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We have studied a one-dimensional Hubbard superlattice with different Coulomb correlations at alternating
sites for a half-filled band. Mean field calculations based on the Hartree-Fock approximation together with a
real space renormalization group technique were used to study the ground state of the system. The phase
diagrams obtained in these approaches agree with each other from the weak to the intermediate coupling
regime. The mean field results show very quick convergence with system size. The renormalization group
results indicate a spatial modulation of local moments that was identified in some previous work. Also we have
studied the magnetoconductance of such superlattices which reveals several interesting points.
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I. INTRODUCTION

The study of electronic correlation remains at the focus of
recent theoretical interest due to the development of different
materials of which the metallic multilayers1 form a very im-
portant component. The oscillation of exchange coupling be-
tween magnetic layers2 and the appearance of giant
magnetoresistance3 are among the exciting features of the
magnetic multilayers, e.g., the layered Fe/Cr structures. An
intense theoretical attempt has been made to understand the
magnetic behavior of such systems.4–8 In these pioneering
works in this field a simple generalization of the one-
dimensional Hubbard model was proposed to investigate the
role of electronic correlation in one-dimensional superlat-
tices. This model consists of a periodic arrangement of NU
sites in which the on-site Coulomb correlation �U� is repul-
sive followed by N0 sites with no on-site interaction �U=0�.
It was found that such a model gives rise to some interesting
features, in sharp contrast with the magnetic behavior ob-
served in an otherwise homogeneous system �conventional
one band Hubbard model�.4

However, most of the previous works in this model em-
ployed exact diagonalization of finite systems typically hav-
ing 8–24 sites.4,5 Some of these works reveal preferential
distribution of local moments on sublattices and observe the
suppression of spin-density-wave �SDW� order.4 Some oth-
ers deal with problems like metal-insulator transition �MIT�
�Ref. 5� or formation of charge density wave6 in such sys-
tems. Density matrix renormalization group �DMRG� calcu-
lations are also performed to overcome limitations on system
size imposed by the technique of exact diagonalization; and,
these consider system sizes �48–150.7 Very recently a gen-
eralization of the said model has been considered where,
instead of two types of sites with on-site correlation param-
eters U�0 and U=0, respectively, one takes into account
two different values of U��0� at adjacent sites;9 however, a
detailed study of this generalized model is yet to be worked
out. In view of the wider applicability of this model to di-
verse experimental systems, we consider here a preliminary
study of this alternating Hubbard model �AHM� in one di-

mension. Also we aim at observing the behavior of the same
when the system size is reasonably large.

In the present study, we investigate the ground-state prop-
erties of the AHM in one dimension and for a half-filled band
by using a Hartree-Fock approximation �HFA� together with
a real space renormalization group �RG� calculation. These
two techniques, complemented by one another, were found
to be very successful in studying similar cases in the recent
past.10 Apart from constructing the ground-state phase dia-
gram we also investigate the magnetoconductance of a finite
chain within the HFA scenario. In Sec. II we introduce the
model and give the HFA calculations. Section III describes
the results obtained in HFA. Section IV contains some details
of the RG scheme while Sec. V shows the RG results to-
gether with a comparison between the same and that ob-
tained in the HFA. In Sec. VI we present the results on mag-
netoconductance of the model and Sec. VII summarizes the
present work.

II. THE MODEL AND THE HARTREE-FOCK
CALCULATIONS

Our model is defined on a one-dimensional Hubbard
chain of N �even integer� sites consisting of two sublattices.
The model Hamiltonian is

H = t�
i,�

�ci,�
† ci+1,� + H.c.� + UA �

i�A
ni,↑ni,↓ + UB�

i�B
ni,↑ni,↓.

�1�

The two sublattices constructed out of odd and even num-
bered sites are labeled by A and B, respectively. ci,�

† �ci,�� is
the creation �annihilation� operator for an electron with spin
� at the ith site. ni,�=ci,�

† ci,�, and ni=��ni,� is the number
operator at the ith site. t is the hopping integral between
nearest-neighbor sites. UA, UB are the on-site Coulomb re-
pulsion energies on the sites corresponding to two sublattices
A and B, respectively.

