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We investigate the thermal transport in a special ballistic system, the dielectric T-shaped quantum wire. It is
found that the transmission coefficient of phonons exhibits the oscillation behavior similar to that of electrons.
Due to the wide energy range involved in thermal transport, thermal conductance changes smoothly with
temperature, which is different from the electrical conductance. We find that thermal conductance is a mono-

tonic function of temperature at any system. In the low temperature limit, thermal conductance tends to
�2kB

2T

3h
against all system parameters, even though the transmission coefficient is not unity.
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I. INTRODUCTION

For recent years, phonon transport in mesoscopic system
at low temperature has been paid much attention both
theoretically,1–7 and experimentally.8–11 Similar to the related
case of electrical conduction in the mesoscopic regime,12 for
a perfect sample, we can view the finite resistance for pho-
non propagation as coming from the nonideal connection
between the thermal reservoir and the one-dimensional
sample. At very low temperatures, due to phonon wavelength
comparable to the geometrical size of the system, the univer-

sal quantum of thermal conductance G0=
�2kB

2T

3h has been
predicated theoretically in a one-dimensional sample with
the perfect contact to two thermal reservoirs1,2 and observed
experimentally by Schwab et al.8 Different from classical
situation, thermal energy in the quantum regime is carried by
a set of discrete phonon energy subbands or vibrational
modes with a finite cutoff frequency in the one-dimensional
system due to transverse confinement. Because interaction
between the discrete vibrational modes could not be consid-
ered in the temperature less than 1 K, phonons transport bal-
listically in a one-dimensional sample without energy loss
and each mode contributes G0 to the total thermal conduc-
tance G: a perfect sample has G=N0G0 which is a finite
number, where N0 is the number of modes with zero cutoff
frequency, i.e., the massless modes. When temperature be-
comes higher, the higher energy modes with nonzero cutoff
frequencies will open up and thus thermal conductance will
increase over the universal value. Thermal conductance
shows a dependence on the intrinsic properties and on the
geometrical features of sample through the cutoff
frequencies.1,7,13

In mesoscopic regime, the influence of geometrical struc-
ture was most clearly demonstrated in electron charge
transport.14,15 Electrons transmitting through a one-
dimensional wire with a side stub, i.e., the T-shaped junction,
have been investigated by several groups both experimen-
tally and theoretically.16,17 Charge transport through such a
device reveals interesting features of electrical conductance,
such as the observed conductance plateaus, resonances, zero

transmission at certain values of the side-stub length, etc.
More recently, the investigations were carried out in both
charge and heat transports through a curve wire and a diffu-
sive metallic wire coupled with a superconducting wire, i.e.,
the T-shaped junction.18,19

In this paper, we investigate the thermal transport proper-
ties in a special ballistic system, the dielectric T-shaped
quantum wire shown in Fig. 1. As we will show, although the
geometrical structure in Fig. 1. is simple, rather complicated
phonon transmission does appear due to interference effect.
For instance, a slight change of the structure size will be
possible to affect the phonon propagation and thereby ther-
mal conductance. Comparing to electron transport, we find
that the phonon transmission coefficient has an oscillation
behavior similar to that of electrons. However, thermal con-
ductance increases monotonically with temperature. This re-
sult is different from electrical conductance which is not a
monotonic function of both temperature and bias.20,21 In the

low temperature limit, thermal conductance tends to
�2kB

2T

3h

even though transmission coefficient T̃m����1. This behav-
ior is different from classical thermal conductance, in which
it is an extensive quantity and is proportional to the width of
terminal wire.

The rest of the paper is organized as follows. In Sec. II,
the device’s model is presented and the formula of the trans-
mission coefficient is derived. In Sec. III, we numerically
investigate the transmission coefficient. The thermal conduc-
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FIG. 1. Schematic diagram for the T-shaped wire.
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tance is studied in the Sec. IV. Finally, conclusions are sum-
marized in Sec. V.

