄ is block diagonal: D̄= D̄c � D̄v. The eigenval-

ues of the CB block D̄c�n̂� are independent of the direction

n̂: d̄�
c�n̂�= Ā �where �=1,2�. Thus, one can eliminate spuri-

ous solutions for all n̂ by setting Ā=0 or P̄= P̄c, where

P̄c
2 = P2 + �1A = �1/2mc. �38�

This was the choice adopted in Ref. 32. As shown there, for

typical semiconductors ��1A�� P2, so P̄c� P and the result-
ing changes in the Hamiltonian are small.32

Other choices of P̄ can also be used to obtain physically

meaningful results. In the limiting case P̄=0 of single-band
effective-mass theory, all states within the energy gap are
evanescent. Spurious solutions cannot be identified in this
case because the CB and VB states are completely decou-

pled. For infinitesimal P̄, there is an infinitesimal anticross-
ing of the evanescent gap states; the spurious solutions can
then be identified as the branches with Im k��0 over the
entire range of energies near the band gap. Spurious gap
modes remain evanescent for all n̂ in the finite interval 0

� P̄2� P̄0
2, where P̄0

2=min�P̄c
2 , P̄v0

2 �, P̄v0
2 =minn̂ P̄v

2�n̂�, and

P̄v
2�n̂� is the smallest value of P̄2 where any d̄�

v�n̂�=0.
As shown in Appendix C, when the Luttinger parameters

satisfy �3��2 �which is true for most semiconductors58,60�,
the constant P̄v0

2 is �in the PBA� simply

P̄v0
2 = P2 − EgL = − L0Eg. �39�

If P2 lies within the interval 0� P2� P̄0
2—which is the case

in the numerical examples considered below—then the spu-
rious gap states in the original k ·p Hamiltonian are evanes-
cent for all n̂, and the Hamiltonian is physically acceptable

without any changes at all ��A=0, P̄= P�. If not, a valid

alternative to setting Ā=0 is to choose a value of P̄2 within

this interval,7 preferably near the upper bound P̄0
2 in order to

minimize �P. For typical semiconductors, both �EgL � � P2

and ��1A � � P2, so the changes in the Hamiltonian are small

regardless of whether P̄0
2 is equal to P̄c

2 or P̄v0
2 .

D. Beyond the Pidgeon-Brown approximation

The PBA used here is open to the objection that it does
not provide an exact description of the mass of the spin-orbit
splitoff �7v band47 �although, as discussed above, it provides
a good approximation in many cases73�. This deficiency can
be remedied by applying the present unitary transformation
to the Hamiltonian of Weiler et al.,70 which includes a full
set of independent parameters for �7v. In particular, the mo-
mentum matrix element P has different values P8 and P7 for
the coupling of �6c to �8v and �7v, respectively. Equations
�18� and �23� for the CB effective mass and g factor must
therefore be replaced by

A +
2P8

2

3Eg
+

P7
2

3�Eg + �so�
= Ā +

2P̄8
2

3Eg
+

P̄7
2

3�Eg + �so�
�40�

and

g −
4P8

2

3Eg
+

4P7
2

3�Eg + �so�
= ḡ −

4P̄8
2

3Eg
+

4P̄7
2

3�Eg + �so�
. �41�

Since there are two independent momentum parameters, one

can choose the values of P̄8 and P̄7 in order to achieve de-
sired changes in both A and g:

P̄8
2 = P8

2 − Eg��A −
1

4
�g� , �42a�

P̄7
2 = P7

2 − �Eg + �so���A +
1

2
�g� . �42b�

For example, one could choose �A=−A and �g=−g in order

to set the entire CB D̄ matrix to zero. Alternatively, since g
has no effect on spurious solutions, one could choose �g
=0 in order to minimize the changes in the Hamiltonian. In
either case, Eqs. �4� and �9a� or �9b� can then be applied as
usual to determine the changes in the other D parameters.
However, since the Hamiltonian of Ref. 70 contains many
parameters that are not commonly used in k ·p calculations,60

this procedure will not be carried out in detail here. In this
case, it may be more convenient to calculate the Hamiltonian
changes numerically using the matrix equations given in Ap-
pendix A.

