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The role of electron-electron interaction in transport properties of open quantum dots is studied. The self-
consistent full quantum-mechanical magnetotransport calculations within the Hartree, density-functional
theory, and Thomas-Fermi approximations were performed, where a whole device, including the semi-
infinitive leads, is treated on the same footing �i.e., the electron-electron interaction is accounted for both in the
leads as well as in the dot region�. The main finding of the present paper is the effect of pinning of the resonant
levels to the Fermi energy due to the enhanced screening. Our results represent a significant departure from a
conventional picture where a variation of external parameters �such as a gate voltage, magnetic field, etc.�
causes the successive dot states to sweep past the Fermi level in a linear fashion. We instead demonstrate the
highly nonlinear behavior of the resonant levels in the vicinity of the Fermi energy. The pinning of the resonant
levels in open quantum dots leads to the broadening of the conduction oscillations in comparison to the
one-electron picture. The effect of pinning becomes much more pronounced in the presence of the perpendicu-
lar magnetic field. This can be attributed to the enhanced screening efficiency because of the increased
localization of the wave function. The strong pinning of the resonant energy levels in the presence of magnetic
field can have a profound effect on transport properties of various devices operating in the edge state transport
regime. We also critically examine an approximation often used in transport calculations where an inherently
open system is replaced by a corresponding closed one.
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I. INTRODUCTION

A transport regime where a submicron lateral structure is
strongly coupled to electron reservoirs �leads� is usually re-
ferred to as an open one.1,2 This transport regime can be
realized in quantum wires, dot, and antidot structures typi-
cally fabricated using a split gate or related techniques. Such
techniques allow one to obtain devices with desired and vari-
able geometry and parameters such as electron density and
lead openings. The quantum dot operates in an open regime
when the gate voltage sets up two quantum point contacts
�QPCs� at the entrance and exit of the dot such that they
transmit one or more channels �i.e., the conductance of an
individual QPC, GQPC�

2e2

h �. In this regime, electrons can
freely enter and exit the dot, such that the electron number
inside the dot is not integer and the chemical potential
throughout the whole device in the linear-response regime is
constant. �Opposite regime emerges when the point contacts
are nearly pinched off and is referred to as a Coulomb
blockade.2,3 In this case, the electron number in the dot is
quantized and the chemical potential inside the dot is differ-
ent from that in the leads.� During the past decade, the open
quantum dots have received a significant attention, providing
many important insights into areas such as quantum interfer-
ence, chaos, decoherence, localization, and many others.1

Earlier transport experiments have been mainly devoted to
the dots with hundreds or even thousands of electrons. Only
recently it has become possible to reduce occupancy down to
only a few or even one electron.4,5

Electron-electron interaction is known to have a great im-
pact on transport in quantum dots with such pronounced ex-

amples as Coulomb blockade3 or Kondo effect.6 A descrip-
tion of the quantum transport in quantum dots is often based
on model Hamiltonians containing phenomenological param-
eters such as coupling strengths or charging constants.7–9 In
many cases it is not always straightforward to relate quanti-
tatively the above parameters to the physical processes they
represent in the real system and sometimes it is not even
obvious whether a model description is sufficient to capture
the essential physics. At the same time, it is now well recog-
nized that a detailed understanding and interpretation of the
experiment might require a quantitative microscopical mod-
eling of the system at hand, free from phenomenological
parameters and not relying on model Hamiltonians which
validity is poorly controlled. The importance of such model-
ing can be illustrated by examples including the quantitative
description of the compressible and/or incompressible strips
in magnetic field at the edges of the two-dimensional elec-
tron gas10 or explanation of the Hund rule observed in few-
electron quantum dots,11 just to name a few.

The purpose of the present paper is twofold. First, we
develop an approach aimed on full quantum-mechanical
many-body transport calculations in open systems that starts
from the lithographical layout of the device and does not
include phenomenological parameters such as coupling
strengths, charging constants, etc. The whole device, includ-
ing semi-infinitive leads, is treated on the same footing �i.e.,
the electron-electron interaction is accounted for both in the
leads and in the dot region�. Using the recursive Green’s-
function technique, we self-consistently compute the scatter-
ing solutions of the two-dimensional Schrödinger equation in
magnetic field.12 Following the parametrization for the ex-
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change and correlation energy functionals of Tanatar and
Ceperley,13 the electron-electron interaction is incorporated
within the density-functional theory �DFT� in the local-
density approximation.11,14 The validity of the DFT approxi-
mation is supported by the excellent agreement with the ex-
act diagonalization and variational Monte Carlo calculations
performed for few-electron systems15 as well as by the good
quantitative correspondence between the experiment and the
DFT calculations for the magnetoconductance of quantum
wires.16 Our approach thus accounts for the quantum me-
chanics nature of the scattering states and the resonant levels
as well as for the exchange and correlation beyond the Har-
tree approximation. At the same time, it accurately describes
the global electrostatic and the screening in the dots as well
as in the leads.

