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We analyze the resonant inelastic x-ray scattering �RIXS� spectra at the Ni K edge in an antiferromagnetic
insulator NiO by applying the theory developed by the present authors. It is based on the Keldysh-Green
function formalism, and treats the core-hole potential in the intermediate state within the Born approximation.
We calculate the single-particle energy bands within the Hartree-Fock approximation on the basis of the
multiorbital tight-binding model. Using these energy bands together with the 4p density of states from an ab
initio band-structure calculation, we calculate the RIXS intensities as a function of energy loss. By taking
account of electron correlation within the random-phase approximation �RPA�, we obtain quantitative agree-
ment with the experimental RIXS spectra, which consist of two prominent peaks around 5 and 8 eV, and the
former shows considerable dispersion, while the latter shows no dispersion. We interpret the peaks as a result
of a band-to-band transition augmented by the RPA correlation.
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I. INTRODUCTION

Excitations in solids are fundamental to describe physical
properties, such as the response to external perturbations and
temperature dependence. They may be characterized into two
types, spin and charge excitations. For the former, the inelas-
tic neutron scattering is quite powerful to investigate the
energy-momentum relations. By contrast, charge excitations
have been investigated by measuring the optical conductiv-
ity, but the momentum transfer is limited to nearly zero.1 The
electron energy loss spectroscopy can detect the momentum
dependence of charge excitations, but it suffers from strong
multiple scattering effects.2 Recently, taking advantage of
strong synchrotron sources, the resonant inelastic x-ray scat-
tering �RIXS� has become a powerful tool to probe charge
excitations in solids.3–9 In transition-metal compounds,
K-edge resonances are widely used to observe momentum
dependence, because corresponding x rays have wavelengths
of the same order of lattice spacing. The process is described
as a second-order optical process that a 1s core electron is
prompted to an empty 4p state by absorbing photon, then
charge excitations are created in order to screen the core-hole
potential, and finally the photoexcited 4p electron is recom-
bined with the core hole by emitting photon. In the end,
charge excitations are left with energy and momentum trans-
ferred from photon. In cuprates, the RIXS spectra are found
to have clear momentum dependence.5,6,9

For NiO, a Ni K-edge RIXS experiment has been carried
out by Kao et al., in which the spectral peaks were not well
resolved, and had no clear momentum dependence, probably
due to the experimental resolution.3 Recently, a K-edge
RIXS experiment has been carried out at Taiwan beamline in
Spring-8.10 They have observed the spectra as a function of
energy loss by tuning the incident photon energy at 8351 eV,
which corresponds to the Ni K-edge absorption peak. The
observed spectra consist of two prominent peaks at 5 and
8 eV, and the 5 eV peak considerably changes while the
8 eV peak does not change with changing momenta. In ad-

dition, extra tiny peaks are found below 4 eV, which are
called d-d excitation. In this paper, we analyze the RIXS
spectra for NiO by developing the formalism of Nomura and
Igarashi.11,12 This theory is based on the many-body formal-
ism of Keldysh, and is regarded as an extension of the reso-
nant Raman theory developed by Nozières and Abrahams.13

The core-hole potential is treated within the Born approxi-
mation. Higher-order effects beyond the Born approximation
have been evaluated on the K-edge RIXS in La2CuO4.14 Al-
though the core-hole potential is rather strong, the higher-
order effects are found to cause only minor change in the
spectral shape.14 In this situation, the RIXS spectra can be
connected to the 3d-density-density correlation function in
the equilibrium state. We develop the formalism by clarify-
ing the equivalence of the Keldysh formalism and the con-
ventional Green’s function formalism and by deriving the
RIXS formula for possible bound states corresponding to the
d-d excitations. Advantages of the present formalism are, in
contrast to the numerical diagonalization method, as follows:
it is applicable to three-dimensional models consisting of
many orbitals, and it provides clear physical interpretation.

