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Quantum transport properties in quantum Hall wires in the presence of spatially correlated random potential
are investigated numerically. It is found that the potential correlation reduces the localization length associated
with the edge state, in contrast to the naive expectation that the potential correlation increases it. The effect
appears as the sizable shift of quantized conductance plateaus in long wires, where the plateau transitions occur
at energies much higher than the Landau band centers. The scale of the shift is of the order of the strength of
the random potential and is insensitive to the strength of magnetic fields. Experimental implications are also
discussed.
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I. INTRODUCTION

Quantum transport property of two-dimensional �2D� sys-
tems in strong magnetic fields has been one of the central
issues of condensed matter physics. Much work has been
performed in connection with the quantum Hall effect.1–6

Recent discovery of the quantum Hall effect in graphene7

also stimulated theoretical interest. When the system is in a
strong magnetic field, the so-called edge states are formed
along the boundaries of the system.8,9 The edge state corre-
sponds to the classical skipping orbit along the boundary and
is known to be less influenced by impurities and defects of
the system.10 It thus plays an important role in the quantum
transport of a two-dimensional system in a strong magnetic
field.

Numerical studies of the electron states of two-
dimensional systems in a strong magnetic field in the pres-
ence of boundaries have already been performed by many
authors.11–15 It has been shown that the edge state is well
defined and is extended along the boundary as long as its
energy lies away from those of the bulk Landau subbands
and the magnetic fields are strong enough. On the other
hand, when its energy lies in the middle of the bulk Landau
subbands, the edge state mixes with the bulk states by impu-
rity scattering, which leads to the localization of edge
states.14,15 Recently, it has been demonstrated for the case of
long quantum Hall wires with uncorrelated disorder potential
that the conductance, indeed, vanishes when the Fermi en-
ergy is close to the centers of the bulk Landau subbands.16,17

The vanishing conductance can be understood as the conse-

quence of the mixing between the bulk states and the edge
states having opposite current directions at each end of the
system, as has been confirmed by a quantitative comparison
with analytical results. This transition between a quantized
conductance and the insulator is called the chiral metal-
insulator transition �CMIT�.16,17

In the present paper, the effect of potential correlation in
such systems is investigated numerically. The potential cor-
relation is, in general, important for the transport in low di-
mensions, since in some cases it changes the localization
behavior drastically. For a carbon nanotube, it has been
shown that the potential correlation leads to the absence of
backscattering.18 Even for pure one-dimensional systems,
dimer type correlation or long-range correlation of potential
gives rise to delocalized states.19,20 For the two-dimensional
bulk system in a magnetic field, the effect of potential cor-
relation has also been studied based on the continuum
model21–23 as well as on the tight-binding model.24 It has
been demonstrated that the mixing between edge states is
suppressed by the potential correlation.22 In the analysis on
the critical states of the Landau bands, it is seen that the
critical energies are insensitive to the potential correlation as
long as the strength of the disorder is weak.24 It may then be
expected naively that CMIT observed for the uncorrelated
potential is suppressed and the quantized conductance steps
are recovered when the potential correlation is introduced.
We find, indeed, the suppression of CMIT, which yields the
recovery of the quantized conductance steps. Quite unex-
pectedly, however, it is found that the localization length
associated with the edge states is suppressed by the potential
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correlation. This causes the shift of the quantized conduc-
tance steps toward higher energies. It is remarkable that the
potential correlation suppresses the conduction of wires,
since the potential correlation is usually expected to enhance
the conduction of the system. We find that the scale of the
shift is of the order of the strength of random potential and is
insensitive to the strength of the magnetic field as long as the
Landau levels are well defined. On the other hand, no shift
appears in the square geometry. It is therefore necessary to
analyze the effect of potential correlation on the edge states
in long wires to understand these shifts of conductance pla-
teaus.

II. MODEL AND METHOD

We adopt the tight-binding model described by the fol-
lowing Hamiltonian on the square lattice:

H = �
�i,j�

V exp�i�i,j�ci
†cj + �

i

�ici
†ci, �1�

where ci
† �ci� denotes the creation �annihilation� operator of

an electron on the site i. The summation of the phases ��i,j�
around a plaquette is equal to −2�� /�0, where � is the
magnetic flux through the plaquette and �0=h /e stands for
the flux quantum. The elementary charge and the Planck con-
stant are denoted by e and h, respectively. All length scales
are measured in units of the lattice spacing. The site energies
��i� are assumed to be distributed with the Gaussian prob-
ability density

P��� =
1

�2��2
exp	− �2

2�2 
 , �2�

and to have the spatial correlation as

��i� j� = ��2�exp�− �Ri − R j�2/4�2� . �3�

Here, � and � are the parameters which determine the
strength of the random potential and the strength of its spa-
tial correlation, respectively. The position vector for the site i
is denoted by Ri. The spatially correlated potential is made
from the uncorrelated potential v j’s as24

�i =

�
j

v j exp�− �R j − Ri�2/2�2�

��
j

exp�− �R j − Ri�2/�2�
. �4�

When the uncorrelated potential v j’s obey the Gaussian dis-
tribution with variance �, it is easy to verify that �i satisfies
the relations in Eqs. �2� and �3�. The parameter �, therefore,
represents the range of the impurity potential. In the follow-
ing, we specify the disorder strength by a parameter w
=��12, since it can be regarded as the effective width of the
potential distribution.

