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A theoretical description of radiation-matter coupling for semiconductor-based photonic crystal slabs is
presented, in which quantum wells are embedded within the waveguide core layer. A full quantum theory is
developed by quantizing both the electromagnetic field with a spatial modulation of the refractive index and the
exciton center-of-mass field in a periodic piecewise constant potential. The second-quantized Hamiltonian of
the interacting system is diagonalized with a generalized Hopfield method, thus yielding the complex disper-
sion of mixed exciton-photon modes including losses. The occurrence of both weak- and strong-coupling
regimes is studied, and it is concluded that the new eigenstates of the system are described by quasiparticles
called photonic crystal polaritons, which can occur in two situations as follows: (i) below the light line, when
a resonance between exciton and nonradiative photon levels occurs (guided polaritons) and (ii) above the light
line, provided that the exciton-photon coupling is larger than the intrinsic radiative damping of the resonant
photonic mode (radiative polaritons). For a square lattice of air holes, it is found that the energy minimum of
the lower polariton branch can occur around normal incidence. The latter result has potential implications for
the realization of polariton parametric interactions in photonic crystal slabs.
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I. INTRODUCTION

The capability of engineering electron and photon states
through spatial confinement leads to a control of radiation-
matter interaction and to a number of interesting results in
the field of solid-state cavity quantum electrodynamics.! For
example, the use of quantum-well (QW) excitons embedded
in high-finesse semiconductor microcavities (MCs) of the
Fabry-Pérot type has allowed us to observe a modification of
spontaneous emission (weak-coupling regime)? as well as the
occurrence of a vacuum Rabi splitting (strong coupling
regime).>* The latter effect arises when the radiation-matter
coupling energy overcomes the damping rates of QW exci-
tons and MC photons. Under such conditions, the elementary
excitations of the system should not be described as barely
excitonic or photonic, but rather as mixed radiation-matter
states, called MC polaritons>® The physics of exciton-
polaritons in bulk materials had been introduced in the 1950s
(Refs. 10 and 11) and is now a textbook topic.'>!3 The con-
finement of both excitons and photons with MC-embedded
QWs leads to polariton states that are more easily observed,
even at room temperature, and, in fact, MC polaritons have
been a major research topic in the 1990s. In 2000, the dem-
onstration of coherent parametric processes due to polariton-
polariton scattering'*!> opened a new area of research in the
physics of MC polaritons and nonlinear optics. More re-
cently, the experimental demonstration of Bose-Einstein con-
densation of MC polaritons with II-VI materials'® brings a
new exciting development and demonstrates the potentiali-
ties of radiation-matter interaction in the presence of electron
and photon confinement.

Until now, little has been done to study radiation-matter
interaction when high-quality QWs are combined with new
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routes for the tailoring of electromagnetic field in photonic
crystals (PhC). These structures, which are characterized by
a periodic modulation of the dielectric constant along one,
two, or three dimensions,!” allow for an unprecedented con-
trol over the propagation and confinement of light at optical
wavelengths. In particular, two-dimensional PhCs embedded
in a planar dielectric waveguide, commonly known as pho-
tonic crystal slabs, are receiving much attention because they
allow for a three-dimensional (3D) control of light and are
easily realized at submicron length scales.!32! In these sys-
tems, light propagation or confinement is controlled by the
PhC structure in the two-dimensional (2D) plane and by the
dielectric discontinuity provided by the slab waveguide in
the vertical direction. When QWs are embedded in a PhC
slab, additional flexibility and new effects related to exciton-
photon coupling are to be expected.

In this work, we analyze radiation-matter interaction in
PhC slabs by considering the effects of coupling between
QW excitons and photonic modes. A main goal is to study
the conditions leading to the strong coupling regime and to
point out the possibilities offered by PhC for strong coupling
engineering. In the past, both experimental’”> and
theoretical®® investigations of strong coupling regime in
organic-based one-dimensional (ID) PhC slabs have been
reported, the theory being based on a semiclassical treat-
ment. The same groups also reported a joint work on 2D PhC
slabs with organic active medium, in which the theoretical
treatment was again based on a semiclassical solution of
Maxwell’s equations within a scattering matrix formalism.’*
Exciton-polaritons in 1D PhCs (ideal Bragg mirrors) in
which one of the constituent media has a strong excitonic
character were theoretically studied by using a fully classical
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approach.?> Other theoretical works focused on polaritonic
gaps in the so-called phonon-polaritonic PhCs,?® or on the
properties of 3D arrays of quasi-zero-dimensional excitons
(e.g., quantum dots) coupled to Bloch modes of the same
periodic array of dielectric objects.?” More recently, a purely
2D square lattice array of rods in a dielectric host medium
has been theoretically studied, in which one of the two con-
stituent media has a frequency-dependent permittivity with a
pole at a resonant frequency.”® Combining the effects of ex-
citon confinement in QW structures with the 2D periodicity
of the surrounding dielectric environment has only been
studied in relation to the influence of Coulomb interaction on
the longitudinal part of the electromagnetic field for deeply
patterned PhCs with an unpatterned QW underneath the PhC
region.”” No experimental or theoretical work has been re-
ported so far, to the best of our knowledge, on excitons or
exciton-polaritons in semiconductor-based PhC structures
that are the subject of this work.

