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The elastic energy of a biaxially strained material depends on both the magnitude and the plane of the
applied biaxial strain, and the elastic properties of the material. We employ continuum-elasticity theory �CET�
to determine general analytic expressions for the strain tensor, the Poisson ratio, and the elastic energy for
materials with cubic crystal symmetry exposed to biaxial strain in arbitrary planes. In application to thin
homogeneously strained films on a substrate, these results enable us to estimate the role of elastic energy for
any substrate orientation. When calculating the elastic response to biaxial strain in an arbitrary plane by
numerical methods, our analytic results make it possible to set up these calculations in a much more efficient
way. This is demonstrated by density-functional theory calculations of the Poisson ratio and elastic energy
upon biaxial strain in several planes for the case of InAs. The results are in good agreement with those of CET,
but show additional nonlinear contributions already at moderate biaxial strain.
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I. INTRODUCTION

Heterostructures of two materials with different lattice
constants are of considerable technological importance. For
the stability of these structures, the energy associated with
elastic lattice distortions plays a major role. Apart from
strained semiconductor heterostructures1 that are in the main
focus of this work, other related fields of technology where
elastic energy is important are self-assembled semiconductor
nanostructures,2 thin metallic films,3 and phase stability in
metal superalloys.4 One way to create a material under con-
siderable biaxial strain is the heteroepitaxial or pseudomor-
phic growth of an overlayer on a substrate, implying that the
lateral lattice spacing of the overlayer adapts to the substrate
lattice.

The associated elastic energy is an important factor when
analyzing the structural stability of the overlayer: When the
elastic energy becomes too large, it is energetically more
favorable to reduce the strain, e.g., by introducing misfit dis-
locations or by a structural phase transition from a smooth to
a rough overlayer �see, e.g., Ref. 5�. For moderate misfit
strain, however, rather thick overlayers can be grown before
an instability occurs. In this case, most of the strain energy is
stored in regions of the overlayer that are already bulklike,
and can be estimated by studying biaxial deformations of
bulk materials. In the region near the interface, the character
of the chemical bonds between the atoms is affected by the
presence of the interface. This gives rise to effects unknown
in bulk elasticity theory, e.g., excess interface stress, or os-
cillatory displacements6 that decay to either side of the inter-
face. However, it has been argued that deviations from bulk
elastic behavior play a notable role only in films that are less
than a few monolayers thick.7 For example, for InAs films on
GaAs�001�, it has been shown by density-functional theory
�DFT� calculations that the energy stored in thin films in-
creases linearly �as predicted by elasticity theory� when the
film is thicker than three monolayers.8 In this paper, we con-
centrate on biaxial strain in bulk materials, exemplifying the

elastic properties of thick heteroepitaxial or pseudomorphic
films.

Theoretical investigations of strain effects in macroscopic
systems are generally based on continuum-elasticity theory
�CET�, see, e.g., Ref. 9. Within this framework, Marcus et
al.10 presented a general scheme to calculate the elastic re-
sponse upon biaxial deformations numerically. Analytic so-
lutions in terms of the Miller indices of the strain plane have
been worked out only for a few selected cases in systems
with cubic symmetry,11 and for thin films.12 Our first goal is
the derivation of general analytic expressions of the strain
tensor, the Poisson ratio, and the elastic energy for cubic
systems under biaxial strain within linear-response CET.