We decouple the Hamiltonian within the HFA, which is
expected to work at least in the weak coupling regime. We
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define two parameters, number of electron Ni and the mag-
netization Mi at the ith site, where

Ni = �ni,↑� + �ni,↓� ,

Mi = �ni,↑� − �ni,↓� . �2�

These lead to a decoupled Hamiltonian,

H = t�
i,�

�ci,�
† ci+1,� + H.c.� +

UA

2 �
i�A

��Ni + Mi�ni,↓ + �Ni

− Mi�ni,↑� +
UB

2 �
i�B

��Ni + Mi�ni,↓ + �Ni − Mi�ni,↑�

−
1

4
�UA + UB��Ni

2 − Mi
2� . �3�

Now the Hamiltonian can be divided into two parts for two
types of spins, i.e., H=H↑+H↓. In an unrestricted HFA one
diagonalizes H↑ and H↓ in a self-consistent manner to obtain
the single particle energy levels. The ground state can be
constructed by filling up the energy levels from both the up
and the down bands up to the Fermi level.

One can define the spin and the charge density order pa-
rameters, c and s, respectively, by

c =
1

N
�

i

�− 1�i�ni,↑ + ni,↓�, s =
1

N
�

i

�− 1�i�ni,↑ − ni,↓� .

We consider a half-filled chain with periodic boundary con-
dition. One can easily check by using an unrestricted HFA
calculation that all sites corresponding to a given sublattice
become equivalent under a periodic boundary condition. This
leads to a simplification of the formulas for c and s given
above. We, therefore, use these simplified forms of the
charge density order parameter c and the spin-density order
parameter or antiferromagnetic order parameter s as given by

c = 1
2 �nB,↑ + nB,↓ − nA,↑ − nA,↓� ,

s = 1
2 �nB,↑ − nB,↓ − nA,↑ + nA,↓� . �4�

It is to be noted here that 	c	=1 for a perfect “chess-board”-
type CDW and 	s	=1 for a perfect Néel-type antiferromag-
netic SDW state. We now investigate the dependence of
these order parameters on the values of UA and UB.

III. THE RESULTS OF HARTREE-FOCK CALCULATIONS

In Fig. 1 we plot the order parameters c and s as functions
of UB / t for different fixed values of UA / t �for a chain having
sites N=100�. Keeping UA / t at a fixed value ��0� and vary-
ing UB / t from 0 to higher values, we find that initially the
system is charge ordered. The electrons tend to localize at the
sites with lower Coulomb repulsion energies, keeping the
other sites vacant. As a result a charge-density wave �CDW�
is formed. In this regime, the charge-density order parameter
c assumes a high value while the spin-density order param-
eter s is zero. As we gradually increase UB / t keeping UA / t at
the same fixed value, we see that there is a gradual fall in the

value of c. At a certain value of UB / t there occurs a sharp
rise in s which now takes over the value of c. For small
values of UA / t��1� the transition occurs at the point of ho-
mogeneity, i.e., at UB=UA. In this case, however, a further
increase in UB / t suppresses the spin order again, and the
CDW sets in. Therefore, the SDW is found to form only at a
singular point UA=UB which is in agreement with the known
result for the “homogeneous” limit.11 The situation becomes
different for larger values of UA / t. For an intermediate value
of UA / t��1�, we find two transitions: one from a CDW to an
SDW and then from the SDW to a CDW again; this can be
identified by two successive crossovers in the c and the s
curves �Fig. 1�b��. It is interesting to note that the charge
order vanishes only at the point of homogeneity. For large
UA / t��1� there appears only one transition from a CDW
state to an SDW state at a specific value of UB / t��UA / t�.
Here also, the charge-order parameter vanishes at UA=UB,
and then rises slowly with UB / t��UA / t�. However, in this
region, the spin-order parameter always dominates over the
charge-order parameter �Fig. 1�c��. The phase transitions oc-
curring at points of crossovers of c and s can further be
explored by studying the gap in the spectrum at the Fermi
level. The energy gap �HFA at the Fermi level of a system
containing n electrons can be estimated from

�HFA = En+1 − En,

where, En is the ground-state energy of �3� for a system of n
particles. In Fig. 2 we plot the energy gap �HFA as a function
of UB / t for different fixed values of UA / t at half filling. Dips
in the curves of �HFA match with the corresponding values of
UB / t that were identified as points of phase transitions in Fig.
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FIG. 1. Plot of the order parameters c and s as functions of UB / t
for �a� UA=0.4, �b� UA=1.2, and �c� UA=2.5 �scale of energy is
chosen by setting t=1.0� for N=100. The dotted line corresponds to
the charge-order parameter c while the solid line shows the spin-
order parameter s as calculated from HFA.
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1. It is to be noted here that for large values of UA / t the
energy gap sharply increases after the CDW-SDW transition
has occurred �Fig. 2�. In this regime the slow increase of the
charge-order parameter does not modify this behavior.