E. Two-band model

In the special case of a bulk crystal with no spin-orbit
coupling and k= �0,0 ,k�, the �X� and �Y� valence states are
not coupled to the other states. Spurious solutions in the PB
model are consequently confined to the two-dimensional ba-
sis 	�S� , �Z�
 with Hamiltonian

H̄�k� = �Ec + Āk2 iP̄k

− iP̄k Ev + L̄k2
� . �43�

This case is of interest14,15,20,27,46 because it allows simple
analytical calculations of the properties of spurious solutions;
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it will also be used in some of the numerical work in Sec. V.
The original Hamiltonian parameters are assumed to satisfy
the constraints Eg�=Ec−Ev�0 and

P2 + Eg�A � 0, P2 − Eg�L � 0, �44�

in which the first condition is equivalent to mc�0 �see Eq.
�18� and the second is equivalent to L0�0 �see Eq. �28a�. It

is also assumed that P2�0 and P̄2�0, which from Eq. �20�
require that �A� P2 /Eg�.

The secular equation �12� for the Hamiltonian �43� has the

form c4k4+c2k2+c0=0, where c4= ĀL̄, c0= �Ec−E��Ev−E�,
and

c2 = Ā�Ev − E� + L̄�Ec − E� − P̄2 �45a�

=A�Ev − E� + L�Ec − E� − P2, �45b�

in which the second equality follows from Eqs. �18� and
�28a�. Hence, the coefficients c0 and c2 are invariant with
respect to the unitary transformation �6�. If the Hamiltonian
�43� were extended to include terms of order k4, then c4
would also be invariant,75 but this would generate terms of
higher order in the secular equation that are not invariant. In
general, the highest-order coefficient in the �finite-order�
secular equation is not invariant with respect to the unitary
transformation �6�.

The general solution to the secular equation is k2

= �−c2±�c2
2−4c4c0� /2c4, which shows that for bounded cl, k

is unbounded only when c4→0, as discussed in Secs. II B
and IV C. The spurious solutions have a particularly simple
form when E=Ev or E=Ec:

ksp
2 �Ev� = �P2 − Eg�L�/ĀL̄ , �46a�

ksp
2 �Ec� = �P2 + Eg�A�/ĀL̄ . �46b�

For other values of E, note that c2�E� is a linear function of
E that interpolates between the values c2�Ev�=−�P2−Eg�L�
and c2�Ec�=−�P2+Eg�A�. Thus, for small c4, ksp

2 �E� interpo-
lates approximately linearly between the values �46a� and
�46b�.

From Eq. �44�, the numerators of Eqs. �46a� and �46b� are
both positive. Therefore, the spurious solutions are evanes-

cent when ĀL̄�0 and propagating when ĀL̄�0.20,27 Now

ĀL̄=AL+�A�L−A�− ��A�2 is a quadratic function of �A
that has its maximum value when �A= 1

2 �L−A�. According
to Eq. �44�, this value of �A satisfies the constraint �A
� P2 /Eg� and is therefore permissible. When �A= 1

2 �L−A�,
Ā= L̄= 1

2 �A+L� and thus

ksp
2 �Ev� = 4�P2 − Eg�L�/�A + L�2, �47a�

ksp
2 �Ec� = 4�P2 + Eg�A�/�A + L�2. �47b�

These expressions give the smallest positive values of
ksp

2 �Ev,c� that are possible for any �A consistent with the
given Hamiltonian parameters Eg�, P, A, and L. They conse-
quently represent the “worst” result that could be obtained

from any unitary transformation �6�. For the special case L
=−A, real spurious solutions do not exist for any �A, but for
L�−A, real spurious solutions always exist for some �A.

It should be noted that the present theory provides rigor-
ous justification for the two-band model of White and
co-workers,14,15 in which it is assumed to be possible always

to choose Ā�0 and L̄�0 and to invoke the limit Ā→0. The

assumption L̄=−Ā, however, is not generally valid.

V. NUMERICAL EXAMPLES

Numerical examples demonstrating the success of the Ā
=0 method in eliminating spurious solutions have already
been given in Refs. 32 and 47. Since the present PB Hamil-

tonian for the case Ā=0 is identical to that of Ref. 32 in bulk
material, those examples will not be repeated here. The main
additional feature is the interface operator ordering derived
in Eqs. �21�, �26�, �30�, and �37�.

To demonstrate the validity of these results, the �15
valence76 subband structure of In0.53Ga0.47As/ InP and
GaAs/AlAs superlattices was calculated in a plane-wave ba-
sis using the ABINIT code77–79 with norm-conserving pseudo-
potentials and the local-density approximation �LDA�. Spin-
orbit coupling was omitted, and all technical details were the
same as in Ref. 50. These “exact” model calculations were
compared with the first-principles envelope-function �EF�
theory of Refs. 49 and 51, which has no fitting parameters
�not even the mean energy�. As described in Sec. III, the EF
Hamiltonian was constructed using nonlinear response
theory; for this purpose, the bulk reference crystals were cho-
sen to be In0.765Ga0.235As0.5P0.5 and Al0.5Ga0.5As.