The second aim of the present paper is to revise the role
of the electron-electron interaction in transport properties of
open quantum dots. It is widely believed that in open trans-
port regime �as opposed to the Coulomb blockade or Kondo
regime�, the electron-electron interaction plays only a minor
role. The main finding of the present paper is the effect of
pinning of the resonant levels to the Fermi energy due to the
enhanced screening. Our results represent a significant depar-
ture from a conventional picture adopted in most model
Hamiltonians as well as in more sophisticated numerical cal-
culations where a variation of external parameters �such as a
gate voltage, magnetic field, etc.� causes the successive dot
states to sweep past the Fermi level in a linear fashion. We
instead demonstrate the highly nonlinear behavior of the
resonant levels in the vicinity of the Fermi energy. One of the
observable consequence of this effect is the smearing of the
conductance fluctuations. We also show that the resonant
level pinning becomes especially pronounced in magnetic
field. Thus, accounting for this effect might be important for
the interpretation of the magnetotransport experiment in
open structures, including, e.g., recent studies of the elec-
tronic Mach-Zehnder interferometer17 and the Laughlin qua-
siparticle interferometer,18 structures designed to test the re-
alization of the topological quantum computing,19 antidot
structures,20–22 and others. It should also be noted that the
quantum dot structures demonstrating Kondo effect fall into
the semiopen transport regime such that accounting for the
effect of the nonlinear screening leading to the resonant level
pinning might be essential for the interpretation of the ex-
periments in this regime as well.

Finally, a comment is in order concerning the applicability
of the developed method. The conductance calculations in
open quantum dots presented in this paper are based on an
approach �often referred to as NGFT+DFT� that during re-
cent years became a standard tool for transport ab initio cal-
culations in molecular junctions, atomic wires, and related
systems.23–31 Its starting point is the Landauer-type formula,
where the conductance is calculated using the nonequilib-
lium Green’s-function technique �NGFT� or similar methods
combined with the density-functional theory in the local-
density approximation. This approach witnessed a great suc-
cess in reproducing observed I-V characteristics of molecular
and metallic junctions, notably in the strong coupling limit
�when the conductance exceeds the conductance unit G0
=2e2 /h�. At the same time, for weakly coupled systems such

as organic molecules, the standard NGFT+DFT approach
leads to the orders-of-magnitude discrepancy between the
measured and calculated currents and to incorrect predictions
of the conducting �instead of experimentally observed insu-
lated� phase.26–30 It has been recently recognized that the
failure of this approach in the weak-coupling regime can be
traced to spurious self-interaction errors caused by the lack
of the derivative discontinuity of the exchange and correla-
tion potentials in the standard DFT.26–31 It has been demon-
strated recently that elimination of the self-interaction errors
and restoring agreement with the experiment for the case of
the weak coupling require approaches and the exchange and
correlation functionals that go beyond the standard NGFT
+DFT scheme.26–30 Because of this, our present mean-field
approach is not expected to work for the case of the weak
coupling �i.e., when the conductance of each QPC connect-
ing the dot to the reservoir is reduced below the conductance
unit G0�, and its applicability is limited to the open dot re-
gime when the electron number in the dot is not quantized
and the Coulomb charging is unimportant.

The paper is organized as follows. Section II presents the
model and the Hamiltonian of the system at hand. In Sec. III,
the numerical method for the self-consistent calculation of
the magnetoconductance is described. Computational results
are presented and discussed in Sec. IV, and conclusions are
given in Sec. V.

II. MODEL

We consider an open quantum dot attached to semi-
infinitive leads �electron reservoirs� in a perpendicular mag-
netic field B. A schematic layout of the device is illustrated in
Fig. 1�a�. Charge carriers originating from a fully ionized
donor layer form the two-dimensional electron gas �2DEG�,
which is buried inside a substrate at the GaAs/AlxGa1−xAs
heterointerface situated at a distance b from the surface. Me-
tallic gates placed on the top of the heterostructure define the
dot and the leads on the depth of the 2DEG �Figs. 1�a� and
1�b��.