II. MODEL AND FORMULATION

The dielectric T-shaped quantum wire is considered to be
a two-dimensional system in the x-y plane, shown in Fig. 1.
It has two long and perfect leads with uniform width a,
which join a rectangular stub with width b and length L. We
divide the structure into three regions: the left lead is region
I, the right lead region III, and the scattering region is region
II which includes the side stub. The other ends of leads are
connected separately to two thermal reservoirs with a tem-
perature bias TL�TR; here, T is the temperature of the left
�L� and right �R� reservoirs. The reservoirs are at thermal
equilibrium with phonon distributions in the Bose-Einstein
form, i.e., ����= �e��/kBT−1�−1. We assume “reflectionless”
contacts between the leads and the reservoirs: any wave go-
ing into a reservoir disappears inside the reservoir without
being reflected back to the leads. This is a reasonable as-
sumption because reservoirs are far away and we are not
interested in them. At low temperature, phonon-phonon in-
teractions between different vibrational modes can be safely
neglected. In this way, the leads act as phonon waveguides.
Assuming that an incident wave comes from the left lead
�region I�, it then enters the scattering region II where it
suffers elastic scattering due to the different geometrical
shape, and finally, the wave partially transmits to the right
lead �region III� and partially reflects back to the left lead.

In the low temperature, phonon wavelength is generally
over a few hundreds of angstroms which can be greater than
the width of the side stub b and width of the wire a. Such a
wavelength is certainly much greater than any microscopic
length such as the atomic bond length. Therefore, the scalar
model of continuum medium theory can be used to describe
the wave propagation. According to this theory, the displace-
ment field u�x ,y� satisfies the wave equation22

v2�2u�x,y� + �2u�x,y� = 0, �1�

where � is the frequency of wave and v is the sound veloc-
ity. The structure surface provides free boundary conditions
so that �u

�n =0, where n is the unit vector perpendicular to the
surface.

In terms of Eq. �1�, the solutions in regions I, II, and III
are written as follows:

u�I� = �m�y�eikmx + �
n=0

�

rnm�n�y�e−iknx, �2�

u�II� = �
	=0

�

p	m�	�y�eik	x + q	m�	�y�e−ik	x, �3�

u�III� = �
n=0

�

tnm�n�y�eiknx, �4�

where m, 	, and n are the mode indices for waves in regions
I, II, and III, respectively. rnm and tnm in Eqs. �2� and �4� are

the reflection and transmission amplitudes which we wish to
know. p	m and q	m in Eq. �3� are constants to be determined.
�m�y� and �	�y� are orthonormal transverse wave functions
in terminal and the central T-shaped regions, respectively;
�m/	�y�=� 2

a/Lcos� m/	�y
a/L

�. This is different from the case of
electron wave propagation for which the boundary condition
is u=0.14 In the above equations, km, kn, and k	 are the cor-
responding longitudinal wave vectors and satisfy the disper-
sion relation below:

�2 = �m
2 + v2km

2 = �n
2 + v2kn

2 = �	
2 + v2k	

2 , �5�

in which �m= m�v
a , �n= n�v

a , and �	= 	�v
L are the cutoff fre-

quencies of modes m, n, and 	. Again, integers m ,n, and 	
label the subbands of waves inside the wire. The velocity is
assumed to be v=5000 m s−1.

To calculate the coefficients rnm, tnm, p	m, and q	m, we
match the waves at the boundaries of different regions. For
phonon wave, the wave function and its derivative are con-
tinuous across the boundaries; therefore, we have

�
	=0

�

�	�y��p	m + q	m� = �m�y� + �
n=0

�

rnm�n�y�, 0 
 y 
 a ,

�6�

�
	=0

�

ik	�	�y��p	m − q	m�

= ikm�m�y� − �
n=0

�

iknrnm�n�y�, 0 
 y 
 a , �7�

�
	=0

�

ık	�	�y��p	m − q	m� = 0, a � y 
 L , �8�

�
	=0

�

�	�y��p	meik	b + q	me−ik	b�

= �
n=0

�

tnm�n�y�eiknb, 0 
 y 
 a , �9�

�
	=0

�

ik	�	�y��p	meik	b − q	me−ik	b�

= �
n=0

�

ikntnm�n�y�eiknb, 0 
 y 
 a , �10�

�
	=0

�

ik	�	�y��p	meik	b − q	me−ik	b� = 0, a � y 
 L .