A. Material parameters

Calculated values of the parameters in the Kane Hamil-
tonian are presented in Table I for the bulk materials of in-
terest. This table includes values for the Kane parameter2,3

B=DSZ
xy +DSZ

yx , although this term is neglected in the PB
model.48 The values in Table I were calculated for the set
A= 	�1c ,�15v
, whereas those in Ref. 51 were for the single-
band case A= 	�15v
. The values of L, N, and K in Table I
therefore differ from those in Table I of Ref. 51 because they
do not include the interaction with the �1c state �S�. Since the
coupling to the remote B states is weaker in the present case,
the parameters in Table I have a relatively small variation
between materials, and the variation is nearly linear.

To demonstrate the latter point, the numbers in parenthe-
ses in Table I give the parameters that would be obtained for
the reference crystals if Vegard’s law of linear interpolation
were valid. Linear interpolation works well in all cases, with
a maximum error of 7% in the B parameter for Al0.5Ga0.5As.
This small error, in conjunction with the fact that the total
variation is already a small perturbation, suggests that the
linear perturbation theory developed in Sec. III should be a
good approximation for the momentum and mass param-
eters. �Quadratic-response contributions are included in the
present calculations,49–51 but only to order k0.�

Values for the linear heterostructure parameters defined in
Secs. III and IV are listed in Table II. Here, A denotes the
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total bulk value A�A··+A··+A··=A··+2A··. The only
other quantities not yet defined are the B parameters B··

=DSZ
xy +DSZ

yx, B··=DSZ
xy+DSZ

yx, and B··=DSZ
xy +DSZ

yx. In this
case, B··�B··, so �unlike the other D terms� there are three
independent linear parameters for B. The M and R values in
Table II are the same as those in Table III of Ref. 51, but the
other values are different.

The operator ordering given by the parameters in Table II
does not seem to follow any simple general rules beyond the
observation that �P· � � �P·� for cation perturbations and
�P· � � �P·� for anion perturbations. In particular, the
BenDaniel-Duke approximation,21,24,64 in which mass terms
of the form A··, B··, etc., are assumed to be dominant, is
clearly not valid in most cases. �See Ref. 51 for further dis-
cussion of this point.� However, since the linear changes are
also small in most cases, the particular choice of operator
ordering in the present multiband model is not as important
as it would be in a single-band model.

A comparison of the parameters in Tables I and II would
seem to indicate some inconsistency in the calculation. For
example, since the difference in Ga content between GaAs
and AlAs is just 1, the linear bulk values A, B, etc., from
Table II should be �approximately� numerically equal to the
difference in the corresponding bulk constants of GaAs and
AlAs from Table I �assuming that the variation is, in fact,
linear, as suggested by the discussion of Table I above�.
However, A�GaAs�−A�AlAs�=−0.119, whereas A=Ga=
−0.189. The error of −0.069 in the value predicted by A is
much larger than the error of −0.006 in the linear interpola-
tion for A shown in Table I.

The reason for the discrepancy is the different methods
used to eliminate interband coupling in the two cases. The
bulk parameters in Table I were calculated by first diagonal-
izing the entire �A+B� Hamiltonian at k=0 exactly, and then
using perturbation theory to eliminate the k ·p coupling be-
tween A and B. However, in the linear-response theory of
Refs. 49 and 51, the k-independent heterostructure perturba-
tion and the k ·p terms are all block diagonalized together
using a single unitary transformation.80,81 Since the hetero-
structure perturbation X and the k ·p perturbation Y do not
commute, we have eS�X+Y��eS�X�eS�Y�, and the two unitary
transformations yield different bulk Hamiltonian matrices for
set A. But the difference is merely a k-dependent unitary
transformation of the form defined previously in Eqs. �6� and
�7�.

To demonstrate this, the “errors” in the predictions ob-
tained from Table II for the differences in A, L, M, N, and K
between materials A and B �e.g., GaAs and AlAs� were cal-
culated from expressions of the form

TABLE I. Material parameters for several bulk compounds and
their virtual-crystal averages. The numbers in parentheses were ob-
tained from linear interpolation. The signs of B and P depend on the
phase conventions chosen for the basis functions. Here, the coordi-
nate origin was placed on an anion, with a neighboring cation at
1
4a�1,1 ,1�; the phases were then fixed by setting �x �S��0 and
d�x �X� /dx�0 at x=0.