The Hamiltonian of the whole system �the dot+the leads�
can be written in the form

H = H0 + V�r� , �1�

where H0 is the kinetic energy in the Landau gauge,
A= �−By ,0 ,0�,

H0 = −
�2

2m*�� �

�x
−

eiBy

�
�2

+
�2

�y2� , �2�

r= �x ,y�, and m*=0.067me is the GaAs effective mass. The
total confining potential within the framework of the density-
functional theory is the sum of the electrostatic confinement
potential, the Hartree potential, and the exchange-correlation
potential

V�r� = Vconf�r� + VH�r� + Vxc�r� . �3�

The electrostatic confinement Vconf�r�=Vgates�r�+Vdonors

+VSchottky includes contributions, respectively, from the top
gates, the donor layer, and the Schottky barrier. The explicit
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expressions for the potentials Vgates�r� and Vdonors are given
respectively in Refs. 32 and 33; the Schottky barrier is cho-
sen to be VSchottky=0.8 eV. The Hartree potential is written in
a standard form

VH�r� =
e2

4��0�r
	 dr�n�r��� 1


r − r�

−

1
�
r − r�
2 + 4b2� ,

�4�

where n�r� is the electron density, the second term describes
the mirror charges placed at a distance b from the surface,
n�r� is the electron density, �r=12.9 is the dielectric constant
of GaAs, and the integration is performed over the whole
device area including the semi-infinite leads.

The last term in the total confining potential �3� is the
exchange and correlation potentials Vxc�n�r��=Vx�n�r��
+Vc�n�r��, which is the functional of the electron density. In
the local-density approximation, it is given by a functional
derivative14

Vxc =
d

dn
�n�xc�n�
 . �5�

For �xc we have used the parametrization of Tanatar and
Ceperley13 for the case of spin-degenerate electrons. In par-
ticular, for the exchange potential this parametrization gives
Vx�n�r��=− e2

�0�r�
3/2�n�r� /2. Note that by setting Vxc�r�=0 in

Eq. �3�, we reduce our approach to the standard Hartree ap-
proximation.

To outline the role of quantum-mechanical effects in the
electron-electron interaction in open quantum dots, we also
consider the Thomas-Fermi �TF� approximation. In this ap-
proximation, the kinetic energy is related to the electron
density,14 H0= ��2

m* n�r�. The self-consistent electron density
is, thus, obtained from the solution of the equation

��2

m* n�x,y� + Vconf�r� + VH�r� = EF. �6�

The electron density and the total confining potential calcu-
lated within the TF approximation do not capture quantum-
mechanical quantization of the electron motion. The utiliza-
tion of the TF approximation for the modeling of the
magnetotransport in an open system is, therefore, conceptu-
ally equivalent to a one-electron approach. The difference
between these approaches is the shape of the total confining
potential: in one-electron transport simulations, one typically
starts with a model hard-wall confinement, whereas the TF
approximation gives a rather smooth potential which repre-
sents a good approximation to the actual confinement.

III. METHOD

The magnetoconductance through the quantum dot in the
linear-response regime is given by the Landauer formula34

G = −
2e2

h
	 dET�E�

�fFD�E − EF�
�E

, �7�

where T�E� is the total transmission coefficient, fFD�E−EF�
is the Fermi-Dirac distribution function, and EF is the Fermi
energy. In order to calculate T�E� in perpendicular magnetic
field, we utilize the recursive Green’s-function technique in
the hybrid energy-space representation.12 We discretize Eq.
�1� and introduce the tight-binding Hamiltonian �with lattice
constant a=4 nm�, where the perpendicular magnetic field is
included in a form of Peierl’s substitution.34 The retarded
Green’s function is introduced in a standard way,34

G = �E − H + i��−1. �8�

The Green’s function in the real-space representation,
G�r ,r ,E�, provides an information about the electron density
at the site r,34

n�r� = −
1

�
I	 dEG�r,r,E�f�E − EF� . �9�

Note that G�r ,r ,E� is a rapidly varying function of energy.
As a result, a direct integration along the real axis in Eq. �9�
is rather ineffective as its numerical accuracy is not sufficient

FIG. 1. �Color online� �a� Structure of an open quantum dot. The
internal region is attached to two semi-infinitive quantum wires
which serve as the electron reservoirs. �b� The layout of the gates
defining the dot. The dashed line defines the area S of the quantum
dot used to calculate a number of electrons in it. �c� Representative
calculated self-consistent potential and the electron density.
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to achieve convergence of the self-consistent electron den-
sity. Because of this, we transform the integration contour
into the complex plane I�E��0, where the Green’s function
is much more smoother. Note that all poles of the retarded
Green’s function are in the lower half plane I�E��0. A typi-
cal contour used in the integration, avoiding poles of the
Fermi-Dirac function, is shown in Fig. 2.