Identification of the points of phase transitions by the
methods mentioned above enables us to draw the phase dia-
gram of the model �1� on the UA / t-UB / t plane within the
HFA. In Fig. 3 we plot the phase diagrams for different N
values to note the quick convergence of the present mean
field results with system size. For small values of UA and UB
the antiferromagnetic phase actually occurs along the line of
“homogeneity” �UA=UB�. For higher values of UA and UB

we obtain a centrally located broad SDW region together
with two charge-ordered phases located near the axes. The
phase diagram turns out to be perfectly symmetric about the
line of homogeneity along which the system is already
known to be antiferromagnetic from exact calculations.11 In
the limit UB�UA �UA�UB� the CDW-SDW transition line
above �below� the line of homogeneity bends towards the
UB / t �UA / t� axis.

IV. THE RENORMALIZATION GROUP CALCULATIONS

Next we apply a real space renormalization group �RG�
technique12 to the same model keeping in view the success of
this technique to similar one-dimensional �1D� systems of
correlated electrons10,13,14 in the recent past. It is to be noted
here that in order to achieve a closed parameter space under
the present scheme of RG iteration, we must generalize the
model �1� as follows:

H = �A �
i�A

ni + �B�
i�B

ni + t�
i,�

�ci,�
† ci+1,� + H.c.�

+ UA �
i�A

ni,↑ni,↓ + UB�
i�B

ni,↑ni,↓, �5�

where, �A ��B� refers to the site energy of a site belonging to
the A �B� sublattice. We start with �A=�B=0 which makes
�5� equivalent to �1�. However, in the course of the RG it-
eration, nonzero values of �A and �B may appear.

When implementing the RG transformation the whole
chain is now divided into cells containing three sites each.
Since our system is a bipartite lattice with two types of sites
A and B, there will appear two types of cells ABA and BAB.
At the renormalized length scale, we identify the ABA cells
as the new �renormalized� A-type sites and the BAB cells as
the new B-type sites. There are four different on-site states
for each site 	0�, 	��, 		�, 	� 	�. We diagonalize the cell
Hamiltonian �for both types of cells�, and among the eigen-
states of the cell Hamiltonian we retain only four low-lying
states at each iteration, for construction of the RG recursion
relations. We are interested in the half-filled ground state; so
we retain the lowest energy states in the subspaces 
n=2, S
=Sz=0�, 
n=3, S= 1

2 , Sz= ± 1
2 �, and 
n=4, S=Sz=0� of each

type of cells. Here n, S, and Sz denote the total number of
electrons, the total spin, and the z component of the total
spin, respectively. These four states in a cell can now be
identified as the renormalized on-site states 	0��, 	+��, 	−��,
and 	+−��, respectively.

To find the renormalized hopping matrix element, the ma-
trix elements of c�

b�A� and c�
b�B� between renormalized on-

site states are calculated, where c�
b is the annihilation opera-

tor of the electron with spin � at the boundary site of the cell
and A or B in the parentheses denote the type of the cell. Let
for an ABA-type cell

�0�	c↑
b�A�	+�� = 
1�A� ,

�−�	c↑
b�A�	 + −�� = 
2�A� , �6�

and for a BAB-type cell

�0�	c↑
b�B�	+�� = 
1�B� ,

�−�	c↑
b�B�	 + −�� = 
2�B� . �7�

Our system possesses spin-reversal symmetry, so the matrix
elements for c↓

b’s will be the same as that of c↑
b’s �except for

a fermionic sign change in the value of 
2�. But due to the
lack of particle-hole symmetry, 
1�A��
2�A� and 
1�B�
�
2�B�. At this stage we introduce an approximation10,13,15

by defining
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H
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0.1