GaAs Al0.5Ga0.5As AlAs

A +0.280 +0.345 �+0.339� +0.399

B −1.156 −0.837 �−0.777� −0.398

P −0.560 −0.552 �−0.553� −0.545

L −0.435 −0.345 �−0.343� −0.250

M −1.511 −1.326 �−1.318� −1.126

N −1.553 −1.373 �−1.366� −1.179

K +2.507 +2.310 �+2.303� +2.100

In0.53Ga0.47As In0.765Ga0.235As0.5P0.5 InP

A +0.321 +0.292 �+0.299� +0.278

B −0.986 −0.954 �−0.927� −0.869

P −0.534 −0.505 �−0.504� −0.474

L −0.429 −0.413 �−0.410� −0.390

M −1.385 −1.253 �−1.252� −1.119

N −1.423 −1.296 �−1.292� −1.160

K +2.370 +2.165 �+2.162� +1.953

TABLE II. Linear parameters in the �1c−�15v Hamiltonian.
Here RC stands for reference crystal, and the labels light and heavy
holes refer to the bulk properties in the �100� directions.

RC Al0.5Ga0.5As In0.765Ga0.235As0.5P0.5

 Ga As Ga

Conduction A −0.189 +0.090 −0.176

A·· +0.099 +0.039 +0.121

A·· −0.144 +0.026 −0.148

Interband B −1.151 −0.023 −0.566

B·· +0.369 +0.104 +0.329

B·· −0.367 −0.162 −0.132

B·· −1.154 +0.035 −0.763

Momentum P −0.019 −0.060 −0.009

P· −0.027 −0.011 −0.013

P· +0.008 −0.048 +0.004

Light hole L −0.128 −0.037 +0.086

L·· +0.058 −0.081 +0.103

L·· −0.093 +0.022 −0.009

Heavy hole M −0.387 −0.329 +0.130

M ·· −0.039 −0.109 +0.093

M ·· −0.174 −0.110 +0.018

k2 mixing N −0.319 −0.300 +0.167

N·· −0.136 −0.042 +0.025

N·· −0.091 −0.129 +0.071

Landé K +0.464 +0.487 −0.055

Rashba K·· +0.034 +0.043 +0.021

K·· +0.215 +0.222 −0.038

� mixing R· −0.028 −0.017 −0.038
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�L = �


����A� − ��B�L − �L�A� − L�B� . �48�

The results are shown in Table III. If the discrepancy is really
due to a unitary transformation of the form �6�, these errors
should obey the relations given previously in Eq. �29�. These
relations are clearly not satisfied exactly, but the deviation
from a pure unitary transformation, if divided equally be-
tween conduction and valence bands, amounts to only about
0.007 for GaAs/AlAs and 0.004 for In0.53Ga0.47As/ InP. This
is just the magnitude of the linear interpolation error for
these parameters shown in Table I.

Hence, a careful examination of the material parameters
shows that a linear approximation should work very well for
the effective-mass and momentum terms. However, it should
be noted that the perturbation theory of Refs. 49 and 51
yields a k ·p Hamiltonian that already includes a unitary
transformation of the form �6� relative to the conventional
Kane form of the k ·p Hamiltonian. �As discussed in Sec.
II D, this is also the case for most empirical k ·p data sets
found in the literature; the difference here is that in the
present theory the effect of this transformation is known and
has already been accounted for in the operator ordering for
heterostructures.�

B. Valence subband structure

As a direct test of the present theory, the �15 valence76

subband structure was calculated numerically for
In0.53Ga0.47As/ InP and GaAs/AlAs superlattices in the LDA
model system described above.50,51 The transformation �6�
was applied to the set A= 	�1c ,�15v
 with Ā=�A for the

reference crystal and Ā··=��,1A··, Ā··=��,1A·· for the lin-
ear response, where � is a real parameter. Choosing �=1
gives no transformation at all, but any value ��1 modifies
the bulk value of A and �for simplicity� sets the linear posi-

tion dependence of Ā to zero.
To determine the effect of different choices of �, recall

from Sec. IV E that the spurious solutions for k � �100� are

evanescent when ĀL̄�0 and propagating when ĀL̄�0.

From Eq. �29� we have �L=−�A, hence L̄=L− ��−1�A.

Thus, Ā changes sign at �=0, whereas L̄ changes sign at �
=1+L /A. Putting in the values of A and L for the reference
crystals in Table II, one finds that for �=1, the spurious

solutions for In0.765Ga0.235As0.5P0.5 are evanescent, but values
of � in the range −0.415���0 yield spurious propagating
modes. However, for Al0.5Ga0.5As, where L�−A, spurious
propagating modes occur only in the narrow region 0��
�0.002.