In order to calculate the Green’s function of the whole
system dot+leads, we divide the system into three parts, the
internal computational region and two semi-infinite leads, as
shown in Fig. 1�a�. Note that the internal region incorporates
not only the dot but also the straight segments, including a
part of the leads. We place the semi-infinite leads sufficiently
far away from the dot where the total self-consistent poten-
tial and the electron density do not change along the leads
�i.e., the electron density and the potential in the leads are
not affected by the internal region such that the leads can be
considered as uniform quantum wires�. This allows us to
calculate the total potential and the electron density in the
lead regions using the technique developed in Ref. 35 for an
infinite homogeneous channel in the perpendicular magnetic
field. The Green’s function in the internal region is calculated
using the standard recursive Green’s-function technique. The
total Green’s function for the whole system is calculated by
linking, with the help of the Dyson equation, the surface
Green’s function for the semi-infinite leads �with the self-
consistent potential calculated using the technique in Ref.
35� and the Green’s function of the internal region.

All the calculations described above are performed self-
consistently in an iterative way until a converged solution for
the electron density and potential �and hence for the total
Green’s function� is obtained. Having calculated the total
self-consistent Green’s function, the scattering problem is
solved where the scattering states in the leads �both propa-
gating and evanescent� are obtained using the Green’s-
function technique of Ref. 35. �The equation for the calcula-
tion of the transmission and reflection coefficients using the
Green’s function in the presence of the magnetic field is de-
rived in Ref. 12.�

Having calculated the Green’s function of the internal re-
gion and the wave function in the leads, we can recover the
wave function 	�r ,E� inside the internal region. For visual-
ization of the wave function inside the dot, we include the
effect of the finite temperature as follows:



�r�
2 = −	 dE
	�r,E�
2
�fFD�E − EF�

�E
. �10�

In order to find the density of states �DOS� inside the quan-
tum dot,34 we perform integration over the dot area S defined
in Fig. 1�b�,

DOS�E� = −
1

�
I	

S

drG�r,r,E� . �11�

Note that a many-body approach, conceptually similar to
ours, for calculation of the quantum transport in an open dot
was developed in Ref. 36 for the case of zero magnetic field.
The magnetic field was included in the dot region in the
transport calculations presented in Ref. 37, where, however,
the leads were considered as noninteracting.

As we mentioned in the previous section, we also employ
the TF approximation for the calculation of the magne-
totransport through the quantum dot. This calculation is done
by the same method as described above, with the only dif-
ference that the self-consistent electron densities in the inter-
nal region and in the semi-infinite leads are calculated from
the semiclassical FT equation �6�, as opposed to Eq. �9� that
relates the electron density to the quantum-mechanical
Green’s function.

The self-consistent solution in quantum transport or elec-
tronic structure calculations is often found using a “simple
mixing” method, where the charge density �or the total po-
tential� on the m+1 iteration loop is updated through the
input nin

m and output nout
m densities on the previous m iteration

nin
m+1= �1−��nin

m +�nout
m , with � being a small constant,

�0.1–0.01. Typically needed are �200–2000 iteration steps
to achieve our convergence criteron


nout
m − nin

m

nout

m + nin
m � 10−5. �12�

In order to improve the convergence, we employ the modi-
fied Broyden’s second method,38 which allows us to reduce
drastically the number of iteration steps to �15–40. An in-
put charge density for m+1 iteration is constructed from the
sets of input and output densities from all m previous itera-
tions

nin
m+1 = nin

m − B1Fm − �
j=2

m

Uj�Vj�TFm,

Fm = nout
m − nin

m ,

Ui = − B1�Fi − Fi−1� + nin
i − nin

i−1 − �
j=2

i−1

Uj�Vj�T�Fi − Fi−1� ,

�Vi�T =
�Fi − Fi−1�T

�Fi − Fi−1�T�Fi − Fi−1�
. �13�

The initial guess B1 is taken to be a small constant so that the
input to the second iteration is effectively constructed using
the simple mixing �B1=��. The scheme given by Eqs. �13�
requires the storage of relatively small number vectors,

FIG. 2. A typical integration contour used in the calculation of
integral �9�. Dots indicate the poles of the Fermi-Dirac distribution
function in the upper complex plane at R�E�=EF, I�E�= �2m
+1��kT, m=0,1 ,2 , . . .. Vb is the bottom of the conduction band in
the leads �the lowest potential in the system�.
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which is, thus, more effective than the original Broyden’s
second method.