FIG. 2. Plot of the energy gap �HFA, as found from HFA, as a
function of UB / t for N=300. We have used the dotted line for UA

=0.4, the solid line for UA=1.2, and the dashed line for UA=2.5
�scale of energy is chosen by setting t=1.0�. Note that the zeroes in
the gap match with the transition points identified from Fig. 1.
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FIG. 3. The HFA phase diagram of the AHM for different sys-
tem sizes �the dashed line for N=100, and the solid line for N
=200� in the UA / t-UB / t plane. The plot is symmetrical about the
“line of homogeneity” UA=UB which is shown by the dotted line.
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�A� = �
1�A�
2�A� ,


�B� = �
1�B�
2�B� , �8�

which leads to

c�
b��� = 
���c����� , �9�

where �=A ,B and �= ↑ ,↓. So the effective renormalized
hopping becomes

t� = 
�A�
�B�t . �10�

The intracell Hamiltonian, restricted to the subspace of
the four states 	0��, 	+��, 	−��, and 	+−��, can now be written
in terms of the new cell-fermion operators12 as

H� = E0� + �E+� − E0���n↑� + n↓�� + �E+−� + E0� − 2E+��n↑�n↓�,

�11�

where E+−�, E+�, and E0� are the lowest energies of the sub-
spaces corresponding to four, three, and two particles, re-
spectively. From this we can easily identify the renormalized
on-site quantities

U�� = E+−���� + E0���� − 2E+���� �12�

and

��� = E+���� − E0���� , �13�

where �=A ,B.
The ground-state energy per site is computed from the

sum

E0 =
1

2�
n=1

� �E0�
�n��A� + E0�

�n��B��

3n , �14�

where n denotes nth stage of iteration. We also calculate the
local moment L0 defined by

L0 = 3
4 �n↑ − n↓�2.

In absence of particle-hole symmetry this leads to a recursion
relation of the form10

L0 = a + bL0� + cP�, �15�

where, P= �n↑+n↓��n↑+n↓−1� obeys a similar recursion re-
lation given by

P = d + eL0� + fP�, �16�

with a, b, c, d, e, and f obtained from the matrix elements of
L0 and P between the truncated basis of the cell Hamiltonian.
The operators L0 and P are considered for the central site of
the cell to minimize the boundary effects.10,12 However, in
implementing the recursion relation it is to be noted that a
recursion for L0 at a B-type site �being at the middle of an
ABA cell� will involve L0� and P� pertaining to a renormal-
ized A-type site, because under the RG transformation the
ABA cell→a renormalized A site. Similar consideration
arises for P as well. L0 found for two different types of sites
need not be equal to each other, in general.

To see the nature of the short-range spin correlation we
further compute the nearest-neighbor �NN� spin-correlation

function �S1zS2z�, and the next-nearest-neighbor �NNN� spin-
correlation function �S1zS3z� in each type of cell, where Siz

=ni,↑−ni,↓. Recursion relations are very much similar to that
for L0.

V. RESULTS OF RENORMALIZATION GROUP
CALCULATIONS

We construct the phase diagram primarily by studying the
RG flow pattern. We always start our iteration with �A=�B
=0 and UA / t, UB / t0. A transition point can be easily iden-
tified by looking into the RG flow diagram in the effective
parameter space 
UB / t, 	��A−�B� / t	 at a given value of UA / t.
For each value of UA / t, there exists a point on the UB / t axis
�with 0�UB / t�UA / t� which behaves like a “point of repul-
sion” between the flow lines �Fig. 4�. Starting from any point
on its left-hand side the RG flow tends to go to the fixed
point 
0,��, indicating a charge-ordered phase, while any
point on its right flows to 
� ,0� indicating a spin-density
wave. A plot of these transition points on the UA / t−UB / t
plane shows the phase boundaries, which can also be viewed
as “lines of repulsion” of the flow diagram projected on the
UA / t−UB / t plane �Fig. 5�. At this point it is interesting to
find out the energy gap in the spectrum, �RG, from the
present RG calculation. For the present case we find that the
Hamiltonian always flows under the RG iterations to fixed
points corresponding to the “atomic limit” �t→0� of �5� with
parameters �A

���, �B
���, and UA

���=UB
���=U���, where the super-

script ��� refers to the converged values of the correspond-
ing parameters in �5�. Therefore, the gap can be calculated
from �RG= 	�	�A