In the present paper, the theoretical problem of exciton-
photon coupling in PhC slabs is tackled by using a fully
quantum-mechanical formalism for both photons and exciton
states, which is described in detail. With respect to previous
works on the quantum theory of exciton-polaritons in semi-
conductor nanostructures,’*33 the nontrivial spatial depen-
dence of the dielectric constant is taken into account by
quantization of the electromagnetic field in a nonhomoge-
neous medium.3*3° The total Hamiltonian for the coupled
exciton-photon states is derived and diagonalized numeri-
cally to obtain the eigenenergies of the mixed modes. It is
shown that polaritonic effects are typically stronger in PhC
slabs than in MCs due to the better field confinement pro-
vided by total internal reflection in the slab. As a conse-
quence, larger vacuum Rabi splitting is found at exciton-
photon resonance in strong coupling regime, which occurs
when the exciton-photon coupling energy is larger than the
intrinsic radiative linewidth of the photonic mode and the
QW exciton. In this scenario, new quasiparticles form in the
PhC slab, which we call photonic crystal polaritons. Prelimi-
nary results of the formalism presented here have been pub-
lished as conference proceedings*®*? and limited to 1D or
triangular PhC lattices. In addition to the full theoretical for-
mulation, we present here results for a PhC slab made of a
square lattice of air holes in a high-index suspended mem-
brane. For a specific PhC slab design, a polariton angular
dispersion is found which has a minimum close to normal
incidence with respect to the slab surface. Such result paves
the way for exciting developments in the investigation of
hybrid semiconductor structures exhibiting both photonic
and electronic band gaps, as it will be discussed.

The paper is organized as follows. In Sec. II, we sche-
matically describe the system under investigation. In Sec. III,
we give a detailed account of the second-quantization proce-
dure leading to the complete exciton-photon Hamiltonian in
the linear (low excitation density) regime and of the diago-
nalization technique. In Sec. IV, we provide systematic re-
sults in both weak and strong coupling regimes and describe
the formation of guided and radiative polaritons. The rel-
evance of the results in the context of parametric processes
involving polariton-polariton scattering is also discussed. Fi-
nally, in Sec. V, we summarize the conclusions of the work.
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FIG. 1. (Color online) Schematic view of a two-dimensional
photonic crystal slab of thickness d and lattice constant a, with a
single quantum well grown within the core layer.

II. SYSTEM

The schematic of the model system under investigation
and the choice of the coordinate axes are given in Fig. 1. We
consider a high-index planar dielectric waveguide with semi-
infinite cladding layers (typically the upper cladding is air).
We assume that a QW of thickness Lqy is grown in the core
of the waveguide at a certain vertical position z¢y, measured
from the core/lower cladding interface. The dielectric mate-
rial constituting the core of the planar waveguide also acts as
a barrier material for the carriers (electrons and holes) con-
fined in the thin QW layer. Typical QW thickness is of the
order of Lgw =10 nm, while the dielectric core layer is usu-
ally between d=100 and 200 nm thick. The QW exciton is
characterized by its transition energy E., and by the oscilla-
tor strength per unit area, f/5.*> The effect of multiple quan-
tum wells (MQWSs) grown in the core layer can be taken into
account by a total oscillator strength given by the sum of
single QW oscillator strengths. This approach is valid as long
as LQw<d, and the electric field of the relevant photonic
mode can be considered as uniform along the MQW thick-
ness. We disregard the difference in dielectric constants be-
tween QW and barrier media and assume the core layer to be
described by a relative dielectric permeability €g. The core
layer is patterned with a given photonic lattice, e.g., with
lattice constant a, down to the interface with the lower clad-
ding medium. Thus, exciton center-of-mass eigenfunctions
are not free as in usual QWs but are subject to a further
confining potential provided by the etched air regions. As a
general remark, it is clear that exciton and photon wave func-
tions are confined in the vertical direction and are subject to
effective potentials having the same spatial periodicity in the
2D plane. Roughly speaking, we could say that confined ex-
citons and photons display the same dimensionality in this
problem, thereby satisfying the condition for possible occur-
rence of quasistationary, strongly coupled polariton states.”**

III. QUANTUM THEORY OF EXCITON-PHOTON
COUPLING

In this section, we detail the full quantum theory of
radiation-matter interaction for QWs embedded in a PhC
slab. We start by the second quantization of the electromag-
netic field in a nonuniform dielectric environment, to which
end we follow the treatment given in Ref. 37. Then, we
quantize the exciton field by solving the Schrodinger equa-
tion for the center-of-mass QW exciton wave function in a
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periodic, piecewise constant potential. The solutions for the
noninteracting fields are used to derive the coupling Hamil-
tonian. The total Hamiltonian is then diagonalized, leading to
PhC polariton eigenmodes.

A. Quantized photon field in nonuniform dielectric medium:
Normal mode expansion

The canonical quantization of the electromagnetic field in
a nonuniform dielectric medium with relative permeability
€(r) (we assume a unit magnetic permeability) is carried out
through quantization of the vector potential A, defined from
the usual relations to the fields

1 dA(r,t 1.
E(r,t)=——¥=——A(r,t), (1)
c ot c
B(r,r) =V X A(r,1), (2)
and which must satisfy the following equation of motion:
>
VX VXA=—¢elr)A. (3)
C

We are considering only the retarded electromagnetic field
(no scalar potential, ®=0), and the vector potential can be
chosen to satisfy the generalized Coulomb gauge,’’

V- [e(r)A(r,1)]=0. (4)

The second-quantized Hamiltonian of the free photon field is
straightforwardly obtained from the classical expression of
the total electromagnetic energy,

Hom= —— f [e(r)E(r)? + B(r)2Jdr, (5)
8Ty

which can be derived from the Proca Lagrangian density*
and can be expressed in terms of A(r,7) and its conjugate
momentum II(r,7)=e(r)A(r,7)/c?. The field operator is ex-
panded in normal modes as

A(I‘,[) = 2 (27Thwkn)1/2[6AlknAkn(l')e_iwknt + &ltnAltn(r)giwk"t],
k.n

(6)

in which dfm (dy,) are creation (destruction) operators of
field quanta with eigenenergies fiwy,, and the index n is a
generic band number labeling the corresponding photonic
eigenmode at in-plane Bloch vector k. In order to satisfy the
Bose commutation relations for the operators,

[dkn’&]iln'] = 5k,k’ 5n,n” [&kn’&k’n’] = [dizns&;(l”f] =0,
(7)

the correct orthonormality condition for the classical func-
tions Ay, (r) satisfying Eq. (3) is6-373?