IV. RESULTS AND DISCUSSION

A. Few-electron open dot

We calculate the magnetotransport of a split-gate open
quantum with the following parameters representative of a
typical experimental structure. The 2DEG is buried at b
=60 nm below the surface �the widths of the cap, donor, and
spacer layers are 10, 36, and 14 nm, respectively� and the
donor concentration is 0.6�1024 m−3. The width of the
semi-infinitive leads is wlead=540 nm and the width of the
constrictions is wqpc=100 nm �both quantum point contacts
are identical�, see Fig. 1�b�. The length of the quantum dot is
kept constant throughout the paper, ldot=160 nm, while the
width of the dot is varied in the range wdot=170–440 nm.
The gate voltages applied to the gates are Vlead=−0.4 V and
Vqpc=−0.44 V. With these parameters of the device, there
are 14 channels available for propagation in the leads, and
the electron density in the center of the leads is nlead=1.6
�1015 m−2. The maximal electron density in the dot �for
wdot=440 nm� is also ndot=1.6�1015 m−2. The temperature
is fixed at T=0.2 K for all results presented below.

In the following, we discuss the open quantum dot with
N=1 propagating channel through both quantum point con-
tacts. Note that increasing the number of propagating chan-
nels to N=2 and 3 does not qualitatively change the results
presented below. In order to set up the QPCs in the one-mode
regime, we grounded one of them and studied the conduc-
tance of the remaining QPC as a function of the gate voltage
Vqpc. The calculated conductance shows a characteristic step-
like dependence and we choose Vqpc at the first conductance
plateau, namely, Vqpc=−0.44 V.

Figure 3 shows the plot of the conductance G as a func-

tion of the dot width wdot and the gate voltage Vg �the mag-
netic field is restricted to zero�. The distinctive feature of the
open quantum dots is the oscillations of the conductance in
response to the change of the geometrical size or the Fermi
energy. �Various aspects of the conductance oscillations in
small and large dots have been the subject of numerous ex-
perimental and theoretical works during the past decade1.� In
the present study, we concentrate on two dots with wdot
=170 nm and wdot=430 nm �as indicated by arrows in Fig.
3�. As will be shown below, the first dot corresponds to the
transport regime when �
� �single-level transport regime�,
whereas the second dot operates in the regime ��� �regime
of overlapping resonances�, where �= 2��2

m*Sa
is the mean level

spacing separation in the dot with the actual area Sa, and � is
the lead-induced broadening of the resonant energy levels.
Note that in relatively large dots the condition �
� can be
achieved only in the Coulomb blockade regime when the
level broadening � is small because of the weak coupling to
the leads. However, several groups have demonstrated theo-
retically and experimentally that for small few-electron
quantum dot, the single-level transport �
� can be
achieved even in the open dot transport regime, where the
electron number in the dot is not quantized and the Coulomb
charging is unimportant.5,9,40

It is worthy to note that a linear change of the gate voltage
leads to a nonlinear change of the effective dot size. �If it
were linear, the conductance oscillations in Fig. 3 would ex-
hibit a perfect linear-stripe-type pattern.� This is consistent
with the experimental results of Ref. 39 that show a devia-
tion from the linear dependence of the gate depletion dis-
tance as the gate voltage was varied.

B. Regime �š�: Single-level transport regime

Figure 4 shows the number of electrons in the few-
electron open quantum dot, the conductance, and the peak–
energy-level position as a function of the gate voltage Vg for
a quantum dot with wdot=170 nm calculated in the Hartree,
DFT, and TF approximations. �The Hartree approximation
corresponds to disregarding the exchange-correlation poten-
tial in Eq. �3�, Vxc=0.� The peak positions of the resonant
energy levels in the dot are extracted from the calculated
DOS, as illustrated in Fig. 4�c� for the case when the gate
voltage Vg=−0.6 V. The estimation of the mean level sepa-
ration gives ��0.6 meV �for Vg=−0.6 V�, which agrees
quite well with the actual level separation shown in Figs.
4�c�–4�e�. �Note that within the given interval of variation of
Vg, the actual dot area changes and hence � varies as well.�
An inspection of the DOS shows that the separation between
the resonant levels are much larger than the level broadening,
�
�. �� is loosely defined as the width of the resonant
peaks in the DOS at the half maximum.�

All three approximations give very similar electron num-
ber N in the dot as a function of the gate voltage Vg. N
monotonically increases with increase of Vg, which reflects
the fact that in the open regime the chemical potential is
constant throughout the whole system such that the electrons
freely enter and leave the dot. However, the conductance
calculated in the Hartree and DFT approximations exhibits

FIG. 3. �Color online� The conductance of the open quantum dot
as a function of the width, wdot, and the gate voltage Vg calculated
within the Hartree approximation. Solid thin lines denote the num-
ber of electrons. �Note that a zigzag-type behavior of the electron
number is an artifact due to finite grid steps.� Arrows indicate
wdot=170 nm and wdot=430 nm corresponding to two regimes, �

� and ���, discussed in Sec. IV.
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rather similar behavior, whereas the Thomas-Fermi conduc-
tance shows a very different gate voltage dependence. The
origin of this difference can be understood from the analysis
of the resonant level structure. The resonant energy levels
calculated within the Hartree and DFT approximations get
pinned to the Fermi energy, see Figs. 4�c� and 4�d�, respec-
tively. In stark contrast, the energy-level positions calculated
in the Thomas-Fermi approximation sweep past the Fermi
level in a linear fashion when the applied voltage is varied
�Fig. 4�e��.