We construct a detailed multiorbital tight-binding model
including all 3d orbitals, as well as the full intra-atomic Cou-
lomb interaction between 3d orbitals. Applying the Hartree-
Fock approximation �HFA� to the model, we obtain the an-
tiferromagnetic �AF� solution with an appropriate description
of the single-particle spectra having a large energy gap. Un-
occupied 3d states on a Ni site consist of minority spin states
on the site and have almost the eg character. Note that the
band calculation with the local-density approximation �LDA�
fails to reproduce the energy gap of 4 eV. The RIXS spectra
are interpreted as a result of a band-to-band transition to
screen the 1s core hole. Therefore, the transition occurs
through the amplitude of the eg character. Treating electron
correlations by the random-phase approximation �RPA�, we
find that spectral shape as a function of energy loss is
strongly modified in the continuum spectra. In order to ob-
tain quantitative agreement with the experiment, we need to
take account of the RPA correlation. Note that the same
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analysis of the RIXS in cuprates has been successful to re-
produce the experimental spectra. The success of the analysis
for NiO would add another evidence of the usefulness of the
present scheme of analyzing the RIXS spectra.

The present formalism describes the d-d excitation by the
bound state in the density-density correlation function. We
obtain bound states but with extremely small intensities in
comparison with the experiment.

The present paper is organized as follows. In Sec. II, we
study the electronic structure on the basis of the band calcu-
lation, and then introduce a multiorbital tight-binding model.
We calculate the single-particle Green’s function within the
HFA in the AF phase of NiO. In Sec. III, we summarize the
formula for the RIXS spectra, including the discussion of the
bound states. In Sec. IV, we calculate the RIXS spectra by
taking account of the RPA correction in comparison with the
experiment. Section V is devoted to the concluding remarks.

II. ELECTRONIC STRUCTURE OF NICKEL OXIDE

The crystal structure of NiO is NaCl type with lattice
constant a=4.177 Å. Ni atoms form a fcc lattice, as shown in
Fig. 1. Type-II AF order develops below TN=523 K. The
order parameter is characterized by a wave vector directing
to one of four-body diagonals in the fcc lattice.15

A. Ab initio calculation

We calculate the electronic band structure using the
muffin-tin Korringa-Kohn-Rostoker �KKR� method within
the LDA. Although we obtain a stable AF self-consistent
solution, we have the energy gap 0.2 eV, which is much
smaller than the experimental one, �4.3 eV.16 Figure 2
shows the calculated density of states �DOS� projected onto
Ni 3d and O 2p states. The difference between the calcula-
tion and the experiment in the energy gap may be improved
by using the so-called LDA+U method, which is a hybrid of

the LDA and the HFA for the Coulomb interaction in the
Ni 3d orbitals. Since we need to calculate the two-particle
correlation function within the RPA, we introduce a multio-
rbital tight-binding model in place of the ab initio calcula-
tion, and apply the RPA in the following.

In contrast to the failure for the Ni 3d states, we expect
that the Ni 4p states are well described within the LDA,
since the 4p band has a wide width �20 eV and thereby are
weakly correlated. We show the 4p DOS convoluted with the
Lorentzian function with the full width of half maximum
�FWHM� 2 eV in Fig. 3. The FWHM corresponds to the
core-hole lifetime width. The calculated curve agrees fairly
well with the experimental one.

B. Multiorbital tight-binding model

We introduce a multiorbital tight-binding model defined
by

H = H0 + HI, �1�

H0 = �
im�

Ednim�
d + �

j��

Epnj��
p + �

�i,j�
�
��m

�tim,j�
dp dim�

† pj�� + H.c.�

+ �
�j,j��

�
����

�tj�,j���
pp pj��

† pj���� + H.c.�

+ �
�i,i��

�
�mm�

�tim,i�m�
dd dim�

† di�m�� + H.c.� , �2�

FIG. 1. Schematic view of a NiO crystal with type-II AF order.
Only Ni atoms are shown. Wave vector QAF characterizes the AF
modulation. The direction of magnetic moment on the Ni site de-
noted by filled circle is antiparallel to that on the site denoted by
open circle.