2
f e(r)A;n(r) Ay (t)dr = C—zﬁk’krén,n,, (8)
1%

Wy,

where V is the same quantization volume as in Eq. (5). This
implies the following conditions for the electric and mag-
netic fields:
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f €(r)Ey,(r) - By, (0)dr = 811 8,0 )
|4

J By, (1) - By, (1)dr = 8 11 8,0 (10)
\%4

The usual Maxwell equations for E and B can be derived
from the equations of motion for the conjugate variables
A(r) and II(r). From Eq. (5) and using the field expansion
[Eq. (6)], we finally get the second-quantized Hamiltonian of
the free photon field in the usual form as a sum of harmonic
degrees of freedom,

A A 1
th = 2 ﬁwkn<altnakn + 5) .

k.n

(11)

In order to implement the formalism, we shall need spe-
cific forms for the classical field functions. The exact solu-
tion of Maxwell’s equations in a PhC slab is a complicated
task, especially concerning quasiguided modes that lie above
the light line.'®!® A recently developed guided-mode expan-
sion (GME) approach*® allows us to find a convenient solu-
tion to this problem after expansion of the classical fields on
the basis of guided modes of an effective planar waveguide.
We start from the second-order equation for the magnetic
field B=H in a source-free dielectric medium and for har-
monic time dependence,

2
VX[LV xH}:ﬁﬂ. (12)
€(r) c?
Due to the in-plane translational invariance implying Bloch-
Floquet theorem, the magnetic field can be expanded on a
basis in which planar and vertical coordinates are factorized,

Hk(r) = 2 Z Ck,a(G)hk+G,a(Z)ei(k+G)p9 (] 3)
G «a

where r=(p,z), k is the in-plane Bloch vector in the first
Brillouin zone (BZ), G are reciprocal lattice vectors, and the
functions hy,q (z) (a=1,2,...) are the (discrete) guided
modes of the effective planar waveguide with an average
dielectric constant in each layer, calculated from the air frac-
tion of the given photonic lattice. Thus, Eq. (12) is reduced
to a linear eigenvalue problem

2
a,a’ ’ w
2 D MG e Ca(k+G) = Zealk+G), (14
G’ o

which is solved by diagonalizing the explicit expression for
the matrix M.%* The properties of the specific photonic lat-
tice enter in the matrix M as a Fourier transform of the
inverse dielectric constant in each layer, 7(G,G’)
=€'(G,G’), the matrix inversion being performed numeri-
cally. After diagonalization, the resulting photonic modes can
be classified according to their band index n and their in-
plane Bloch vector k. It should be noted that the classical
fields Hy,(r) and Ey,(r)={ic/[we(r)]}V X Hy,(r) calculated
by the GME approach automatically satisfy the orthonormal-
ity conditions (9) and (10); thus, they constitute a very con-

235325-3



DARIO GERACE AND LUCIO CLAUDIO ANDREANI

venient set for the second-quantized formulation. Finally, we
point out that losses of a quasiguided photonic eigenmode
can be introduced in the present treatment as an imaginary
part 7y, of mode eigenenergies. Such an imaginary part
arises for modes lying above the light line from out-of-plane
diffraction losses, which are calculated in perturbation theory
as detailed in Ref. 46.

B. Quantized exciton field in a periodic piecewise constant
potential

Exciton confinement in QWs has been widely investi-
gated in the past (for a review see, e.g., Ref. 43). Also, sec-
ond quantization of the QW exciton field has been exten-
sively treated in the literature. Two recent approaches leading
to an effective Hamiltonian of interacting bosons starting
from the full crystal Hamiltonian are given in Refs. 47 and
48. When the exciton density n., is low, i.e., much smaller
than a saturation density ng,=1/(27a3,) (Where a,p is the
2D exciton Bohr radius),*>>° QW excitons behave as a gas of
noninteracting bosons to a very good approximation.

The envelope function F(r,,r;) of QW excitons can be
factorized in a wave function depending on a center-of-mass
coordinate R and an electron-hole wave function depending
on the in-plane relative coordinate p as

F(re,rh) = FK(RII)f(p’Zth)s (1 5)

where F(R;)=e™Ri for free QW excitons. Considering the
system of Fig. 1, the QW layer is patterned with a photonic
lattice of air holes and the center-of-mass wave function
Fx(R)) for exciton motion in the 2D plane is not a simple
plane wave anymore.’! This wave function obeys a
Schrodinger equation

h2v?

{— + V(R)]FK(R) =ExFk(Ry), (16)
2M o

where Mex=m:+m;; is the total exciton mass and the poten-

tial V(R;)=0 in the nonpatterned regions, while V(R) takes a

large value V., in the air holes. Equation (16) can be solved

by plane-wave expansion,

F(R) = 2, F(K + G)e/ KO R (17)
G
where the exciton wave vector K is now restricted to the first

Brillouin zone and G are the same reciprocal vectors of the
photonic lattice. The resulting equation in Fourier space is

h2k + G|?
> g(SG,G,+V(G—G') F(K+G')
ol 2M
=ExF(K+G), (18)

where the Fourier matrix V(G,G’)=V(G-G’) has expres-
sions similar to those for €(G,G’) in the photonic problem.
Equation (18) is solved numerically, yielding quantized
center-of-mass levels in the periodic potential. By this pro-
cedure, the exciton levels are labeled by the same quantum
numbers as the electromagnetic modes, namely, a Bloch vec-
tor K and a discrete index v. The exciton energy is written as
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E;?;)=ECX+EK,,, where E, is the bare QW exciton energy
(which is given for the specific QW parameters), while Ex,
is the center-of-mass quantization energy in the in-plane po-
tential V(R)). It turns out that Eg,~1072-10"! meV for
typical PhC slab patterns, depending on a and r/a. Now, we
may introduce exciton creation (destruction) operators for

center-of-mass eigenmodes l;;@ (Z;K,,). In second quantiza-
tion, the Hamiltonian of the bare exciton field is given by

Hex = E Eig);)bAI(VbAKV’ (19)
K, v

where for n., <1/ a%D the excitonic operators obey the fol-
lowing commutation relations:

A

[I;Kv7bi(/yl] = 5](,K’5V,V’7 [bAwaAK’V’] = [bAI(wl;;(/,,l] =0.
(20)

Broadening of the exciton spectral lines can be taken into
account phenomenologically by introducing an imaginary
part of mode energies 7v,,, taken as a K- and v-independent
parameter.