Deformations larger than a few percent are not uncom-
mon in epitaxial or pseudomorphic overlayers, but their
treatment goes beyond linear elasticity theory. In fact, quan-
titative agreement between the observed and the calculated
wavelength of light emission from semiconductor hetero-
structure lasers could only be achieved by taking nonlinear
elastic response into account.13,14 Further examples where
nonlinear effects play a role are piezoelectricity in semicon-
ductor quantum wells,15 the stability of epitaxial films of
noble metals,16 or structural transformation paths in metals.17

Although CET can be extended to include nonlinear effects,
a nonlinear treatment is in many cases hindered by the lim-
ited knowledge of the higher-order elastic constants. An al-
ternative approach to nonlinear elastic effects are systematic
numerical studies using, e.g., DFT. Until now such investi-
gations were mainly applied to isotropic strain and biaxial
strain in low-index planes. The second goal of this paper is
therefore to establish a scheme through which such investi-
gations of nonlinear contributions can be very efficiently ex-
tended to biaxial strain in high-index planes. As an example,
we perform DFT calculations for the dependence of nonlin-
ear elastic effects in InAs/GaAs heteroepitaxy on the sub-
strate orientation.

In the first part of this paper we introduce the strain tensor
that is used to obtain the Poisson ratio and elastic energy for
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cubic systems as given in the second part. The remainder of
this paper is then devoted to a comparison of CET results
and DFT calculations, along with a discussion of nonlinear
elastic effects and the consideration of internal relaxations.

II. BIAXIAL STRAIN-TENSOR

The free energy of isothermal elastic deformations of a
medium is given by the elastic constants cklmn and the strain
tensor � as

F��� =
1

2 �
klmn

cklmn�kl�mn. �1�

Often the symmetries of crystal structures can be used to
simplify the above expression9 by specifying the strain ten-
sor in the canonical coordinate system of the crystal, i.e., for
ex � �100�, ey � �010�, and ez � �001�. For structures with cubic
symmetry the elastic energy reduces to9

F��� =
c11

2
��xx

2 + �yy
2 + �zz

2 � + 2c44��xy
2 + �xz

2 + �yz
2 �

+ c12��xx�yy + �xx�zz + �yy�zz� , �2�

where the elastic constants cij are given in Voigt notation.
The elastic response of a medium under external stress is

determined by minimizing the free energy F with respect to
the directions with no external stress. The general analytic
solutions for isotropic and for one-dimensional �uniaxial� ex-
ternal deformations yield the well-known bulk modulus and
Poisson ratio, respectively. The Poisson ratio of elastically
anisotropic materials depends on the direction of uniaxial
strain. In analogy to the uniaxial case, one can define a Pois-
son ratio for isotropic two-dimensional deformations, that we
will refer to as biaxial deformations, in compliance with
most previous works. Similar to the uniaxial case, the elastic
relaxation upon biaxial strain in a plane �hkl� can be given in
an orthogonal coordinate system of the deformation with two
axes �e1 ,e2� in the strain-plane �hkl� and a third �e3� along
the direction of relaxation �hkl�. The relation to the canonical
coordinates can be given by a matrix T= �e1 ,e2 ,e3�−1. The
biaxial strain tensor �s in this coordinate system of the de-
formation is

�s = ��s 0 0

0 �s 0

0 0 − ��s
� , �3�

where � is the biaxial Poisson ratio. A more general treat-
ment is possible with introducing commensurability
constraints,18,19 but we focus on the case of isotropic planar
strain. The strain tensor �s can be inserted into the expression
for the free energy �Eq. �1�� after transforming �s from the
coordinate system of the deformation to the canonical coor-
dinate system of the crystal. This is advantageous as it allows
to use the well-known structure-specific expressions of the
free energy in canonical coordinates. The above matrix T
transforms the strain tensor �s expressed in terms of
	e1 ,e2 ,e3
 to the corresponding strain tensor � in canonical
coordinates 	ex ,ey ,ez
. This yields the free energy

F��� = F�T�sT
T� . �4�

Together with the structure-specific free energy and the val-
ues of the elastic constants, Eq. �4� allows us to calculate the
elastic response upon biaxial strain in arbitrary planes by
determining the minimum of the elastic energy with respect
to the biaxial Poisson ratio

�

��
F��� = 0. �5�

A general procedure of transforming the strain tensor to
canonical coordinates with a tensor-transformation law20 was
described in detail previously.10 With this scheme Marcus11

determined the elastic energy of cubic systems upon biaxial
strain analytically for low-index planes and numerically for
several high-index planes.