���−�B
���	−U����	. We find that at the transition

points the energy gap in the spectrum vanishes. In Fig. 6 we
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FIG. 4. RG flow diagram in an effective parameter space UB / t
− 	��A−�B� / t	 for �a� UA / t=1.0, and �b� UA / t=5.0. Point of repul-
sion of flow lines on the UB / t axis identifies a transition point
between two types of phases.
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plot the energy gap �RG as a function of UB / t for different
values of UA / t. It is interesting to note that the zeroes of �RG
occur at values of UA and UB which are very close to the
corresponding values obtained at zeroes of �HFA. Therefore,
the phase diagram obtained in the RG calculation agrees
fairly well with that obtained in the HFA calculation �Fig. 7�.
Departures are appreciable only at the strong coupling limit;
it can be easily understood because in this limit the error due
to the truncation of basis becomes most serious in the present
RG scheme for a model having two types of cells.10 The
energy scales used for truncation of basis in the two types of
cells now become appreciably different; the RG result, there-
fore, may not be highly reliable in this sector. However, the
agreement of the RG and the HFA results from the weak to
the intermediate coupling regime really indicates that these
results are very much reliable.

In Fig. 8 we plot the local moments at two types of sites
as functions of UB / t for different values of UA / t. It turns out
that L0 is always higher at sites with larger values of Cou-
lomb correlation. This is in agreement with a previous obser-
vation in Ref. 4. L0 at A-type site equals that at B-type site

only at the point of homogeneity, i.e., at UA=UB. It is rather
interesting to note that the values of L0 is slightly larger than
3
8 even in the parameter space where, according to the RG
flow pattern �and also from the HFA�, the system develops a
CDW instability. This shows that this correlation-driven
CDW phase is dominated by short length-scale fluctuations
that are suppressed in a CDW phase generated by a periodic
modulation in the site potentials alone.10

We also calculate the NN and NNN spin-spin correlation
functions with reference to ABA- and BAB-type cells. Plotted
as functions of UB / t these �Fig. 9� reveal some interesting
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FIG. 5. RG flow diagram as projected on the UA / t-UB / t plane
together with the phase boundaries �dashed lines� which seem to be
the “lines of repulsion” of the flow lines. The “line of homogeneity”
is shown by the dotted line.
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FIG. 6. Plot of the energy gap �RG, as found from the RG
calculation, against UB / t. The dotted, solid, and the dashed lines
correspond to UA=0.4, 1.2, and 2.5, respectively �scale of energy is
chosen by setting t=1.0�.
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FIG. 7. Phase diagram obtained from the RG �solid line� super-
imposed on the HFA phase diagram �dashed line� in the UA / t-UB / t
plane. The “line of homogeneity” is shown by the dotted line.

0 2 4 6 8 10
UB �t

L0

�c�

UA�2.5

0 2 4 6 8 10

L0

�b�

UA�1.2

0 2 4 6 8 10

L0

�a�

UA�

0.44

0.42

0.40

0.38

0.46

0.42

0.38

0.49

0.42

0.35

0.50

0.56

0.4

FIG. 8. Plot of the local moments L0 as functions of UB / t for �a�
UA=0.4, �b� UA=1.2, and �c� UA=2.5 �scale of energy is chosen by
setting t=1.0�. The solid line shows the data for the ABA block, and
the dashed line shows the data for the BAB block. The curves cross
over each other at the “point of homogeneity.”
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points. The negative value of �S1zS2z� indicates a nearest-
neighbor antiferromagnetic alignment, which is increasing
from the CDW to the SDW regime, as one should expect on
physical grounds. That this correlation is not zero even
within the CDW phase is really a reflection of the short-
range fluctuations that we have just mentioned. However, the
NN correlation has slightly different values in ABA and BAB
cells. This difference, which is much more pronounced at
higher values of 	UA−UB	, is possibly related to the finite
size effect of the RG. This effect is suppressed at weak cou-
pling and near the “homogeneous” point in the SDW region.
On the other hand, the NNN correlation has opposite signs
for the ABA- and BAB-type cells in a region corresponding
to the charge-density instability. This indicates a frustration
that suppresses the large distance antiferromagnetic correla-
tion. This frustration persists even within the SDW phase as
it is evident from the widely different values of the NNN
correlation in ABA- and BAB-type cells. Such an effect has
already been anticipated in a previous work.4 It is to be noted
here that this effect gradually reduces as UB→UA. In this
respect the “SDW phase” of the half-filled AHM is behaving
in a different way than the SDW instability found in a half-
filled Hubbard model �the “homogeneous limit” of the
present model �1��.