C. Exciton-photon interaction Hamiltonian

The interaction between exciton and photon states must
conserve the Bloch vector, i.e., K=k (modulo of a reciprocal
lattice vector). Thus, we will use the same notation for exci-
ton and photon wave vectors. However, in general, a photo-
nic mode with band index n couples to exciton center-of-
mass levels with any v. The interaction is determined by a
matrix element of the full Hamiltonian, as first shown in
Refs. 10 and 11 for bulk exciton-polaritons and later ex-
tended to quantum-confined systems.’®3-35 The classical
minimal coupling Hamiltonian is given by

e

2
s

HI=_

N 5 N
e

A(r) - p; . A(r; —> |A(r;

2mocj§=‘;{ (rj) p] + pj (rj)} + 2m062j221 | (r])

21

where m, is the free electron mass, r; (p;) are the position
(momentum) variables of the QW electrons, and the sum
runs over all the electrons in the system. In Eq. (21), we have
retained both A-p and p-A terms, because the generalized
Coulomb gauge [Eq. (4)] does not allow, in general, for the
commutation of these two operators. Taking into account the
presence of a nonlocal potential, we can write this Hamil-

A

tonian in second-quantized form as I:II=H§1)+I:I§2), where the
two contributions are>%>3

N
A e N A
A ==X A(r) - [#)He). (22)
J=1
@2 N
Y = - izﬁCZE [A(r)) - £,A(r) - V], (23)
=

and the operator V;=p,/ m0=(iﬁ)‘1[f'j,ﬁex] directly follows
from Heisenberg equation of motion for f;. Introducing ex-
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citon operators and resolving the commutator, one can write,
e.g., for the first term,

== S B e 0 e
c k,v
(24)

where \If(eX is the many-body exciton wave function while
|0) is the crystal ground state. Expanding the vector potential

as in Eq. (6), and expressing also HE ) in terms of exciton
operators, after some manipulation, the two terms of the
second-quantized interaction Hamiltonian are obtained as

Hﬁl) =i E Cknv(aAkn + dikn)(l;—kv - l;ltv)’ (25)

k,n,v

H?) = E Dkv;ln’(aA—kn + aA]in)(aAkn’ + aA-I_-knf) . (26)

’
Kk,v.n.n

The coupling matrix element Cy,,, between exciton and pho-
ton states at a given Kk is calculated as>*

2 172
—C> <\I’§3>|E Akn(rj) : I']|O>,
J
(27)

while DkV,,,,r—CanCk,,r,,/E (ex)

The integral in Eq. (27) can be expressed in terms of the
oscillator strength f of the excitonic transition, which is gen-
erally defined as*?

2mp{dey
fe= (;L (T - EI‘,

J

(28)

where QeX=El(f:)/ f and € is the polarization unit vector of
the exciton. For a QW exciton, the oscillator strength per unit
area is calculated as

2

Je 2 Qex
fe | 2mole . (29

. |2
S 3 Loy

Jf(p 0,z,2)dz

in which r.,=(u|r|u,o) is the dipole matrix element be-
tween the single-particle Bloch functions in the valence and
conduction bands of the bulk crystal. We are considering the
ground-state heavy-hole (HH) exciton, whose optically ac-
tive states are polarized in the xy plane and are doubly de-
generate. Thus, HH QW excitons preferentially couple to
TE-like modes in the photonic structure. Expressing the ex-
citon wave function in terms of the QW envelope function
[Eq. (15)], it is easy to see that the coupling energy [Eq.
(27)] depends on the oscillator strength per unit area [Eq.
(29)], as well as on the spatial overlap between the exciton
center-of-mass wave function and the photonic mode profile
in the QW plane. Assuming the mode profile to be uniform
along the QW thickness, we can express the coupling matrix
element as>*
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ﬂ,hz 2f 172 A ;
Cknv - ( - f € Ekn(psZQW)FkV(p)dp’
my S

(30)

where we approximated E(ex)~ﬁwkn, assuming close-to-
resonance coupling.>> We notice that for MQWs the cou-
pling energy [Eq. (30)] can be multiplied by \NQW, where
Nqw is the effective number of QWS coupled to the photonic
mode. Within our GME formalism, the integral in Eq. (30)
can be straightforwardly calculated in Fourier space and we
finally get

mhle 2f n_ .
Cknv - ( 2 € Ek+G,n(ZQW)Fk+G’ys (31)
my S

where Ey, ¢ ,(zqw) is the Fourier transform of the mode elec-
tric field at the QW vertical position.® Thus, all parameters
of the interaction Hamiltonian are obtained in terms of the
electric field coefficients calculated by the GME method and
of the exciton coefficients corresponding to quantized center-
of-mass levels.

D. Diagonalization of the total Hamiltonian

The full quantum Hamiltonian describing the coupled
QW exciton and PhC slab modes is given by

Hy=Hyp+ Ho + H" + H?, (32)

where I:Iph, Hex, and the two interaction Hamiltonians are
explicitly given in Egs. (11), (19), (25), and (26). In the bare
photonic dispersion, we do not consider the zero-point en-
ergy term. Not surprisingly, Eq. (32) has a formal analogy
with the second-quantized exciton-photon Hamiltonian in
bulk,'® planar MCs, or pillar MCs.? Such Hamiltonian is
valid in the linear regime, i.e., under low excitation. Nonlin-
ear terms including exciton-exciton scattering and saturation
of exciton-photon coupling**>° are not considered here.