A rigorous analytic derivation requires the knowledge of
the transformation matrix T that is not unique for a given
strain plane due to the freedom to choose the in-plane vec-
tors e1 and e2. But for the case of biaxial strain, i.e., for two
orthogonal deformations of equal absolute value, the strain
tensor is invariant under the particular choice of e1 and e2. In
other words, the elastic response can be calculated uniquely
for a given plane of a structure with any choice of e1 and e2,
and thus depends solely on the elastic constants of the mate-

FIG. 1. �Color online� Dependence of the Poisson ratio �top� and
the elastic-energy per volume �bottom� of InAs on the normal vec-
tor of the plane of biaxial strain.
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rial, its crystal structure, and the normal of the biaxial-strain
plane e3 � �hkl�. This was already noted by Marcus11 for the
elastic energy. Without loss of generality we choose an or-
thonormal deformation coordinate system that allows to eas-
ily derive a general transformation matrix T, similar to
Lee:12

e1 = e2 � e3, e2 =
1

n2�
kl

hl

− 2hk
�, e3 =

1

n3�
h

k

l
� �6�

with the normalization n2=�k2l2+h2l2+4h2k2 and n3
=�h2+k2+ l2. This defines the transformation matrix T that
allows us to transform the strain tensor from the coordinate
system of the deformation to canonical coordinates

� = T��s 0 0

0 �s 0

0 0 − ��s
�TT

= −
�s

h2 + k2 + l2

���h2 − �k2 + l2� hk�� + 1� hl�� + 1�
hk�� + 1� �k2 − �h2 + l2� kl�� + 1�
hl�� + 1� kl�� + 1� �l2 − �h2 + k2�

� . �7�

Note, that the cubic symmetry of the crystal lattice enters the
transformation matrix in the definition of the orthonormal

deformation coordinate system in Eq. �6�. Therefore the
canonic representation of the strain tensor as given in Eq. �7�
holds only for materials with cubic symmetry.

III. ELASTIC RESPONSE

With the elastic energy of Eq. �2� and the canonic strain
tensor of Eq. �7�, the elastic response of a system with cubic
symmetry upon a biaxial deformation can be determined by
minimizing the elastic energy with respect to the Poisson
ratio �, according to Eq. �5�. The resulting Poisson ratio and
elastic energy upon biaxial strain in the �hkl� plane depend
only on the elastic constants cij, the strain plane �hkl�, the
biaxial strain �s, and the volume of strained material V:

� = 2
c12�h4 + k4 + l4� + �c11 + c12 − 2c44��h2k2 + h2l2 + k2l2�

c11�h4 + k4 + l4� + 2�c12 + 2c44��h2k2 + h2l2 + k2l2�
¬ ��0�, �8�

F��s� =
�c11 + 2c12���c11 − c12��h4 + k4 + l4� − �c11 − c12 − 6c44��h2k2 + h2l2 + k2l2��

c11�h4 + k4 + l4� + 2�c12 + 2c44��h2k2 + h2l2 + k2l2�
�s

2V . �9�

These analytic results hold for arbitrary biaxial strain and
every material with cubic symmetry. Materials are usually
called elastically isotropic if 2c44=c11−c12, i.e., if the Pois-
son ratio for uniaxial strain is independent of the direction of
strain. The above equations show that for such materials the
Poisson ratio for biaxial strain is independent of the strain
plane, too. Note, that the analytic results of both, the Poisson
ratio and the elastic energy are identical for values of �hkl�
with constant ratio m given by

m =
h4 + k4 + l4

h2k2 + h2l2 + k2l2 �10�

like, e.g., �110�, �211�, and �321�. The analytic Poisson ratios
for �100� and �110� from Eq. �8� are identical to those given
in previous works.9,11,21 In a comparison of the elastic-energy
upon biaxial strain in Fe, Cu, V, and Ni as obtained previ-