VI. STUDY OF MAGNETOCONDUCTANCE

Now we study the nature of the ground state of the super-
lattice structure in presence of a magnetic field. The mag-
netic field penetrating the ring will interact with the moments
of the electrons. There will be an additive Zeeman term of
the form ��H� in the Hamiltonian �1�, where �� is the mo-
ment of the spin � and H� is the penetrating magnetic field.
The Hamiltonian now becomes

H = H��
i,�

��ni,� + t�
i,�

�ci,�
† ci+1,� + H.c.� + UA �

i�A
ni,↑ni,↓

+ UB�
i�B

ni,↑ni,↓. �17�

We follow the same HFA to decouple the Hamiltonian. Since
we have found regions of the parameter space where the
HFA results and the RG results match very well, we can rely
on the HFA results in these regions. The Hamiltonian corre-
sponding to the up- �down-� spin electrons will generate the
up- �down-� spin band. These two bands are not degenerate
because the spin-reversal symmetry is now broken. There-
fore, at half filling, the number of up- and down-spin elec-
trons will be different and a net moment will be generated.

For nonzero values of UA��0� and UB=0, the system is
charge ordered at half filling in absence of a magnetic field.
This is an insulating phase with a gap between the upper and
lower bands; at half filling the lower bands for both spin
species are totally filled. When a small magnetic field is
turned on, the up- and down-spin bands shift in the opposite
directions in energy scale. At a sufficiently large value of the
magnetic field the upper band of the up-spin electrons tend to
get occupied at the cost of depopulating the lower band of
the down-spin electrons. Thus the ground state contains un-
equal number of up and down spins and the system, now
having two partially filled bands, becomes conducting. If we
go on increasing the magnetic field beyond a certain value,
the said up-spin band will be completely filled while the
down-spin band will be completely empty. The system is
now spin polarized, leading again to an insulating phase.
This can be easily checked by calculating the Drude weight16

which measures the dc conductivity of the chain. Similar
analysis can be made for UB�0 as well. Of course, in this
case there arises a possibility of transition to a conducting
phase from an SDW under the application of the field H�. We
have calculated the Drude weight both for UB=0 and UB
=2. To calculate the Drude weight, a vanishingly small mag-
netic flux � �in units of flux quantum �0=hc /e� is intro-
duced. The ring encloses this flux, but the flux does not pen-
etrate the ring. Now the hopping term is modified by a phase
factor. The Hamiltonian becomes

H = H��
i,�

��ni,� + t�
i,�

�ci,�
† ci+1,�e2�i� + H.c.� + UA �

i�A
ni,↑ni,↓

+ UB�
i�B

ni,↑ni,↓, �18�

where �=� /N, N being the number of sites in the ring. The
Drude weight is calculated from the formula10,17

D =
N

4�2 �2E���
��2 �

�=0
, �19�

where E��� is the ground-state energy of �18� calculated
within the HFA.

We have plotted the Drude weight D against the penetrat-
ing magnetic field H� �Fig. 10� with N=300 for fixed set of
values of UA and UB. The curves clearly show the transition
between conducting and insulating phases. For lower and
higher values of H� the Drude weight is zero, i.e., the system
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FIG. 9. Plot of the spin-spin correlation functions as functions of
UB / t�UA / t=2.5� for �a� NN correlation and �b� NNN correlation.
The solid line shows the data for the ABA block, and the dashed line
shows the data for the BAB block.
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is insulating. But for moderate values of H� �depending on
the value of on-site Coulomb repulsion energy�, the Drude
weight is quite large, implying a conducting phase. For
higher values of UA the conducting region becomes nar-
rower. For different combinations of UA and UB values, we
have plotted �Fig. 11� the Drude weight D against system
size N. For the values of the penetrating magnetic field H�,
for which the upper band of the up-spins starts to depopulate
and the lower down-spin band gets partially populated, the
system goes to a conducting phase. In fact, the Drude weight
remains unaltered as we increase the system size. For H�
=0, the present system is found to be either in a CDW or in
an SDW phase �Fig. 1� which is insulating. Therefore, the
conductivity of such a system of macroscopic size must be
vanishing. Thus in this region, the Drude weight falls sharply
with increasing system size. Similar things happen for small
values of H� for which the system is yet to pass on to the
conducting phase. To identify the nature of the insulating
phases directly, we study the spin- and charge-density pa-
rameters, s and c, respectively, together with the magnetiza-
tion

m = 1
2 �nB,↑ − nB,↓ + nA,↑ − nA,↓� .