To obtain the most rigorous test of the present theory, one
can seek out the “worst case” value of � that gives real
spurious wave vectors with the smallest magnitude. As

shown in Sec. IV E, this case corresponds to Ā= L̄= 1
2 �A

+L� or �=�0= 1
2 �1+L /A�, which is halfway between the sign

changes for Ā and L̄. Since L�−A for Al0.5Ga0.5As, Eq. �47�
shows that even the worst case real spurious solutions in this
material will have extremely large wave vectors. Therefore,
in what follows, only the In0.53Ga0.47As/ InP material system
is studied in detail, as this provides a more stringent test. In
this system, the In0.765Ga0.235As0.5P0.5 reference crystal has
�0=−0.208.

The energy-band structure for In0.765Ga0.235As0.5P0.5 is
shown in Fig. 1, which compares the exact solutions of the
model Hamiltonian with various k ·p models. The k ·p cal-
culations for �=1 and �=−0.208 are very similar for small k,
but are visibly different for k near the Brillouin-zone bound-
ary. The real spurious solutions for �=−0.208 and k � �100�
occur at k� ±15�2� /a�, where a is the cubic lattice con-
stant. Also shown in Fig. 1 are the results when the k ·p
Hamiltonian is extended49,51 to include terms of order k3 and
k4; this case has more obvious spurious solutions that occur
well inside the Brillouin zone.

The valence subband structure of a �001�
�In0.53Ga0.47As�24�InP�24 superlattice was calculated for a se-
ries of O�k2� EF models with �=1, 0.5, 0, −0.208, −0.5, and
−1. These calculations were performed in momentum
space69 with a basis containing 25 EF plane waves �corre-
sponding to a plane-wave cutoff at half the distance to the
bulk X point�. Since the real spurious solutions occur at �k�
�15�2� /a�, such a cutoff is sufficient to filter out the spu-
rious modes25,32,47 for any value of �.

The results of these calculations are shown in Fig. 2. The
entire range −1	�	1 is designated by the single label
EF�k2�, since these values cannot be distinguished at this
scale—they differ by no more than 0.1 meV for the top five

TABLE III. Error in linear-response prediction of the difference
in effective-mass parameters for bulk materials A and B. These
values should satisfy Eq. �29� if the “error” is not really an error but
arises only from a unitary transformation.

A/B GaAs/AlAs In0.53Ga0.47As/ InP

�A −0.069 −0.036

�L +0.056 +0.043

�M −0.001 −0.002

�N +0.056 +0.041

�K +0.057 +0.045
L Γ X K Γ W
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FIG. 1. �Color online� Energy-band structure of the bulk
In0.765Ga0.235As0.5P0.5 reference crystal: comparison of exact calcu-
lation with four-state k ·p models.
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subbands and by no more than 0.3 meV for any of the 12
subbands shown. The agreement with the exact calculations
is excellent for the top five subbands �with a mean error in
each subband of less than 1.8 meV�, but it begins to deterio-
rate for energies more than 100 meV below the band edge.
This discrepancy is due primarily to the neglect of terms of
order k4 in the bulk reference Hamiltonian. When these are
included51 �see curves labeled EF�k4�, the agreement is
much improved, with a maximum mean error of 3 meV for
the top 12 subbands. For the O�k4� calculations, the number
of plane waves was reduced to 17 �i.e., one-third of the Bril-
louin zone� in order to avoid problems from the real spurious
solutions in Fig. 1.

The good agreement shown in Fig. 2 confirms the validity
of both the operator ordering derived here and the linear-
response approximation used for �i and Dij in the multiband
EF Hamiltonian. �Quadratic-response terms were included
only in the potential energy.49–51� Note that the 0.3 meV
variation for −1	�	1 is an order of magnitude smaller
than the 5 meV variation shown in Fig. 2 of Ref. 32, which
did not account for changes in operator ordering.

VI. DISCUSSION AND CONCLUSIONS

In conclusion, the unitary transformation �6� eliminates
spurious solutions in the Kane model with no approximation
beyond the limitation to second-order differential operators.
A comparison of the derived operator ordering with density-
functional calculations of the valence subband structure
shows very good agreement.