�11�

Multiplying the transverse wave function �n�y� in the two
sides of Eqs. �6� and �9� and �	�y� in the two sides of Eqs.
�7�–�11�, after integrating these equations, we obtain
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�nm + rnm = �
	=0

�

An	�p	m + q	m� , �12�

kmAm	 − �
n=0

�

knrnmAn	 = k	�p	m − q	m� , �13�

t̃nm = �
	=0

�

An	�p	meik	b + q	me−ik	b� , �14�

�
n=0

�

t̃nmknAn	 = k	�p	meik	b − q	me−ik	b� , �15�

where An	=�0
a�n�y��	�y�dy and t̃nm= tnmeiknb.

In terms of Eqs. �12�–�15�, we get the following equa-
tions:

�
l=0

� 	�
	=0

�

k	
−1klAl	An	

2

e−ik	b − eik	b
rlm

+ �
l=0

� 	�ln + �
	=0

�

k	
−1klAl	An	

e−ik	b + eik	b

e−ik	b − eik	b
 t̃lm

= �
	=0

�

k	
−1knAn	Am	

2

e−ik	b − eik	b , �16�

�
l=0

� 	�
	=0

�

k	
−1klAl	An	

e−ik	b + eik	b

e−ik	b − eik	b + �ln
rlm

+ �
l=0

� 	�
	=0

�

k	
−1klAl	An	

2

e−ik	b − eik	b
 t̃lm = − �mn

+ �
	=0

�

k	
−1kmAn	Am	

e−ik	b + eik	b

e−ik	b − eik	b . �17�

Equations �16� and �17� are a set of linear equations for
quantities t̃lm and rlm, which can be solved by standard ma-
trix inversion. Afterward, the transmission and reflection co-
efficients can be expressed as

T̃m��� = n � T̃nm��� = �
n

�� − �n��tnm�2kn/km, �18�

Rm��� = n � Rnm��� = �
n

�� − �n��rnm�2kn/km, �19�

where the function ��−�n� is zero for ���n and is unity
for ���n. Its existence simply reflects the nature of a wave-
guide: when the frequency of the incoming wave ���n, in
terms of the dispersion relation �Eq. �5��, the wave vector of
the nth mode is imaginary so that mode cannot propagate.

The transmission coefficient T̃m��� represents the probability
that phonons transmit into the outgoing terminal from the
mth subband with total energy �� in the incoming terminal.
Similarly, the reflection coefficient Rm��� represents the
probability that phonons are reflected into the incoming ter-

minal. Quantities T̃nm and Rnm represent the transmission co-
efficient and reflection coefficient between two single sub-

bands, e.g., T̃nm gives transmission probability from subband
m in the incoming terminal to subband n in the outgoing
terminal. Clearly, due to time reversal invariance, if we ex-
change indices m↔n, the transmission coefficient does not
change.

III. FEATURES OF TRANSMISSION COEFFICIENTS

Figure 2 plots the transmission coefficient T̃m��� versus
frequency ��−�m� for different lengths L of the side stub in
the T-shaped junction where we fixed the wire width a and
side-stub width b. Here, �m is the cutoff of the mth vibra-
tional mode in the incoming terminal wire. All the transmis-
sion coefficients exhibit strong oscillations versus phonon

energy ��. T̃m can reach unity for certain frequencies �ener-
gies�, showing a clear resonance transmission behavior. For

the Zeroth mode, T̃0 can dip to zero indicating antiresonances

where total reflection occurs. T̃0 also shows a good quasip-
eriodic variation versus energy ��. Similar quasiperiodic be-
havior was reported for electron transport in T-shaped
junctions.16,17 The behavior of other modes is much more

irregular, in particular, T̃�0 for all m�0. The oscillation

amplitude becomes smaller as � increases, and T̃m ap-
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FIG. 2. ��a� and �b�� Transmission coefficient Tm��� vs the in-
cident frequency � for the geometrical parameters a=10 nm, b
=10 nm, and L=30 nm. �m is the mth mode cutoff frequency. The
horizontal axis is scaled by ����m+1−�m= �v

a , where the velocity
is fixed at v=5000 m/s.
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proaches unity for large � because high energy phonons can
easily traverse from left lead to the right lead via the side-
stub region �region II, see Fig. 1�.