The effect of level pinning is related to the screening
properties of the open quantum dot and the presence of the
resonant structure in its DOS. Indeed, in the vicinity of the
resonances, the DOS of the dot is enhanced such that elec-

trons with the energies close to EF �when fFD�1� can easily
screen the external potential. This leads to the metallic be-
havior of the system when the electron density in the dot can
be easily redistributed to keep the potential constant. As a
result, in the vicinity of a resonance, the system only weakly
responds to the external perturbation �change of a gate volt-
age, magnetic field, etc.�, i.e., the resonant levels become
pinned to the Fermi energy. A comparison between the Har-
tree and DFT approximations indicates that the exchange-
correlation interaction seems to enhance the pinning, but an
overall change is small �cf. Figs. 4�c� and 4�d��. Thus, in the
following, we concentrate on the Hartree approximation
only. In contrast to the Hartree and DFT approaches, the
effect of pinning is absent in the TF approximation. This is
because the total confining potential calculated within the TF
approximation does not capture the resonant structure of the
DOS. Note that a modeling of the magnetotransport in a
quantum dot conceptually similar to our TF approach was
performed by Bird et al.,40 where the confining potential for
every given gate voltage was obtained as a self-consistent
solution of the Poisson equation. It is worth mentioning that
the pinning of band edges at the Fermi energy is shown to
occur in quantum wire, which is due to the E−1/2 singularity
in the density of states of electrons in one dimension.41

Conductance oscillations in the open quantum dots can be
related to the presence and/or absence of the resonant energy
levels at EF. Indeed, the first three peaks in the Hartree con-
ductance are attributed to the presence of corresponding
resonant levels, which is confirmed by the inspection of the
wave function 

�x ,y�
2 �by counting the number of nodes
of 

�x ,y�
2� �Fig. 4�. In turn, the dips indicate the absence
of levels at EF and agree precisely with integer N reflecting
the fact that all the available levels are below EF and thus are
fully filled. Note that for less negative gate voltages �
V

�0.3 V�, the separation between the levels � becomes com-
parable to the broadening �, such that the dips in the con-
ductance no longer correspond to the integer electron num-
ber N �see next section for details�. It is also interesting to
note that the resonant state corresponding to the fifth eigen-
state �five nodes of the 

�x ,y�
2� is situated lower in energy
than the corresponding resonant state related to the fourth
eigenstate. This is an indication that fifth state couples with
the leads more strongly than fourth state.42

The pinning of the resonant energy levels has an impor-
tant effect on transport in open quantum dots. In the consid-
ered transport regime, �
�, the conductance calculated
within the one-electron �TF� approximation exhibits distinct
peaks separated by broad valleys of essentially zero conduc-
tance. This reflects the structure of the one-electron DOS,
where the resonant levels sweep past the Fermi level in a
linear fashion. In contrast, as a result of pinning, the DFT
and Hartree conductances show much broader oscillations in
comparison with the one-electron approach �Fig. 4�b��.

C. Regime �È�: Regime of overlapping resonances

When an effective size of a quantum dot increases, the
mean level spacing separation � decreases. For the quantum
dot of the size wdot=430, the estimation of the mean level

FIG. 4. �Color online� �a� The number of electrons, �b� the con-
ductance, and �c�–�e� resonant energy structure in the few-electron
open quantum dot with wdot=170 nm calculated within the Hartree,
DFT, and Thomas-Fermi approximations. The top panel shows the
electron probability amplitudes 

�x ,y�
2 for the resonant energy
levels marked by arrows in �c�. Inset in �c� shows the DOS for Vg

=−0.6 V.
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separation gives ��0.15 meV �for Vg=−0.6 V�, which
agrees quite well with the actual level separation shown in
Figs. 5�c� and 5�d�. An inspection of the DOS shows that for
this dot the spacing between neighboring levels is compa-
rable with the level broadening, ���, see Fig. 5�c�. �Note
that the level broadening is controlled by coupling to the
leads and does not depend on the dot size.� Because neigh-
boring levels start to overlap, there is always one or several
energy states at EF mediating transport through the dot. The
effect of the pinning of the energy levels in the Hartree cal-
culations �as well as its absence in the TF calculations� is
also clearly seen in this regime. However, in contrast to the
regime �
�, the dips in the conductance can no longer be
related to the integer number of electrons in the dot. Instead,
it is the interference between states at the entrance and exit
of the open quantum that determines the dependence G
=G�Vg�.42 Our preliminary results for the conductance of
even larger dots �containing hundreds of electrons� outline
different features of the TF and Hartree conductances that
manifest themselves in the amplitude and the broadening of

the conductance peaks. A detailed analysis of the statistics of
the conductance oscillations is, however, outside the scope of
the present work and will be deferred to future publications.