ously by Marcus,11 and our analytic expression with the
same elastic constants, we find identical results for �100�,
�110�, and �111�, but different values for �211�, �311�, �310�,
�321�, and �331�. These differences arise from the bending of
the film-substrate system that was considered in Ref. 11 but
is absent in the bulk systems studied in this work. For high-
index strain planes, the substrate bending leads to finite val-
ues of the off-diagonal elements of the strain tensor in the
coordinate system of the deformation �Eq. �3��. From a com-
parison of our results with those of Marcus,11 we find that the
substrate bending of a film-substrate system can lower the
elastic energy density by up to approximately 20%.

The cubic symmetry of the crystal structure is reflected in
the invariance of the biaxial Poisson ratio and the elastic
energy under a permutation of the Miller indices of the strain
normal. This symmetry is also apparent in Fig. 1 that shows
a polar plot of both quantities as a function of the normal
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FIG. 2. �Color online� The Poisson ratio calculated with density-
functional theory for biaxial strain in different planes �symbols�
shows a linear dependency on the strain �lines�.
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vector of the biaxial strain-plane. These figures were ob-
tained by multiplying the normalized vector �hkl� with � or F
as obtained from Eqs. �8� and �9�, respectively, using the
experimentally observed elastic constants of InAs as given in
Ref. 22. Figure 1 illustrates the relationship between the elas-
tic relaxation and the elastic energy. Biaxial strain in a plane
perpendicular to an elastically soft direction, e.g., �001�, al-
lows for a relatively large relaxation along the plane normal
with relatively small elastic energy.

IV. DFT CALCULATIONS

The results presented in the previous sections now enable
us to establish an efficient scheme for numerical investiga-
tions of the elastic response to biaxial strain in arbitrary
planes. Frequently, calculations of bulk elastic properties are
done with simulation cells that are chosen such that the strain
plane is spanned by two basis vectors of the simulation cell.
�For strain in, e.g., the �111� plane, one could use a bulk

simulation cell with e1 � �112̄�, e2 � �11̄0�, and e3 � �111�.� This
choice allows one to easily apply biaxial strain by scaling
those two basis vectors that span the strain plane. But the
number of atoms in such a simulation cell depends on the
plane of biaxial strain and, for high-index planes, becomes
very large and eventually hard to handle in DFT calculations.
The strain tensor in canonical coordinates �Eq. �7��, however,
determines the strained unit cell and the atomic coordinates
for biaxial deformations in any plane. This reduces the re-
quired simulation cell to a single conventional unit cell of the
investigated cubic material. The determination of the biaxial
Poisson ratio for a certain strain � in some chosen plane
�hkl� then reduces to scaling the atomic coordinates and the
cell vectors of a conventional cubic unit cell according to the
strain tensor, and minimizing the elastic energy with respect
to �.

In this section we apply this scheme exemplarily to biax-
ially strained InAs in the ZnS structure that plays a major
role in the self-assembled growth of quantum dots �see, e.g.,
Ref. 23 for a recent review�. The analytic results obtained in
the previous section are compared to self-consistent total-
energy calculations using DFT.24 We use norm-conserving
pseudopotentials,25 Monkhorst-Pack k-point meshes,26 and
the local-density approximation for the exchange-correlation
functional. The calculations for all planes of biaxial strain
�hkl� were performed with a single ZnS unit cell with eight
atoms in total, displaced according to the strain tensor �Eq.
�7�� for the corresponding �hkl�. An energy cutoff of 20 Ry
and a 5�5�5 folding of one k point in the center of the
Brillouin zone turned out to be sufficient to converge the
value of ��0� �see below� to a remaining error of about 1%.