The total Hamiltonian of the exciton-photon coupled sys-
tem is diagonalized by using a generalized Hopfield
transformation.'%3%3435 New destruction (creation) operators
Py (pr) are defined as

A t
D= E Wiknlkp + E Xieybi, + 2 YiknG_xp, E Zkvbikw
n 14 n v

(33)

which still satisfy Bose commutation relations

[Pk’Pkr] S x> [ﬁk,ﬁk']=[Pk’Pkr] 0. (34)

The condition for the total Hamiltonian to be diagonal in
terms of p, and ﬁ:{, is

[Brs Hiotl = B P (35)

The transformation, which leads to a non-Hermitian eigen-
value problem, also applies to a Hamiltonian that includes
dissipative terms. This is the present case when the imagi-
nary part of the frequency for quasiguided photonic modes,
as well as the exciton linewidth arising from nonradiative
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FIG. 2. (Color online) (a) Square lattice of air holes: direct and
reciprocal lattices with Brillouin zone and main symmetry points.
(b) Photonic mode dispersion (even modes, o,=+1) when the lat-
tice is embedded in a high-index (ng=3.43) photonic crystal
membrane. Parameters are r/a=0.34 and d/a=0.3. The first few
modes are labeled by a band number. Dashed lines represent the
light dispersion in air.

processes, is included in the terms FAIph and H,, of Eq. (32).
The eigenvalue problem can be written in the form

My = iV, (36)

where M, is the generalized Hopfield matrix at a specific
wave vector k, and vy is a generalized vector constituted by
the expansion coefficients of Eq. (33) (see the Appendix).
Diagonalization of Eq. (36) directly gives the complex
eigenenergies 7{), corresponding to mixed excitations of ra-
diation and matter. Depending on the interplay between
exciton-photon coupling and their respective losses, the sys-
tem can be either in a weak- or in a strong-coupling regime.
In the latter case, 2{)y calculated for any k in the first BZ
gives rise to the full spectrum of photonic crystal polaritons.

IV. NUMERICAL RESULTS: THE SQUARE
LATTICE PhC SLAB

In this section, we apply the present theory to a square
lattice of air holes in a symmetric PhC slab with air clad-
dings. We consider a GaAs membrane with a dielectric con-
stant €4;,;=12.46, typical of this material in the near infrared.
A schematic representation of the direct and reciprocal lat-
tices is shown in Fig. 2(a). The photonic lattice is character-
ized by the interhole separation a and the hole radius r. In
reciprocal space, the BZ is evidenced and the main symme-
try points I', X, and M are defined. In Fig. 2(b), we show a
typical photonic band diagram calculated by using the GME
method*® for a PhC membrane with thickness d/a=0.3 and
hole radius r/a=0.34. The dispersion is shown in dimension-
less frequency units [wa/(27c)=a/\] and only for modes
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with even parity (o,,=+1) with respect to a horizontal mir-
ror plane at the middle of the slab. Such modes have mainly
in-plane polarized electric field (also defined TE-like
modes),'*#¢ and they are dominantly coupled to HH exciton
states in the QW. No higher-order modes of the slab wave-
guide are present for this structure in the frequency range of
Fig. 2(b). The first five photonic bands are labeled with in-
teger numbers. Mode 1 and part of mode 2 lie below the air
light line and are therefore truly guided. In principle, such
modes have infinite lifetime and can leak radiation out of the
slab plane only due to disorder in the photonic structure,’’-8
which we neglect in the present paper. On the contrary, the
modes are quasiguided when their dispersion falls above the
light line in the first BZ. These modes are coupled to the
continuum of radiative PhC modes at the same energy.
Physically, quasiguided modes are lossy due to out-of-plane
diffraction, thus acquiring a finite radiative linewidth 27, as
discussed in Sec. IIT A and calculated by the GME method.

We consider a single QW grown exactly in the middle of
the GaAs layer, which maximizes coupling to the electric
field for fundamental slab modes with even parity. The os-
cillator strength per unit area will be assumed to be f/S
=4.2x 102 cm™2, typical of the HH exciton in an
In,Ga;_,As QW with thickness Lgow=8 nm and low In
content.>*° The exciton energy is taken to be Eg
=1.485 eV and the total exciton mass M, =0.18m,.*3 For the
exciton linewidth, we assume a value 27vy,,=1 meV. Very
high-quality QW structures can be currently grown to
achieve linewidths smaller than 0.5 meV. Here, we stay on
the conservative side, taking into account possible broaden-
ing induced by the presence of interface defects at the hole
boundaries. These considerations are also supported by pre-
liminary experimental data on square lattice PhC slabs with
embedded QWs, which show no sizable increase of the ex-
citon linewidth as compared to an unpatterned area of the
same sample (for an initial linewidth on the order of
2 meV).%" With the parameters given here, the exciton-
photon coupling matrix element calculated from Eq. (30) is
on the order of a few meV, with slight variations depending
on the photonic mode of interest, and the occurrence of
strong or weak coupling for quasiguided modes is governed
by the photonic mode linewidth rather than by the exciton
linewidth.5!

A. Guided polaritons

Due to the scalability of Maxwell’s equations, the PhC
lattice can be engineered in order to have resonance between
a given QW exciton energy and the desired photonic mode at
any specific point in the BZ. When the exciton-photon reso-
nance occurs below the light line (and the exciton linewidth
is sufficiently small), the system is always in the strong cou-
pling regime. The new quasiparticles that describe the eigen-
states of the system are guided PhC polaritons, i.e., their
photonic part is trapped within the high-index slab through
total internal reflection.