In Fig. 2, we observe that the m=0 mode shows a quasi-
periodic characteristic in the frequency range ��−�m� / ��
�1 �where ��= ��m+1−�m� is the difference of frequencies
between neighboring modes�, while it becomes rather irregu-
lar for higher frequencies. This behavior is shown more
clearly in Fig. 3. This shows that T̃0��� consists of two be-
haviors: periodicity and nonperiodicity. In the periodic part,
the period of the oscillation reduces when the stub length L
increases. In the nonperiodic part, transmission coefficient
has an irregular oscillation. We now investigate these behav-
ior in more detail.

The periodic behavior of T̃0��� at � / ���1 can be un-
derstood as the result of wave interference. For this small
range of incoming phonon energy, the outgoing phonons
must also stay at the massless mode. Then, when the incom-
ing wave enters the stub region from left lead, it can excite
modes inside the stub with indices 	�0 because the stub
length L is wider than the wire width �by Eq. �5�, the wider
the width, the closer the modes�. These different modes will
interfere with one another and cause a periodic behavior of

T̃0���. Afterward, the waves will exit to the massless mode
of the right lead. When L is increased further, the mode
spacing of the stub region becomes smaller, and more modes
will be excited by the incoming wave, thereby reducing the
transmission periodicity. The period of the oscillation can be
roughly estimated as a / �L−a�.

When energy of the incoming phonons is large, i.e., when
� / ���1, in the outgoing lead, the modes with m�0 can
be excited. In other words, although the incoming mode is
massless, the outgoing modes can be “massive” �m�0�. This

causes transmission coefficient T̃0��� to lose the regular pe-
riodic feature, as shown in Figs. 2 and 3. Indeed, when more
modes are excited in the right lead, according to Eq. �18�,
T̃0��� is a summation of many terms T̃00���, T̃10��� , . . ..
Adding many oscillatory functions results in the irregular
behavior.

So far, we have discussed the periodic features of trans-
mission coefficient with frequency. It turns out that there is a

periodic behavior against the stub length L as well. Such a
behavior shows even clearer the wave interference phenom-

enon. For our example system, Fig. 4�a� plots T̃0 versus L for
four fixed frequencies below the first cutoff frequency. A
very reasonable periodic behavior is clearly seen. When �
increases, the period of the oscillation decreases. Examining

Fig. 4�a�, it is evident that the period in T̃�L� is roughly � /k,
where k=� /v. This clear periodic behavior is due to inter-
ference. When the incoming wave enters the stub region, it
partly goes into the stub and gets reflected back at the far end
of the stub. This reflected wave interferes with the incoming

wave coherently, producing the periodic change of T̃0 as L is
increased. Finally, in Fig. 4�b�, we plot waves with frequen-

cies higher than the first cutoff, where T̃�L� loses the periodic
feature. This is, again, due to the summation of the mode-to-
mode transmission coefficients as discussed above.

IV. THERMAL CONDUCTANCE

So far, we have discussed the transmission coefficient
properties in the T-shaped dielectric junction. In this section,
based on the above results, we investigate thermal conduc-
tance in the T-shaped junction. The formula of thermal flux

by which the energy flux Q̇ is from the left lead to the right
lead can be expressed as1,2,7,23

Q̇ = �
m


�m

� d�

2�
����L��� − �R����T̃m��� , �20�

where ��L/R���� is the Bose-Einstein distribution function of
the phonons in the left/right reservoir, and �m is the cutoff
frequency for the mode m in the leads. In the following, we
assume that the temperature difference �T=TL−TR is very
small; therefore, the thermal conductance can be obtained
straightforwardly from Eq. �20�:
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FIG. 3. Transmission coefficient T0��� vs the incident phonon
frequency � with different stub lengths L. Other parameters are
same as those in Fig. 2.
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G = lim
�T→0

Q̇

�T
= �

m


�m

� d�

2�
��T̃m���

d����
dT

. �21�

In terms of Eq. �21�, we will study and discuss thermal con-
ductance under the influence of external factors, e.g., tem-
perature and geometrical structure. We emphasize that Eq.
�21� is a general result for any two-probe dielectric system.
First, we consider how does thermal conductance G change
with temperature T. Since d2���� /dT2�0 for any � and T,

and T̃m��� must certainly be non-negative, we conclude from
Eq. �21� that dG�T� /dT�0. This means that the thermal con-
ductance must be a monotonically increasing function of
temperature for any two-probe devices. For our T-shaped
junction example, Fig. 5 confirms this behavior. Although the

transmission coefficient T̃m��� has many oscillations as we
presented in the previous section, these oscillations do not
appear in thermal conductance. This is because the wide en-
ergy integration range in Eq. �21� smears out the oscillations

in T̃m���. It is also worth noting that this monotonic behavior
is different from that of the electric conductance, which does
not have to change monotonically with both temperature and
bias voltage.21,22