Figure 12 shows the plots of c, s, and m as functions of
H� for different values of UA and UB. For UA�UB we find
that the increase in H� drives the system from a charge-
ordered phase �large c� to a phase where c ,s, and m are
nearly comparable; this indicates the existence of a conduct-
ing state due to the absence of any kind of long-range order-
ing. We have already noted in Fig. 10 that in this region D is
nonzero which is consistent with the above observation. Fur-
ther increase in H� would completely depopulate the down-

spin bands and consequently the up-spin bands would be
filled up. This induces a sharp rise in m �together with a
vanishing D� indicating a transition into an insulating spin-
polarized phase. For UB�UA��t�, however, the initial tran-
sition is from a spin-ordered phase to a metallic one. Thus
we can construct the phase diagram �Fig. 13� of the AHM in
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FIG. 10. Plot of the Drude weight D vs the field H� for �a�
UB=0. and �b� UB=2.0. The dotted, dashed, and the solid lines
correspond to UA=1.0, 2.0, and 4.0, respectively, in �a�, and to
UA=3.0, 2.0, and 0.9, respectively, in �b� �scale of energy is chosen
by setting t=1.0�.
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FIG. 11. Plot of the Drude weight D vs system size N for �a�
UA=1.0 and UB=0, and �b� UA=UB=2.0 �scale of energy is chosen
by setting t=1.0�. Cases with H�=0 �solid line� and H��Hc�
�dashed line� are shown where Hc� is the value of H� for which the
system enters a conducting phase from an insulating one.
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field H�. The solid line shows magnetization, the dotted line shows
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the presence of a Zeeman field which shows the possibility
of having an enhanced magnetoconductance for moderate
values of the repulsive interactions. In case of very large
Coulomb interaction, however, no conducting phase appears,
and a direct transition from an insulating SDW phase to a
spin-polarized phase is observed.

VII. CONCLUSION

Summarizing, we have investigated the one-dimensional
half-filled alternating Hubbard superlattice structure at zero
temperature using the Hartree-Fock approximation and a real
space renormalization group technique. Although both meth-
ods are approximate ones, they are complementary to each

other. The agreement between the phase diagrams obtained
from these two different methods shows that the results are
rather reliable. We obtained two types of phases, dominated
by charge- and spin-density-wave instabilities, respectively,
depending on the UA and UB values. The UA-UB phase dia-
gram shows two transition lines, indicating a centrally lo-
cated antiferromagnetic region and two charge-density-wave
regions near the axes. The system is insulating. It may be
noted at this point that the possibility of such transitions was
not explored in the previous works on this model; most of
these works concentrated only on a limited region of the
parameter space, e.g., UA�0 and UB=0, and also there were
some severe restrictions on the system size. Apart from the
phase transitions, it is interesting to note that there appears a
spatial modulation of the local moments dictated by the in-
homogeneity of the correlation parameters. The RG results
also indicate that the ordering is not full grown as compared
to the homogeneous limit because of underlying frustration
of spin-spin correlation. These results are in agreement with
a previous finding.4 Also we have studied the ground-state
properties, including the Drude weight, of the superlattice in
the presence of a magnetic field �H��. The UA-H� �for fixed
UB� phase diagram shows that the system becomes conduct-
ing for an intermediate range of values of H�. In the phase
diagram, we obtained insulating phases for lower and higher
values of H�. The width of the conducting region depends on
the values of on-site Coulomb repulsion energies of the su-
perlattice structure. It seems interesting to explore this model
further, especially at finite temperatures and for cases away
from half filling. Also the effect of varying “spacer
thickness”4–6 for this regime of correlation parameters may
yield some interesting observations.
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