FIG. 2. Density of states projected onto Ni 3d and O 2p states
calculated within the LDA. The energy zero is at the top of the
valence band.

FIG. 3. Density of states projected onto Ni 4p states calculated
within the LDA. The experimental curve is taken from Fig. 4 in
Ref. 17
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HI =
1

2�
i

�
�1�2�3�4

g��1�2;�3�4�di�1

† di�2

† di�4
di�3

. �3�

The part H0 represents the kinetic energy, where dim� and
pj�� denote the annihilation operators of an electron with
spin � in the 3d orbit m of Ni site i and of an electron with
spin � in the 2p orbit � of the O site j, respectively. Number
operators nim�

d and nj��
p are defined by nim�

d =dim�
† dim�, nj��

p

= pj��
† pj��. The transfer integrals, tim,j�

dp , tj�,j���
pp tim,i�m�

dd , are
evaluated from the Slater-Koster two-center integrals, �pd��,
�pd��, �pp��, �pp��, �dd��, �dd��, �dd��.18 The d-level po-
sition relative to the p levels is given by the charge-transfer
energy � defined by �=Ed−Ep+8U for the d8

configuration.19 Here, U is the multiplet-averaged d-d Cou-
lomb interaction given by U=F0− �2/63�F2− �2/63�F4,
where F0, F2, and F4 are Slater integrals for 3d orbitals. The
part HI represents the intra-atomic Coulomb interaction on
transition metal sites. The Coulomb interaction on O sites is
neglected. The interaction matrix element g��1�2 ;�3�4� is
written in terms of F0, F2, and F4 �� stands for �m ,���.

We determine most parameter values from a cluster-
model analysis of photoemission spectra.20 The values for
�dd��, �dd��, and �dd�� cannot be determined from the
cluster-model analysis, and, therefore, we set them close to
Mattheiss’ LDA estimates.21 Among Slater integrals, F2 and
F4 are known to be slightly screened by solid-state effects, so
that we use the values multiplying 0.8 to atomic values. On
the other hand, F0 is known to be considerably screened, so
that we regard the value as an adjustable parameter to get a
reasonable band gap. Table I lists the parameter values used
in the present calculation.

C. Hartree-Fock approximation

For the AF order shown in Fig. 1, a unit cell contains two
Ni atoms and two O atoms. We allocate variable � with �
=1,2 for Ni and �=3,4 for O to distinguish atoms in the unit
cell. Labeling a unit cell by n, we introduce annihilation
operators A�m��n�, which is dim��n� for �=1,2 and pjm��n�
for �=3,4. The Fourier transform is defined in the magnetic
Brillouin zone �BZ�,

Ak�m� =	 2

N
�

n

A�m��n�eik·rn, �4�

where rn represents a position vector of the unit cell, and n
runs over N /2 unit cells. Note that a single phase factor k ·rn
is applied to all the states in each unit cell. This definition of
the Fourier transform is slightly different from our previous
papers,12,14 in which each atom has a phase factor k ·ri with
ri being the position vector of each atom. With these opera-
tors, the single-particle Green’s function is introduced in a
matrix form,

�Ĝ�k,	��

� = − i
 �T�Ak
�t�Ak
�
† �0���ei	tdt , �5�

where T is the time ordering operator and 
 is the abbrevia-
tion of ��m��.