Numerically, Fig. 5 plots G as a function of temperature T
for the T-shaped junction, for a fixed stub width b=10 nm
and several values of stub length L as well as terminal width
a. At higher temperatures, e.g., T�2 K, the thermal conduc-
tance G is proportional to T2. At low temperatures, e.g., T
�0.1 K, G is a linear function of T. These results are similar
to those of previous works on two-probe devices.4 In certain
temperature range, e.g., near T�0.5 K, G versus T may ex-
hibit a T1/x behavior �x�1�, where G increases very slowly
with temperature. The change of stub length L has some

effect on G in the range T�1 K, as shown in Fig. 5�b�, but
this effect diminishes for T�1 K. As discussed previously,
when T�1 K, only the massless phonon mode can propa-
gate in the lead of the T-shaped wire. The change of L causes
transmission coefficient to vary periodically for �� ��, as
seen in Fig. 4�a�. Perhaps this has led to the slight change in
G. When T�1 K, although an irregular behavior appears in
the transmission coefficients �see last section�, G has little
change when L is varied. Again, it is confirmed that the wide
energy range involved in thermal conductance calculation
smears out all oscillations in the transmission coefficient.

Can we observe the universal quantum, G0��2kB
2T /3 h,

of thermal conductance in the T-shaped junction? To see this,
we plot G /T versus temperature T in the inset in Fig. 5 for
several values of a and L. We found that G /T exhibits a
nonmonotonic behavior and has a minimum at T�0. Similar
behavior has been observed in the experiments of Schwab et
al.8 Importantly, in the zero temperature limit, our calcula-
tion of G /T, for all values of L, tends to unity in terms of the
universal quantum G0, as Fig. 5 shows. For such a low tem-
perature, only the zeroth mode is open for transport, and one
can easily confirm that the occupation number for the first
mode at T=0.1 K is merely ���cut��0 �again, �cut=

�v
a �.

Hence, only the massless mode whose transmission coeffi-

cient T̃0�1 contributes to G. The transport is therefore in the
universal regime as our calculation shows. The universal
quantum obtained at T→0 limit is also independent of other
device parameters: width b of the stub and width a of leads.
Figure 5 shows G and G /T versus T for different a’s and
different L’s. It is obvious that at low temperature, G
=�2kB

2T /3 h so that G /T=�2kB
2 /3 h, for all the cases.

Clearly, the thermal conductance G increases with a: a wider
wire transports more energy.

Finally, we plot G versus stub length L for the T-shaped
junction for three stub widths b in Fig. 6. At 1 K, when L is
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FIG. 6. Thermal conductance G vs the stub length with different
widths b=10, 20, and 50 nm. Temperature is �a� 1 K, �b� 2 K, and
�c� 4 K. Other parameters are the same as those in Fig. 2.
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THERMAL TRANSPORT IN A DIELECTRIC T-SHAPED… PHYSICAL REVIEW B 75, 235319 �2007�

235319-5



equal to the wire width a, i.e., no stub at all �see Fig. 1�,
transmission coefficient T̃m���=1 for all m and G reaches its
maximum value G0. G reduces for L�a due to wave scat-
tering and has lower values for larger b’s. This is because
geometrical size increasing means that scattering region be-
comes larger so that the stronger scattering happens. It is also
found that at T�1 K, G with L=a is larger than the univer-
sal value due to the contribution from massive modes in
addition to the massless mode, as discussed above.

V. CONCLUSIONS

We have investigated phonon transmission properties and
thermal conductance for a T-shaped dielectric wire by a
mode matching numerical technique. Due to quantum inter-
ference, transmission coefficients of phonons become quite

complicated. T̃m��� has an oscillation behavior with quasip-
eriodicity and irregularity. For the thermal conductance of
such a system, we deduced that it increases monotonically
with the temperature—a result that is generally true for any
two-probe device. We confirmed the existence of universal
quantum of thermal conductance which exists at the low
temperature limit, and such a quantum is robust against all
the system parameters.
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