This good agreement was obtained using a linear-response
approximation for the material dependence of the partially
renormalized multiband effective-mass and momentum pa-
rameters, with quadratic “bowing” terms included only for
the band-edge energies. As shown in Sec. V A, such an ap-
proximation is justified in a multiband Hamiltonian because
�unlike the single-band case51� the corrections due to renor-
malization from the remote B states have a relatively weak
variation between materials. Indeed, the present description
of material properties is almost identical to the interpolation
scheme for the conduction-band mass of ternary alloys rec-

ommended by Vurgaftman et al. �p. 5837 of Ref. 60� �al-
though it should be noted that this scheme was not used
uniformly for all effective-mass parameters in Ref. 60�. The
only difference is that the present work treats P as linear,
whereas Vurgaftman et al. treat P2 as linear.60

It should be noted that the linear Hamiltonian �14� is ex-
pressed in an atomistic form as the superposition of re-
sponses to individual atomic perturbations. This is the sim-
plest and most natural way of expressing the results of linear-
response theory. Such a description may be unfamiliar to
many readers since most envelope-function models are for-
mulated in terms of bulk compounds rather than atoms.
However, as shown in Sec. VII A of Ref. 49, a traditional
bulk-crystal description can be obtained from the present
atomistic formulation via a straightforward linear transfor-
mation of variables �bearing in mind that the “bulk” com-
pounds for the no-common-atom In0.53Ga0.47As/ InP material
system must include not just In0.53Ga0.47As and InP but also
the interface materials InAs and In0.53Ga0.47P�. Nevertheless,
there are advantages to becoming familiar with both points
of view, since the atomistic perspective is simpler and better
suited for the description of complex nanostructures.

Most envelope-function models are also expressed in a
general form that allows the inclusion of arbitrary nonlinear
material dependence in the effective-mass and momentum
terms. However, the ability to include nonlinear terms does
not necessarily imply greater accuracy, since the present re-
sults show that the operator ordering used in most envelope-
function models is not correct even to linear order. The pos-
sibility of applying the present unitary transformation to a
more general phenomenological Hamiltonian with arbitrary
nonlinear material dependence was examined during the de-
velopment of this paper, but since the interface structure of
the resulting theory is much more complicated than the linear
theory, it was not considered worthwhile to publish the non-
linear results. The linear approach has the advantage of pro-
viding simple analytical expressions for precisely those
terms that are of greatest importance in a multiband
envelope-function theory.

For practical problems, a full implementation of the op-
erator ordering derived here would require the knowledge of
many parameters that have not been measured experimen-
tally and cannot yet be predicted accurately from first prin-
ciples. Therefore, in the near future, any practical application
of the theory based purely on existing empirical data will
require the use of some approximations. This point is under-
scored by the results obtained in Sec. II D, which show that
the bulk k ·p parameters generated by typical experimental
data-fitting procedures already include a unitary
transformation—of unknown magnitude—of the type de-
fined here. The uncertainty would seem to be greatest for the
convenient tabulations in review articles60 of parameters
compiled from many sources.

Given such uncertainty in the existing experimental data,
it is reasonable to base short-term applications of the present
theory on the criterion of simplicity rather than theoretical
rigor. If an unknown bulk unitary transformation is already
present in the empirical parameters, the original LK basis
cannot be defined experimentally, and it is not possible to
make any definite statements about operator ordering in het-
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FIG. 2. �Color online� �15 valence subband structure of a �001�
�In0.53Ga0.47As�24�InP�24 superlattice.
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erostructures. Therefore, one might as well choose some-
thing simple, such as the conventional BenDaniel-Duke op-
erator ordering. For simplicity, one can apply this operator
ordering after a bulk unitary transformation has been used to
eliminate real spurious solutions, as in the heuristic model of
Ref. 32.

Two choices of unitary transformations in heterostructures

stand out for their simplicity. One is to set Ā=0
everywhere,32 which has computational advantages12 be-
cause it allows the conduction-band envelopes to be elimi-
nated from explicit appearance in the envelope-function

equations.32 The other is to select a single value of P̄ for the
entire heterostructure,18,27 which is chosen to yield evanes-
cent spurious solutions in accordance with the guidelines

given in Sec. IV C. Assuming that Ā�0, this choice simpli-
fies the interface boundary conditions �for calculations based
on the flatband approximation� because it ensures continuity
of all envelopes.14,15

The above approach is merely a quick practical fix, in
which the uncertainty in experimental parameters is openly
acknowledged and even turned to advantage by selecting
simple operator ordering and a parameter set with no real
spurious solutions. The resulting errors in operator
ordering—which are probably systematic—are simply ig-
nored.