D. Effect of magnetic field

In a sufficiently high magnetic field, the electron transport
takes place by the edge states with a characteristic dimension
of the order of the magnetic length lB=�� /eB. In the edge
state transport regime, backscattering on the potential defin-
ing the quantum dot decreases and, for a large enough B,
electrons pass through the device with the transmission close
to unity. Transport in such a regime is referred to as adia-
batic. For the open quantum dot of wdot=430 nm, transition
to adiabatic propagation takes place at about B�0.5 T, see
Fig. 6�a�. The conductance for B�0.5 T shows pronounced
oscillations due to the Aharonov-Bohm interference. When
the magnetic field changes such that the total magnetic flux
�=BS through the dot is modified by the one flux quantum
�0=h /e, the conductance demonstrates periodic oscillations
with the period �B=�0 /S �S is the characteristic area of the
dot�. Using the actual dot area Sa, we get �B=0.11 T, which
is nearly twice less than extracted from Fig. 6�a�, where
�B=0.25 T. The discrepancy can be related to a finite extent
of the edge state circulating inside the dot �lB�35 nm for
B=0.5�. As a result, the area enclosed by the edge state is

FIG. 5. �Color online� �a� The number of electrons, �b� the con-
ductance, and �c� and �d� resonant energy structure in the few-
electron open quantum dot with wdot=430 nm calculated within the
Hartree and Thomas-Fermi approximations. The electron probabil-
ity amplitudes 

�x ,y�
2 are shown for some representative Vg �top
panel�. Inset in �c� shows the DOS for Vg=−0.5 V.

FIG. 6. �Color online� �a� The conductance of the open quantum
dot as a function of the magnetic field B and gate voltage Vg for the
open quantum dot of the width wdot=430 nm calculated within the
Hartree approximation. �b� The energy structure for B=0.5 T cal-
culated within the Hartree approximation. The top panel shows the
electron probability amplitudes 

�x ,y�
2 �top� for two representa-
tive magnetic fields.
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much smaller than the geometrical area of the dot.
The resonant energy structure is modified substantially

when a magnetic field is applied, cf. Fig. 6�b� for B=0.5 T
and Fig. 5�c� for B=0 T. The resonant levels exhibit almost
equal separation, which can be related to the well-known
Darvin-Fock-type energy spectrum formation for the corre-
sponding closed dot.43 The distinguished feature of the
energy-level structure is much stronger pinning of the reso-
nant levels to EF that persists over larger intervals of Vg in
comparison to the B=0 case. Stronger pinning can be attrib-
uted to the enhanced screening efficiency because of the in-
creased localization of the wave function for the case of non-
zero magnetic field. As we mentioned in the Introduction, the
strong pinning of the resonant energy levels in the presence
of the magnetic field can have a profound effect on transport
properties of various devices operating in the edge state
transport regime including the Mach-Zender17 and
Laughlin18 interferometers as well as antidot devices.19–22

To conclude this section, it is worth mentioning that an-
other manifestation of the pinning in the edge state regime is
the well-known effect of the formation of the compressible
and incompressible strips near the structure boundary.10

E. Open versus closed system

In modeling quantum-mechanical transport in quantum
dots and related systems, one often uses an approximation
where an inherently open system is replaced by a corre-
sponding large but closed one, see, e.g., Ref. 44. In this
section, we critically examine such an approximation. In par-
ticular, we address the question whether a conductance cal-
culated in such a way coincides with the conductance of a
truly open system and whether the pinning of the resonant
energy levels survives or not. For modeling of the closed
system, we replace the semi-infinitive leads by the potential
walls of an infinitive height such that the solution of the
Schrödinger equation reduces to the eigenproblem

H	 = E	 , �14�

where E and 	 are discrete sets of eigenvalues and eigenvec-
tors, and the Hamiltonian H is given by Eq. �1�. We solve Eq.
�14� self-consistently by performing the fast Fourier transfor-
mation from the coordinate into the energy space, which
greatly reduces computational cost.