An additional issue for the case of the chosen ZnS lattice
is that biaxial strain can lift the equivalence of the atomic
bonds inside the unit cell. This causes the atoms to relax their
relative position and is well known from the calculation of
the elastic constants c44

�0� and c44 �see Ref. 27�. To investigate
the role of such internal relaxations under biaxial deforma-
tions, we performed two kinds of DFT calculations: In the
first set, we scaled the unit cell and the position of the atoms

according to the strain tensor and computed the total energy
without relaxing. In the second set, we additionally relaxed
the positions of the atoms in the unit cell until the absolute
value of the change in the total energy was less than
0.3 meV. The procedure is similar to numerically calculating
c44

�0� and c44, respectively, and will be referred to as “unre-
laxed” and “relaxed” in the following.

In both cases, we determined the biaxial Poisson ratio �
numerically with DFT calculations for different values of the
strain �i. To address the case of InAs/GaAs heteroepitaxy
with about 6.9% lattice mismatch, we have chosen �i
� 	±0.07, ±0.05, ±0.03, ±0.01
. For each �i, we calculated
the total energy of the strained InAs unit cell at ���i�
=�a± j0.05, where �a is the analytic result and j=0, . . . ,5.
The elastic energy Eel is given by the difference in total
energies of strained and unstrained unit cell. From our DFT
calculations we find that the elastic energy for a particular
strain �i is well described by

Eel��i,�� = Eel
�0���i� + Eel

�1���i�� + Eel
�2���i��2. �11�

The minimum of the elastic energy with respect to � yields
the elastic response �i��i� upon this particular strain �i. The
Poisson ratios for different biaxial strain in different planes
�hkl� as obtained from our DFT calculations are shown in
Fig. 2.

For a quantitative comparison with CET we performed a
linear fit of the DFT results according to

���� = ��0� + ��1�� . �12�

Note, that the slope ��1� indicates a nonlinear elastic response
that is not captured by the continuum-elasticity theory ap-
proach presented in the previous sections. Within the validity
of the linear CET approach, different strain dependencies of
the elastic constants in Eq. �8� could give rise to the different
slopes ��1� observed in Fig. 2: The negative slopes of all but
one curve in Fig. 2 are likely due to the role of c44 in Eq. �8�
and its strain dependence. The shear strain described by c44
is absent for biaxial strain in the �001� plane, and indeed a
positive slope of the Poisson ratio is found for this plane.

The biaxial Poisson ratio ��0� that corresponds to linear
elastic response as obtained from DFT calculations is com-
piled with the analytic result from Eq. �8� in Table I for

TABLE I. The Poisson ratios ��0� of InAs under biaxial strain in
selected planes as obtained from continuum-elasticity theory �CET�
are in good agreement with DFT calculations.

no internal relaxation

DFT
��1�

internal relaxation

DFT
��1�

CET
��0�

DFT
��0�

CET
��0�

DFT
��0�

�0 0 1� 1.09 1.05 +0.55 1.09 1.04 +0.55

�1 1 0� 0.34 0.40 −1.23 0.67 0.67 −3.21

�1 1 1� 0.20 0.29 −1.51 0.57 0.55 −0.92

�1 1 3� 0.54 0.60 −1.77 0.81 0.78 −1.65

�3 1 7� 0.58 0.63 −1.56 0.83 0.79 −2.03

�3 7 15� 0.52 0.57 −1.65 0.79 0.77 −2.10
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different strain planes �hkl�. The consideration of internal
relaxations in the analytic expressions obtained from CET by
employing c44 or c44

�0� in Eq. �8� is compared to DFT calcu-
lations without and with relaxation of the internal degrees of
freedom, respectively. For both cases, we also provide the
value of ��1� that leads to nonlinear elastic response and is
not apparent in the CET calculations. In both cases, i.e., with
and without internal relaxations, the Poisson ratios of the
investigated planes of biaxial strain as obtained from CET
are in good agreement with DFT calculations. This confirms
that the consideration of internal relaxation in CET can be
controlled by choosing either c44 or c44

�0�. Note, that the ana-
lytic results were obtained with the experimentally observed
elastic constants of InAs �Ref. 22� that differ slightly from
the corresponding DFT results.