However, it is hoped that the present theory will also pro-
vide a stimulus for future work, in which the sources of
ambiguity in our present knowledge are steadily eliminated.
With a careful combination of experimental data and empiri-
cally based microscopic theory �such as empirical
pseudopotentials62 or empirical tight-binding theory63�, it
should be possible to establish for each material whether
spurious solutions in the Kane Hamiltonian are really re-
quired by experiment or are merely an artifact of current
data-fitting procedures. Application of the same methods to
heterostructures will provide more definitive results for the
parameters that determine operator ordering. At the same
time, extensions of the present ab initio techniques to include
quasiparticle self-energies and projector-augmented waves
should provide more accurate predictions of parameters from
first principles. It is hoped that at some time in the near
future these two lines of investigation will converge to yield
a practical k ·p theory free from ambiguity.
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APPENDIX A: MATRIX FORMULATION OF
HAMILTONIAN CHANGES

Let Hm
�n� be the contribution to the matrix H that is of

order �nkm, where � is the heterostructure perturbation pa-
rameter introduced in Eq. �14a�. Then the changes in the
reference crystal Hamiltonian �1� due to the unitary transfor-
mation �6� are given by �cf. Eq. �9a�

�H1
�0� = �H0

�0�,S1
�0� , �A1�

�H2
�0� = �H̃1

�0�,S1
�0� + �H0

�0�,S2
�0� , �A2�

while the changes in the linear Hamiltonian �14� are �cf. Eqs.
�16� and �17�

�H1
�1� = �H0

�1�,S1
�0� + �H0

�0�,S1
�1� , �A3�

�H2
�1� = �H̃1

�1�,S1
�0� + �H̃1

�0�,S1
�1� + �H0

�1�,S2
�0� + �H0

�0�,S2
�1� ,

�A4�

in which H̃1
�n�=H1

�n�+ 1
2�H1

�n�.

APPENDIX B: COORDINATE AND VELOCITY

This appendix examines the effect of the transformation
�6� on the coordinate and velocity. In the LK representation,
the coordinate operator inside the first Brillouin zone is just
i�k�nn�.

52 After the k ·p coupling between A and B is elimi-
nated, the effective coordinate for A becomes

�nk�x�n�k�� = xnn��k���k − k�� , �B1a�

in which the operator xnn��k� is given to first order in k by

xnn��k� = i�k�nn� +
1

2
�nn� � k . �B1b�

Here, �nn� is the Berry curvature82–86 at k=0 for the quasi-
Bloch �or transformed LK� basis:

�nn� = i�
l

B

�nl � �ln�, �B2�

in which �nn� is the crystal coordinate87 or Berry
connection85

�nn� =
− i�nn�

�nn�
�En � En�� . �B3�

The effective velocity v=−i�x ,H for A is therefore given
�to first order in k� by

vnn��k� = �kHnn��k� +
i�nn�

2
�nn� � k . �B4�

Here, the contribution from �nn� vanishes in a single-band
effective-mass model, but not in a multiband model. This
contribution is related88 to the so-called anomalous
velocity82,83 or Hall velocity86 in an external field. � is a
Hermitian operator with the same symmetry as an angular
momentum or a magnetic field �i.e., � is a pseudovector that
is odd under time reversal�. In a zinc-blende crystal, � has
�25� symmetry and couples the �6 conduction band to the �8
valence band in the presence of spin-orbit coupling.

After the transformation x̄=e−SxeS, the effective coordi-
nate for A becomes

x̄nn��k� = i�k�nn� + ��nn� +
1

2
�̄nn� � k + ix̂ j�Snn�

jl + Snn�
lj �kl,

�B5�

in which ��nn�= + i��nn� /�nn� and �̄nn�=�nn�+��nn�,
where
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��nn� = i�
l

A

��nl � ��ln�. �B6�

The transformed velocity v̄=e−SveS=−i�x̄ , H̄ is given by Eq.
�13�. In this case, attempting to write v̄ in a form analogous
to Eq. �B4� yields a rather lengthy expression that is not
given here.

APPENDIX C: EQUATION (39)

This appendix contains a derivation of the expression for

P̄v0
2 =minn̂ P̄v

2�n̂� given in Eq. �39� of Sec. IV C. Here, P̄v
2�n̂�

is the smallest value of P̄2 where any eigenvalue d̄�
v�n̂�=0.

To find the value of P̄v0
2 , it is therefore necessary to deter-

mine the direction n̂ in which d̄�
v�n̂� first reaches zero �for

any � or n̂� as P̄2 is increased from zero.
The problem can be simplified by noting that in the PBA,

the 6�6 VB block D̄v�n̂� can be further reduced to the direct
sum of two 3�3 spin-zero blocks, since the mass parameters
in the PBA do not depend on spin. The eigenvalues of these
3�3 matrices cannot be found analytically for general n̂, but

a useful approximate solution can be obtained from a rotated
basis1 	�X�� , �Y�� , �Z��
 in which �Z��= n̂x�X�+ n̂y�Y�+ n̂z�Z�. In
this basis, the �Z�� state is of principal interest because �X��
and �Y�� are not coupled to the CB by the k ·p interaction.
The corresponding diagonal matrix element of Dv�n̂� is

DZ�Z�
v �n̂� = L − 2�L − M − N��n̂y

2n̂z
2 + n̂z

2n̂x
2 + n̂x

2n̂y
2� . �C1�

For n̂ in the �100�, �110�, and �111� directions, the matrix
Dv�n̂� is diagonal and Eq. �C1� is an exact eigenvalue. For
other directions, Eq. �C1� is not an exact eigenvalue, but it
does provide a useful qualitative description of the angular
dependence of the exact solution.