In Figs. 3(a) and 3(b), we consider the interaction of a
QW exciton with photonic modes 1 and 2 from the band
dispersion shown in Fig. 2(b), respectively. The photonic lat-
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FIG. 3. (Color online) Guided polariton dispersion for a photo-
nic mode interacting with a QW exciton at E.,=1.485 eV, close to
the BZ edge (X point); the uncoupled mode dispersions are shown
with dashed and dot-dashed lines, respectively. Parameters of the
photonic structure are r/a=0.34 and d/a=0.3. (a) Coupling to the
first photonic mode, lattice constant =213 nm. (b) Coupling to the
second mode, a=294 nm.

tice is engineered to have the resonance condition close to
the BZ edge along the I'X direction. In one case, the lattice
constant is set to the value a=213 nm, and in the other, we
assume a=294 nm, so that the resonance at £=1.485 eV is
for k,=0.957/a [also see arrows in Fig. 2(b)]. As it can be
seen from Fig. 3, the dispersion of bare exciton and photon
modes is strongly modified in both cases, giving rise to siz-
able anticrossings. It should be noted that in Fig. 3, as well as
in the following figures of Secs. IVB and IV C, the un-
coupled exciton center-of-mass levels are not explicitly
shown. We rather prefer to show the bare exciton and photon
dispersions as compared to the strongly coupled polaritonic
dispersion. The calculated vacuum Rabi splitting is #Qp
=6 meV for the first mode and ) ;=5.5 meV for the second
one. The exciton-photon coupling is dependent on the spe-
cific band of interest due to the different spatial profiles of
the corresponding electric field and thus to the modified
overlap with the exciton center-of-mass wave functions. In
any case, we point out that such values obtained with a
single quantum well are comparable to those commonly
achieved for MC polaritons with six QWs.* The physical
reason is the increased exciton-photon coupling of Eq. (30)
due to better confinement in the vertical direction of a high-
index dielectric slab compared to a MC with low-index con-
trast distributed Bragg reflectors.
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FIG. 4. (Color online) Close-up of Fig. 3(b) with exciton center-
of-mass quantized levels explicitly shown.

A close-up of the dispersion diagram showing the center-
of-mass quantized levels (with M,,,,=10) is given in Fig. 4
for parameters as in Fig. 3(b). It can be noticed that the
quantization energy is =0.1 meV in this specific case. These
levels represent the effect of spatial dispersion, well known
for bulk exciton-polaritons,** in the presence of center-of-
mass quantization. Only the first few exciton levels are
strongly interacting with the photonic mode of interest due to
symmetry of the corresponding envelope function and elec-
tric field. We point out that such effects cannot be captured
by theoretical treatments based on a semiclassical solution of
Maxwell’s equations,?®?* in which the effect of spatial dis-
persion is neglected. Besides giving directly the dispersion of
the mixed exciton-photon modes, the quantum theory devel-
oped here is also the starting point for studying polariton
interactions and nonlinear processes, like in the case of bulk
and microcavity systems.

B. Radiative polaritons

When a QW exciton is resonant with a quasiguided pho-
tonic mode, weak or strong coupling regimes may occur de-
pending on the specific situation. We show in Fig. 5 the case
of a PhC slab of lattice constant a=430 nm, in which the
exciton is resonant with different photonic modes within the
first BZ [namely, modes labeled with indices 4 and 5 in Fig.
2(b)]. In Fig. 5(a), the bare photonic mode dispersion around
E..=1.485 eV is shown. It is interesting to notice the exis-
tence of a photonic band minimum for mode 5 at the I" point:

1.60 1.490 1.490 .
FIG. 5. (Color online) (a) Pho-
1551 tonic mode dispersion around the
4881 r1.488 QW  exciton  energy, E.
1504 =1.485 eV, for structure param-
> 1.486 11.486 eters r/a=0.34, d/a=0.3, and a
: 1.45 : . =430 nm. (b) Close-up for the
% 1.4841 1 1.484 10 meV energy range of interest,
G 1404 showing the solution for the
182 1.482 coupled exciton-photon system
1.354 Photonic dispersion ] - - - Photon I (full line) together with the bare
=== QW Exciton —-=—-- Exciton . . .
rrrrr Light lines Polaritons exciton and photon dispersions
1.30 : ! : 1.480 ! 1.480 .
M r X M r X (dashed).
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FIG. 6. (Color online) (a) Real and (b) imaginary parts of com-
plex eigenenergies in the weak exciton-photon coupling regime
close to the BZ edge along the I'X direction. The bare exciton
(dot-dashed) and photon (dashed) complex energies are also shown
(the real part of photon dispersion nearly coincides with the coupled
system solution). Structure parameters are as in Fig. 5.

such feature leads to a quasiparticle dispersion similar to MC
polaritons, as it will be discussed. Actually, the resonance
condition occurs simultaneously with different modes along
I'M and I'X. In Fig. 5(b), the dispersion of the exciton-
photon coupled modes is shown in a restricted energy range
around the exciton resonance. Notice that there are five reso-
nant points between QW excitons and PhC slab modes in the
dispersion diagram, leading to a variety of situations for the
coupled modes. Along I'M, clear anticrossings can be seen
with photonic modes 4 and 5, which are fingerprints of the
strong coupling regime. In this case, the intrinsic radiative
linewidth of bare photonic states is lower than the exciton-
photon coupling energy. As the QW exciton is resonant with
mode 4 for two different wave vectors along I'M, we observe
two anticrossings above the light line in the middle of the
BZ. This peculiar effect is due to the light dispersion engi-
neering allowed in PhC structures. Along I'X, resonance with
mode 5 gives strong coupling, while resonance with mode 4
at larger in-plane wave vector gives a crossing of the bare
excitonic and photonic dispersions, meaning that the system
is in weak coupling. We will separately analyze these distinct
regimes in the following.