We consider a system with length L and width M. Two
leads are attached to both ends of the system, and the fixed
boundary condition is assumed in the transverse direction.
For the realization of the isotropic correlation for �i in the
sample region L�M, we consider the additional regions of

width 5� outside the sample region in performing the sum-
mation over v j in Eq. �4�.

The two-terminal conductance G is obtained by means of
the Landauer formula

G = �e2/h�Tr T†T , �5�

where T is the transmission matrix. We adopt the transfer
matrix method25 to evaluate the transmission matrix.
Throughout the present analysis, we consider an independent
impurity configuration for each value of energy E and �. The
width M is set to be 20. The smallest magnetic flux � /�0 per
plaquette is 1 /40, and the corresponding magnetic length l
=�� /eB is about 2.5, much smaller than the system width M.
This leads to the existence of edge states along the bound-
aries.

III. NUMERICAL RESULTS

We first show the results of conductance for w=0.8V and
� /�0=1/40 in Fig. 1. The length of the system is L /M
=250. In the absence of potential correlation ��=0�, we see
the chiral metal-insulator transition as a function of energies.
The conductance peaks at energies E /V�−3.7 and −3.4 are
the contributions from the lowest and second lowest Landau
bands, respectively. It is clearly seen that these peaks disap-
pear for �	1 and that the quantized conductance steps are
recovered for �	6. It is to be noted here that the recovery
starts at E /V�−3.4. Since the contribution from the lowest
Landau band starts at E /V�−3.8 for the case of �=0, the
conductance steps can be understood as being shifted toward
higher energies with an amount of 
E /V�0.4 in the pres-
ence of long potential correlation.

In order to see the shift more clearly, we examine the
conductance in the case of stronger magnetic fields � /�0
=1/16 and 1/8. In Fig. 2, the results for � /�0=1/16 are
shown. The length of systems is assumed to be 1000 �L /M
=50�. Here, it is clearly seen that the conductance plateaus
shift toward higher energies as the correlation length � is
increased. In both cases, the scale of the shifts in the pres-
ence of the long correlation turns out to be approximately
0.3V, insensitive to the magnetic fields. We also evaluate the
conductance for L /M =1, namely, for the square system. It is
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FIG. 1. Conductance for w /V=0.8, � /�0=1/40, and L /M
=250 as a function of the range of the impurity potential � and the
Fermi energy E /V. In the present system, ratio of the width M to
the magnetic length l is M / l�8.
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then found that no shift appears in that case. This is consis-
tent with the result for the 2D bulk system that the levitation
of critical states due to the potential correlation for the
present range of disorder strength �w /V�1� is much smaller
than the present scale of the shifts of conductance plateaus.24

The present shift of conductance plateaus is, thus, a specific
feature to long wires, suggesting that the shift arises from the
one-dimensional character of the system rather than the 2D
bulk properties. Apart from the shift of plateaus, it is also
confirmed that CMIT fades away for larger values of �
��2.5�. Detailed energy dependencies of the conductance in
the presence of potential correlation ��=5� and that in its
absence ��=0� are shown in Fig. 3. It is clearly seen that the
shifts are common to these three plateaus and CMIT ob-
served for �=0 �Refs. 16 and 17� disappears for �=5. The
random jumps between the quantized plateaus for �=5 are
fluctuations due to different realizations of disorder potential.

It should be emphasized that the conductance plateau transi-
tions occur away from the peaks of the density of states in
the case of �=5.

In order to clarify how the scale of the shift depends on w,
we calculate the conductance also for w /V=0.4 and 1.6 in
the case of L /M =50 and � /�0=1/8. We obtain the shifts to
be �0.1–0.2�V and �0.6–0.7�V, respectively. These results
suggest that the scale of the shift is proportional to w.

The shift of plateaus means that the edge states which are
transmitted in the case of �=0 are reflected for ��0. The
localization length in the case of ��0 must therefore be
much smaller than that in the case of �=0. This is surprising
since the potential correlation normally reduces the electron
localization. We, thus, examine the effect of potential corre-
lation on the localization length along the wire in the pres-
ence of edge states. The localization length � estimated by
the transfer matrix method26 is shown in Fig. 4 for � /�0
=1/16 and various values of �. Here, we clearly see that the
localization length � is much shorter than the system length
L / l=625 for the energies from −3.6V to −3.3V in the pres-
ence of potential correlation. This is consistent with the van-
ishing conductivity in the presence of long potential correla-
tion for energies lower than E /V−3.3 in Figs. 2 and 3.