In the HFA, we disregard the fluctuation terms in HI and
approximate HI by

HI
HF =

1

2�
i

�
�1�2�3�4

��0���1�2;�3�4��di�2

† di�3
�di�1

† di�4
, �6�

where ��0� is the antisymmetric vertex function defined by

��0���1�2;�3�4� = g��1�2;�3�4� − g��1�2;�4�3� , �7�

with � being the abbreviation of �m�� and i running over all
Ni sites. The �X� denotes the ground-state average of the
operator X. Considering the equation of motion with the
Hamiltonian H0+HI

HF, we obtain

�	Î − Ĵ�k��Ĝ�k,	� = Î , �8�

where Î is the unit matrix, and Ĵ�k� is defined through the
relation

�H0 + HI
HF,Ak
� = �


�

�Ĵ�k��

�Ak
�. �9�

Introducing a unitary matrix Û�k� to diagonalize Ĵ�k�, that

is, �Û�k�−1Ĵ�k�Û�k�� j j�=Ej�k�� j j�, we express the Green’s
function as

Ĝ�k,	� = Û�k�D̂�k,	�Û�k�−1, �10�

with

�D̂�k,	�� j j� =
1

	 − Ej�k� + i� sign�Ej�k� − 
0�
� j j�, �11�

where 
0 is the chemical potential. Here j and j� denote

energy eigenstates. The Ĵ�k� contains the expectation values
of the 3d electron density on the ground state. Noting that Ni
atoms in a unit cell correspond to �=1,2, the self-consistent
equation is given by

TABLE I. Parameter values for the tight-binding model of NiO
in units of eV.

SK param. Slater integral

Ni dd� −0.227 F0 5.00

dd� −0.103 F2 10.57

dd� −0.010 F4 7.56

Ni-O pd� −1.400 Charge-transfer energy

pd� 0.630 � 4.5

O pp� 0.600

pp� −0.150
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�A�m�
† A�m��� =

2

N
�
k

�− i� 
 �Ĝ�k,	���m��,�m�

�ei	0+ d	

2�
for � = 1,2. �12�

Only the diagonal parts are nonvanishing, if 3d orbitals are
specified by m=xy, yz, zx, x2−y2, 3z2−r2 with x, y, z refer-
ring to the crystal axes, that is, �djm�

† djm����0 only for m
=m�.

A stable self-consistent solution exists for the AF order
shown in Fig. 1. Figure 4 shows the energy band as a func-
tion of momentum along symmetry lines. The F0 value of
5 eV leads to the energy gap �4 eV, which is consistent
with the experiment.

Figures 5 and 6 show the DOS projected onto Ni 3d and
O 2p states, and the 3d DOS divided into the eg and t2g
characters, respectively. The states around the top of the va-
lence band have relatively large weights of O 2p state, im-
plying that NiO is an insulator of charge-transfer type. Re-
garding the majority spin states, the 3d states are almost fully
occupied; the eg character is concentrated around the top and
bottom of the valence band, while the t2g character is around
the middle of the valence band. Regarding the minority spin
states, the unoccupied states have almost the eg character.
The t2g character dominates around the top of the valence
band, while the eg character is widely distributed with rela-
tive small weight.

III. FORMULA FOR RIXS SPECTRA

A. General expression

We summarize a general expression for RIXS spectra fol-
lowing the papers of Nomura and Igarashi.12 See Ref. 14 for
the detailed derivation.

For the interaction between photon and matter, we con-
sider the dipole transition at the K edge, where the 1s core
electron is excited to the 4p band with absorbing photon and
the reverse process takes place. This process may be de-
scribed by

Hx = w�
q


1
	2	q

�
i��

e�
�
�pi���† si�cq
eiq·ri + H.c., �13�

where w represents the matrix element of the 1s→4p dipole
transition. It is approximated as a constant, since the 1s state
is well localized. The e�

�
� represents the �th component ��
=x ,y ,z� of two kinds of polarization vectors �
=1,2� of
photon. Annihilation operators pi��� and si� are for states 4p�

and state 1s at Ni site i, respectively. The annihilation opera-
tor cq
 is for photon with momentum q and polarization 
.
In the momentum representation, the Hamiltonians for the
core electron and for the 4p electron are given by

H1s = �1s�
k�

sk�
† sk�, �14�

H4p = �
k��

�4p
� �k�pk���† pk��� . �15�

The photocreated 1s core hole induces charge excitations
through the attractive core-hole potential, which may be de-
scribed by

H1s-3d = V �
im���

dim�
† dim�si��

† si��, �16�

where i runs over Ni sites, and V may be 5–10 eV in NiO.
The above process is diagrammatically represented in Fig.