We show in Fig. 6 the complex dispersion of the eigen-
modes in the region of weak coupling, as compared to the
bare QW exciton and photon energies. As seen in Fig. 6(a),
photonic mode 4 is in weak coupling with all quantized ex-
citon states (only one is shown here, for clarity) close to the
X point. A slight modification of the exciton dispersion oc-
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FIG. 7. (Color online) (a) Real and (b) imaginary parts of com-
plex eigenenergies in the strong exciton-photon coupling regime
close to normal incidence (I" point of the BZ) along the two main
symmetry directions; the dispersion of uncoupled modes is also
shown. Structure parameters are as in Fig. 5.

curs close to resonance for the center-of-mass quantized
mode having the same symmetry as the resonant photonic
mode. The photonic mode dispersion is not perturbed at all
by the presence of the QW. Remarkably, the plot of the in-
trinsic imaginary part calculated for the bare quasiguided
photonic mode in Fig. 6(b) evidences a linewidth close to
2,20 meV, which explains the weak-coupling regime
for this particular case. Furthermore, the imaginary part of
the photonic mode energy extracted from the solution of the
Hopfield matrix shows no modification. On the contrary, and
quite interestingly, the imaginary part of the QW exciton
energy, initially set to 7.,=0.5 meV for the unperturbed
state, is sensitively increased around the resonance. This in-
dicates the occurrence of an enhancement of spontaneous
emission rate or Purcell effect, which may be observed by
time-resolved experiments.

In Fig. 7, we analyze the strong coupling regime above
the light line, giving rise to radiative PhC polariton states.
Mode 5 has a vanishing intrinsic linewidth at I" [see imagi-
nary part of the bare photonic mode in Fig. 7(b), dashed
line], leading to a vacuum Rabi splitting. The real parts of
the mode energies are shown around k=0 along the I'M and
I'’X symmetry directions. Looking at the bare QW exciton
and mode 5 dispersions, we notice that the resonance condi-
tion is not exactly at I', but at small wave vectors (|k|
=(0.027/a). The exact resonant wave vector can also be in-
ferred from Fig. 7(b), corresponding to the upper and lower
polariton imaginary parts being coincident and equal to the
average of bare exciton and photon values. As the bare pho-
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FIG. 8. (Color online) (a) Real and (b) imaginary parts of upper
and lower polariton modes at k=0 (I" point) as a function of hole
radius. Structure parameters are as in Fig. 5.

tonic linewidth goes to zero at I', the polariton imaginary
part is about half of the bare QW exciton one at k=0. This
linewidth averaging effect is well known for MC
polaritons®* and is a fingerprint of the occurrence of a
vacuum Rabi splitting.

C. Discussion and possible experimental verification

PhC slabs allow for a sensitive flexibility and tuning ca-
pability. In particular, a lithographic tuning (e.g., variation of
the lattice constant or the air hole radius) on different devices
patterned on the same chip is commonly used to ensure reso-
nance of a desired mode with an active medium. Further-
more, techniques such as digital etching®? have been recently
employed to achieve a fine tuning of photonic mode reso-
nances. By using these postprocessing techniques, it would
be possible to tune the photonic mode of interest with respect
to the QW exciton resonance. In Fig. 8, we show a simula-
tion of such a procedure, in which the calculated detunings
of the upper and lower polariton branches from the bare ex-
citon resonance at k=0 are reported as a function of hole
radius. The latter is slightly increased from r/a=0.336 (r
=144.5 nm) to r/a=0.344 (r=147.9 nm). The typical anti-
crossing occurs exactly on resonance in the real part of en-
ergy, and the corresponding imaginary parts exchange each
other from purely excitonic to purely photonic and vice
versa. Concerning the significance of Fig. 8 with respect to
state-of-the art technological capabilities, wet chemical digi-
tal etching allows for deposition of a few monolayers of
surface oxide that can be selectively removed, thus yielding
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a wavelength tuning of ~1 nm per etching cycle.> On the
other hand, surface atomic force microscope oxidation of the
PhC membrane can lead, in principle, to almost continuous
tuning of the mode wavelength.®*

Radiative PhC polaritons can be probed by angle-resolved
reflectance from the sample surface, as first done on 1D
PhCs filled with organic molecules.?> The same kind of ex-
periment could be performed with semiconductor-based sys-
tems discussed in this work. Indeed, the present quantum-
mechanical treatment of interacting photon and exciton states
has been compared with semiclassical calculations of the sur-
face reflectance, showing very good agreement for the split-
ting in strong coupling regime.**-*? For guided polaritons, on
the other hand, coupling to an external propagating beam is
prohibited due to the evanescent character of the electromag-
netic field in the claddings. In this case, it would be possible
to perform angle-resolved attenuated total reflectance by us-
ing a high-index prism. This technique was applied in Refs.
65 and 66 to probe the dispersion of pure photonic states in
line-defect PhC waveguides.

We now focus on radiative properties close to k=0. As
shown in Fig. 7, radiative polaritons can form with an energy
minimum at the I' point due to the peculiar quasiguided pho-
tonic mode dispersion in a square lattice PhC membrane. The
new eigenmodes of the system can be excited by coherent or
incoherent pumping and probed by emission or reflection at a
fixed angle 6, which is defined in a vertical plane containing
one of the high symmetry directions of the PhC lattice. A
schematic picture of such an experimental configuration is
shown in Fig. 9(a). The angle 6 is such that k=(w/c)sin #
due to conservation of in-plane momentum. We consider
here the angular dispersion along the I'X direction for the
case of zero-detuned (at normal incidence) bare exciton and
photon modes. The calculated angular dispersion is shown in
Fig. 9(b), in which we plot the energies of the upper and
lower polariton branches detuned from the bare QW exciton
energy (dot-dashed line). It is interesting to notice the simi-
larities between the angular dispersion of Fig. 9(b) and the
usual diagram used to illustrate the formation of a polariton
trap in the energy minimum at k=0.%° The peculiar proper-
ties of such an angular dispersion have been used in the last
few years to achieve a number of outstanding results requir-
ing nonlinear parametric processes of MC polaritons.'41¢ In
particular, coherent population of the lowest energy polariton
state at k=0 can be realized by polariton-polariton scattering
from a precise point in the dispersion, which allows for si-
multaneous energy and momentum conservation of the scat-
tered quasiparticles. Similar experiments could also be real-
ized with radiative PhC polaritons, and a parametric process
is schematically illustrated in the lower polariton branch of
Fig. 9(b). An extension of the present theory to include non-
linear terms (such as exciton-exciton scattering)*® in the
Hamiltonian represents a natural extension of this work.
Moreover, the recent observation of the long-sought Bose-
Einstein condensation of MC polaritons®’-%® by use of II-VI
materials'® has enhanced interest in low-dimensional polar-
iton physics. The analogous effect in III-V materials, such as
InGaAs/GaAs, has not been observed at the time of writing.
A new route has been suggested to this end,® requiring effi-
cient zero-dimensional confinement of MC polaritons
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FIG. 9. (Color online) (a) Schematic view of angular emission
from a PhC slab in a plane along a symmetry direction. The emis-
sion angle #=arcsin(kc/w) is defined. (b) Calculated polariton an-
gular dispersion in the I'X direction at zero bare exciton-photon
detuning (see Fig. 8); a schematic polariton-polariton scattering
process in the lower branch satisfying energy-momentum conserva-
tion is also shown.