In typical semiconductors, the Luttinger parameters
�original66 or modified48� satisfy �3��2,58,60 hence L−M
−N=3��3−�2��0. Equation �C1� therefore suggests that the

first eigenvalue d̄�
v�n̂� �for any direction n̂� to reach d̄�

v�n̂�
=0 as P̄ increases from zero will be the eigenvalue L̄ corre-
sponding to a state �Z�� with n̂ � �100�. This tentative conclu-
sion has been confirmed by a numerical examination of the

eigenvalues d̄�
v�n̂� in different directions as P̄ is varied.

Therefore, when �3��2 �as is usually the case�, the con-

stant P̄v0
2 is given by Eq. �39�.
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piecewise-constant material parameters. This conflict remains,
but the correct resolution is not to abandon the operator ordering
derived from first principles. Rather, one should reject discon-
tinuous parameters as physically unrealistic.

68 J. C. Hensel and K. Suzuki, Phys. Rev. Lett. 22, 838 �1969�.
69 D. Gershoni, C. H. Henry, and G. A. Baraff, IEEE J. Quantum

Electron. 29, 2433 �1993�.
70 M. H. Weiler, R. L. Aggarwal, and B. Lax, Phys. Rev. B 17, 3269

�1978�.
71 H.-R. Trebin, U. Rössler, and R. Ranvaud, Phys. Rev. B 20, 686

�1979�.
72 H.-R. Trebin, B. Wolfstädter, H. Pascher, and H. Häfele, Phys.

Rev. B 37, 10249 �1988�.
73 K. Boujdaria, S. Ridene, and G. Fishman, Phys. Rev. B 63,

235302 �2001�.
74 Boujdaria et al. �Ref. 73� did not study explicitly the error gen-

erated by treating P as a fitting parameter, but they did discuss
�on p. 3� the effect of choosing different values of P.

75 In Ref. 44, Kolokolov et al. state that their modification of the
Kane Hamiltonian has less error �measured with respect to the
original Kane Hamiltonian� in the coefficient of k4 in the secular
equation than the model of Ref. 32. This assertion is meaning-
less, however, since the Kane Hamiltonian is not valid to order
k4. It should also be noted that the modification proposed in Ref.
44 is not invariant with respect to the symmetry operations of
the Td group.

76 The conduction subband structure was not considered here be-
cause �see Fig. 1� the L conduction valleys of the model system
are nearly degenerate with the � valley �Refs. 50 and 51�.
Hence, a correct treatment of the conduction subbands in the
model system would require the inclusion of intervalley mixing,
which is beyond the scope of the Kane model. �To put this in
another way, the exact conduction subbands of the LDA model
system have “spurious solutions” of their own that would lead to
unnecessary complications.�

77 X. Gonze et al., Comput. Mater. Sci. 25, 478 �2002�.
78 X. Gonze et al., Z. Kristallogr. 220, 558 �2005�.
79 The ABINIT code is a common project of the Université

Catholique de Louvain, Corning Incorporated, and other con-
tributors �URL: http://www.abinit.org�.

80 L. Leibler, Phys. Rev. B 12, 4443 �1975�.
81 L. Leibler, Phys. Rev. B 16, 863 �1977�.
82 E. N. Adams and E. I. Blount, J. Phys. Chem. Solids 10, 286

�1959�.
83 E. I. Blount, in Solid State Physics, edited by F. Seitz and D.

Turnbull �Academic, New York, 1962�, Vol. 13, pp. 305–373.
84 M. Lax, Symmetry Principles in Solid State and Molecular Phys-

ics �Wiley, New York, 1974�.
85 M. V. Berry, Proc. R. Soc. London, Ser. A 392, 45 �1984�.
86 G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 �1999�.
87 E. N. Adams, Phys. Rev. 85, 41 �1952�.
88 The relationship is not an exact equivalence because the quasi-

Bloch basis differs from a true Bloch basis and because external
fields are not included here.

BRADLEY A. FOREMAN PHYSICAL REVIEW B 75, 235331 �2007�

235331-14