In our calculations, we fix the Fermi energy such that the
charge density in the system is given as

n�r� = �
i

	i�r�fFD�Ei − EF� . �15�

This assumption leads to a noninteger electron number in a
system, but we a priori construct the closed system resem-
bling the open one as much as possible. Note also that be-
cause the total number of electrons Ntot
1, the effect of the
noninteger Ntot on the total potential is practically negligible.

In order to calculate the conductance of the system at
hand, we cut off slices in the vicinity of the boundaries as
illustrated in Fig. 7�a� and then add homogeneous semi-
infinite leads with the potential that matches the potential of
the boundary slices. Finally, we solve a scattering problem

for this given potential using the recursive Greens’s-function
technique.12

Figures 7�b�–7�d� show the electron number in the dot N,
the conductance G, and the resonant energy structure within
the Hartree approximation. The comparison to the corre-
sponding results for the open system shows that the closed-
system approximation reproduces all the results not only
qualitatively but rather quantitatively, cf. Fig. 4. The only
difference is the shift along Vg axis, which is simply related
to the fact that the Hartree potential for the case of the closed
system, in contrast to the open one, does not include a con-
tribution from the semi-infinite leads. Figure 7�d� reveals that
the pinning of resonant energy levels to the Fermi energy is
present in the closed-system approximation as well. We thus
conclude that this approximation might be used for the mod-
eling of the transport properties and the resonant energy-
level structure of the corresponding open system. We, how-
ever, should note that with the present approximation we
could not satisfy the convergence criterion �12� that we rou-
tinely use for the calculation of the conductance in the open
systems as described in Sec. III.

FIG. 7. �Color online� �a� The representative self-consistent
charge densities for the closed and open systems. The thick dashed
lines show the cuts for the transport calculations. �b� The electron
number, �c� the conductance, and �d� the energy structure calculated
within the Hartree approximation in the closed-system approxima-
tion. The dashed lines denote the result for the open system �the
same as in Fig. 4�. The width of the quantum dot is wdot=170 nm.
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V. CONCLUSION

We have developed an approach for full quantum-
mechanical many-body magnetotransport calculations in
open systems that starts from the lithographical layout of the
device and does not include phenomenological parameters
such as coupling strengths, charging constants etc. The
whole device, including semi-infinitive leads, is treated in
the same footing �i.e., the electron-electron interaction is ac-
counted for in both the leads as well as in the dot region�.
The many-body effects are included within the DFT and Har-
tree approximations. The developed approach is valid in the
open transport regime when the conductance of each QPC
connecting the dot to the reservoir exceeds �or equal� the
conductance unit G0=2e2 /h, such that the electron number
in the dot is not quantized and the Coulomb charging is
unimportant.

The developed method was applied to calculate the con-
ductance through an open quantum dot. The main finding of
the present paper is the effect of pinning of the resonant
levels to the Fermi energy due to the enhanced screening.
Our results represent a significant departure from a conven-
tional picture where a variation of external parameters �such
as a gate voltage, magnetic field, etc.� causes the successive
dot states to sweep past the Fermi level in a linear fashion.
We instead demonstrate the highly nonlinear behavior of the
resonant levels in the vicinity of the Fermi energy. We show
that the pinning effect is absent in a one-electron �Thomas-
Fermi� approximation because, in this case, the self-
consistent potential does not account for the resonant struc-
ture of the DOS in the dot. The pinning of the resonant levels
in open quantum dots leads to the broadening of the conduc-

tion oscillations in comparison to the one-electron picture. It
remains to be seen whether accounting for this effect might
shed new light on the interpretation of the conductance os-
cillation statistics in open quantum dots.

The pinning of the resonant levels becomes much more
pronounced in the presence of the perpendicular magnetic
field. This can be attributed to the enhanced screening effi-
ciency because of the increased localization of the wave
function. The strong pinning of the resonant energy levels in
the presence of magnetic field can have a profound effect on
transport properties of various devices operating in the edge
state transport regime including Mach-Zender17 and
Laughlin18 interferometers as well as antidot devices.19–22

We should stress that the pinning effect predicted in this
paper is not specific to the considered material system
�GaAs/AlGaAs heterostructure� and is expected to hold in
any two-dimensional system in open transport regime �e.g.,
Si inversion layer structures, etc.�.

Finally, in the present paper, we critically examined an
approximation used in modeling the quantum-mechanical
transport in quantum dots and related systems when an in-
herently open system is replaced by a corresponding large
but closed one.

In the present study, we have limited ourselves to the case
of spinless electrons. Work is in progress to include the effect
of the spin in order to revisit the effect of spin splitting
recently observed in open quantum dots.9,37
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