IV. SUMMARY AND DISCUSSION

Now we show that the present shift of conductance pla-
teaus can be understood as a semiclassical effect. It is useful
to recall here the fact that the edge state is reflected by the
potential barrier when its energy measured from the corre-
sponding Landau level Eedge=E− �n+1/2���c is smaller
than the energy of the potential barrier,27,28 where �c denotes
the cyclotron frequency. This suggests that the shift of con-
ductance plateaus also occurs in the presence of a potential
barrier across the wire instead of a disorder potential. We
have confirmed in the present lattice model, that the shifts
expected in the continuum model indeed, occur when the
thickness of the barrier is larger than the magnetic length.

With this property of the edge states, it is natural to expect
that the edge states having lower energies �Eedge�w /2� are

FIG. 2. �Color online� Conductance G / �e2 /h� for w /V=0.8 and
L /M =50 as a function of the potential range � and the Fermi en-
ergy E /V. The magnetic flux � /�0 is assumed to be 1/16. The
magnetic length l�1.6 and, accordingly, M / l�12.5.
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FIG. 3. Conductance G / �e2 /h� for �=0 ��� and �=5�3.13l
��� in the case of w /V=0.8, � /�0=1/16, and L /M =50. For �
=5, G / �e2 /h�+2 is plotted instead of G / �e2 /h�. Conductance G0

for w=0 is also calculated and G0 / �e2 /h�+0.5 is plotted as a solid
line. The density of states �DOS� for �=5 obtained by the Green’s
function method �Ref. 11� is plotted as a dotted curve.
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FIG. 4. Localization length along the wire of width 20 in the
cases of �=0 g3 ���, 5 ���, and 10 ���. The disorder and the
magnetic field are assumed to be w /V=0.8 and � /�0=1/16, re-
spectively. The magnetic length is l�1.6.
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deformed considerably by the correlated potential varying
with scales larger than the magnetic length, because such a
potential would act as a local potential barrier. Due to the
deformation of the edge state trajectory, in a certain region of
a long sample, the effective width of the sample becomes
narrow enough to induce the mixing of edge states with op-
posite directions, leading to the reflection. As the potential
correlation is increased, the deformation would become
larger and the probability for the reflection of edge states is
likely to increase, accordingly. The same order of the shift
�w /2� in each plateau transition is also naturally under-
stood, since Eedge determines the probability of reflection.

The above semiclassical argument is consistent with our
results that the shift becomes significant when the potential
range � / l is large enough, and that in the long correlation
limit, it saturates around w /2, which is effectively the maxi-
mum of the potential energy �Fig. 2�. It would also account
for the fact that the contributions from the lowest and second
lowest Landau levels vanish when the potential range � ap-
proaches the order of the magnetic length in Fig. 1. In the
presence of long potential correlation, it is thus expected that
the conductance steps occur at critical energies Ec��n
+1/2���c+w /2 in long wires. For certain fixed impurity
configurations, we have observed a complex structure around
the critical energy, which is expected to be the resonant
tunneling29,30 between edge states.

It is important to note that the mixing of the edge states at
one place of the wire would be enough to reflect the whole
current associated with them. The probability to have such a
place in a particular sample apparently depends on the length
of the wire. It is natural that there is no shift in the case of the
short system �L /M =1�, since such probability is very small.
The probability P to have high potential regions across the
wire in a sample is estimated as P� pM/��L /�� for a small p,
which is the probability that the potential energy in the box

of size � is larger than Eedge. Requiring P to be of the order
of unity, we get

log�L/�� � �− ln p��M/�� , �6�

which suggests that M must be practically several times � or
less to observe these phenomena. In reality, when the mag-
netic field is 10 T, the magnetic length is l8 nm, and the
present systems correspond to wires whose width M is in the
range 70–140 nm. The present numerical results suggest that
the shift of conductance plateaus can be observed when �
	3l25 nm and L=3.5–7 �m.

In summary, we have investigated the effect of potential
correlation in quantum Hall wires. It has been shown clearly
that the potential correlation shifts the quantized conductance
plateaus toward higher energies. The scale of the shifts is of
the order of the strength of the random potential. This shift is
specific to systems with the wire geometry and is insensitive
to the strength of the magnetic fields. This phenomenon is
related to the transport property of edge states in the presence
of long potential correlation. We have argued that the poten-
tial correlation enhances the mixing of the edge states at the
opposite edges, which yields the reflection of edge channels.
For correlated potential, the positions of the conductance pla-
teau transitions in quantum Hall wires do not necessarily
coincide with the positions of the bulk Landau levels. The
chiral metal-insulator transition is absent when the potential
correlation is much larger than the magnetic length of the
system.
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