The elastic energy densities with internal relaxations are
shown in Fig. 3. According to Eqs. �11� and �12�, the elastic-
energy densities calculated with DFT were found to be well
described by

Eel��� = Eel
�2��2 + Eel

�3��3. �13�

The numerical values of Eel
�2� and Eel

�3� as obtained from our
DFT calculations are compiled in Table II for different strain
planes �hkl�, together with the analytic result from CET by
employing c44 or c44

�0� in Eq. �9�. For the case of InAs studied
here, the Poisson ratio varies between the smallest and the
largest value by a factor of five, whereas the range of elastic
energy densities is about 30%.

V. CONCLUSION

In this work, an analytical expression has been derived for
the elastic response of a material with cubic symmetry under
biaxial deformations within linear continuum elasticity
theory �CET� for any chosen strain plane. We determine the
biaxial strain tensor in the canonic coordinates of the crystal,
as well as the biaxial Poisson ratio and elastic energy. In

extension to previous works we provide general, analytic ex-
pressions for arbitrary planes of biaxial strain, depending
only on the elastic constants and the Miller indices of the
strain plane. As a corollary, we identify subsets of strain
planes �characterized by their Miller indices� that display
identical elastic response. It follows from our derivation that
elastic isotropy with respect to uniaxial strain implies elastic
isotropy with respect to biaxial strain. Furthermore, knowl-
edge of the strain tensor in analytical form allows us to work
out an efficient scheme for numerical calculations in which
one cubic unit cell is sufficient to describe biaxial strain in
any plane. It should be noted that the above results only hold
for cubic crystals and small magnitudes of the strain. For
larger deformations, two basic assumptions break down: Lin-
ear response is no longer applicable, and further deformation
of a system that is already biaxially strained would act on a
noncubic system.

Motivated by our interest in InAs/GaAs heteroepitaxy,
we performed DFT calculations of InAs under typical condi-
tions of biaxial strain. The linear contributions of both, the
Poisson ratio and the elastic energy for biaxial strain in se-
lected planes, are in good agreement with the corresponding
CET results. The nonlinear contributions in the DFT results
are well described by a linear dependence of the Poisson
ratio on the applied biaxial strain and a cubic strain depen-
dence of the elastic energy. Performing the DFT calculations
with or without atomic relaxations is found to be equivalent
to the use of either c44 or c44

0 as shear modulus in CET.
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FIG. 3. �Color online� The elastic energy per volume �Eel of Eq.
�13�� of InAs upon biaxial strain in selected planes as obtained from
DFT �points and full lines� shows considerable nonlinear response
�Eel

�3� in Eq. �13�� that is not captured by linear CET �dashed lines�.

TABLE II. The elastic energy density Eel
�2� of InAs under biaxial

strain in selected planes as obtained from continuum-elasticity
theory �CET� are in good agreement with DFT calculations. �Values
given in eV/Å3.�

no internal relaxation

DFT
Eel

�3�

internal relaxation

DFT
Eel

�3�
CET
Eel

�2�
DFT
Eel

�2�
CET
Eel

�2�
DFT
Eel

�2�

�0 0 1� 0.50 0.52 −1.40 0.50 0.52 −1.40

�1 1 0� 0.90 0.88 −2.83 0.72 0.70 −0.83

�1 1 1� 0.90 0.95 −3.12 0.76 0.78 −1.88

�1 1 3� 0.79 0.77 −2.10 0.65 0.65 −1.13

�3 1 7� 0.77 0.75 −2.06 0.64 0.64 −0.98

�3 7 15� 0.81 0.78 −2.21 0.66 0.65 −1.03
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