through the confinement of their photonic part.” This is a
strong motivation for experimental as well as theoretical
study of PhC cavity polaritons, in which ultrahigh quality
factor and small mode volumes can be achieved and enhance
the radiation-matter coupling in an unprecedented way.

V. CONCLUSIONS

In conclusion, we have presented a quantum theory to
describe radiation-matter coupling for quantum wells embed-
ded in a high-index photonic crystal slab with a generic pat-
tern. The numerical solution of classical Maxwell’s equa-
tions, on which the present theory relies, has been previously
reported within a guided-mode expansion approach*® which
yields not only the photonic mode energies but also the cru-
cial photonic linewidth parameter. After obtaining the
second-quantized total Hamiltonian of the system in the lin-
ear regime of low excitation density, we have diagonalized it
through a generalized Hopfield method. Thus, the complex
eigenmodes of the exciton-photon coupled system have been
obtained. Both weak and strong coupling regimes are treated
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within the present theory, allowing for an efficient design of
photonic lattices for specific purposes.

We have shown results on the square lattice PhC slab
demonstrating the formation of guided and radiative photo-
nic crystal polaritons. The latter are formed when the
exciton-photon coupling exceeds the intrinsic photon line-
width. In strong coupling, the vacuum Rabi splitting at reso-
nance is larger than for the corresponding microcavity polari-
tons due to the increased field confinement and better overlap
of exciton and photon wave fields in a PhC slab. As a con-
sequence, a more robust polariton effect can be envisioned in
such structures, which could be useful for nonlinear polariton
applications. Related to the latter point, we reported on a
specific lattice design for which the radiative polariton dis-
persion has a minimum around normal incidence. Such dis-
persion closely mimics the one obtained in usual microcavi-
ties, which acts as a polariton trap and is at the origin of
current research on nonlinear parametric processes with
exciton-polaritons. We believe that the present results will
stimulate further research on nonlinear polariton effects in
semiconductor-based photonic crystals, which, in turn, could
connect with polariton quantum optics’!'~7® as an emerging
field of research.
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APPENDIX: GENERALIZED HOPFIELD METHOD

The Hopfield method to diagonalize the coupled exciton-
photon Hamiltonian is equivalent to performing a Bogol-
jubov transformation on bare exciton and photon operators.
It was originally used by Hopfield for the case of bulk
polaritons,'? and then generalized to polaritons in planar
MCs3*3* and in micropillars.’ Here, we provide a detailed
derivation of the generalized Hopfield matrix for the case of
PhC slabs, which has to be diagonalized numerically. The
second-quantized total Hamiltonian [Eq. (32)] and the polar-
iton operator expansion [Eq. (33)] are substituted in Eq. (35).
The general commutation relations for bosonic operators,

A AT oA N
[akmak’n’ak’n’] = 51(,k’ 6n,n’akn’
[&inadll(ln'a/\k’n’] == ﬁ(,k’én,n’dlin’

N At "
[akmak’n’ak’n’] = 51(,k’ 6}1,'1'akn’

At A At At
[aan’ak’l1’ak’n/] == 6](,k'5n,n’all(n’ (Al)
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must be satisfied. Thus, after factorizing terms with common
operators, the following system of linear equations in the
variables w,, y,, x,, and z, can be derived (we drop the fixed
subscript k respectively, =k, for easier notation):

ﬁwnwn + 2 2Dwmrwnr - 2 2DVnn’yn'

’ ’
n.,v n.,v

- E iCanV_ E iCnVZv: hQWn
+ 2 iC Wy = 2 iCpy, + EVx, = hQx,,

E 2Dvnn’wn’ - ﬁwnyn_ 2 2Dvnn’yn’

r ’
n,v n,v

- 2 iCanV_ E icnvzvz ﬁQyn

= 2 iC, W, + 2 iCpy, — ESVz, =10z, (A2)
The sums in Eq. (A2) must be truncated in order to deal with
finite matrices. If N, photonic bands and M, excitonic
levels at fixed k are retained in the expansion [Eq. (33)] the
problem is reduced to an eigenvalue equation

MV = £QV, (A3)

where the matrix M has dimension 2(Npyax+Mmax) X 2(Nmax
+M ax), and it is a generalization of the 4 X 4 matrix derived
by Hopfield.'” The vector v is simply
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;’ = (Wll’xV’yil’ZV)T’ (A4)

with n=1,... Ny and v=1,...,M ... The explicit form of
the generalized Hopfield matrix is given by

w+2D -iC
+iC E -iC 0

M= , ~ | (AS)
+2D —-iC —-w-2D -iC

-iC 0 +iC -E

-2D -iC

The single blocks are, respectively, given by the N,
X Nphax Mmatrices

®+2D =[i0,8, 1 + 2, 2D ], (A6)
by the M, X M.« diagonal matrices
E=[E®s, ], (A7)
and by the N, X M, matrices
Cc=[C,.l, (A8)

while 0 denotes the M, X M., matrix with zero entries. It
should be noted that both positive- and negative-defined en-
ergy values are present in the Hopfield matrix. After the nu-
merical diagonalization, yielding the eigenvalues #{),=E,
+iy,, with p=1,2,... 2Ny +My,,), only those with a
positive real part are eventually retained.
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