7 on the basis of the Keldysh-Green function scheme.22 The
upper half belongs to the outward time leg and the bottom
part to the backward time leg. The core-hole potential works
at time � in the outward time leg and at time �� in the back-
ward time leg. The Born approximation is utilized to the

FIG. 4. Energy band as a function of momentum along symme-
try lines within the HFA. The energy zero is at the top of the
valence band.

FIG. 5. Spin-resolved DOS projected onto Ni 3d states and onto
O 2p states. The energy zero is at the top of the valence band.

FIG. 6. Spin-resolved DOS divided into the t2g and eg charac-
ters. The energy zero is at the top of the valence band.
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core-hole potential. The shaded part, connecting the outward
and backward time legs, represents the Keldysh-type Green’s
function,

Y��,�
+− �q,�� − �� =
 Y��,�

+− �q,	�e−i	���−��d	

2�
�17�

=���q��m����
†�����q�m����� , �18�

where abbreviations �= ��m��, ��= ���m���� are used with
�=1,2, ��=1,2 in Eq. �17�, for emphasizing the variables
are for Ni atoms. The density operator for the 3d states is
defined by

�q�m� =	 2

N
�
k

Ak+q�m�
† Ak�m� with � = 1,2, �19�

where k runs over the magnetic first BZ. The momentum
conservation requires the relation q=qi−q f. In Eq. �17�, su-
perscripts � and � stand for the backward and outward time
legs, respectively.23 Confining our discussion to the zero
temperature, we take the average over the ground state.
Therefore, Y+− is nothing but a conventional correlation
function in the equilibrium state.

The solid lines represent the bare Green’s functions for
the 4p electron and for the core hole. In the outward time
leg, they are defined by G4p

�0��k , t�=−i�T�pk��t�pk�
†�0��� and

G1s
�0��k , t�=−i�T�sk�t�sk

†�0���. Then, the product of Green’s
functions G4p

�0��p ,−t�G1s
�0��p−qi , �t−���G1s

�0��p−q f ,�� on the
top half gives rise to a factor exp�i��4p

� �p�−�1s− i�1s−	i�t�,
where �1s is a lifetime broadening width of the 1s core hole.
A similar argument is applied on the backward time leg,
leading to a factor exp�−i��4p

� �p�−�1s+ i�1s−	i��t�−u���.
The Keldysh-Green function defined by Eq. �17� brings the
time-dependent factor ei	� to the outward time leg and e−i	��

to the backward time leg. Noting that the core-hole potential
works only in intervals �t ,0� and �t� ,u��, we integrate the
time factor combined to the above product of Green’s func-
tions with respect to � and t in the region of t���0, −�
� t�0. The result is

LB
��	i;	� � −

V

N



−�

0

dt�
p

exp�i��4p
� �p�

− �1s − i�1s − 	i�t�

t

0

d�ei	�

=
V

N

 �4p

� ���d�

�	i + �1s + i�1s − ���	i − 	 + �1s + i�1s − ��
,

�20�

where the sum over 4p states is replaced by the integration of
the 4p DOS projected onto the � �=x ,y ,z� symmetry, �4p

� ���.
A similar factor has been derived in third-order perturbation
theory by Abbamonte et al.24 The integration with respect to
�� and t� in the backward time leg gives the term complex
conjugate to Eq. �20�. The integration with respect to u�
gives the energy conservation factor, which guarantees that 	
in Eq. �20� is the energy loss, 	=	i−	 f. Finally, combining
these relations together, we obtain an expression of the RIXS
intensity for the incident photon with the momentum and
energy qi= �qi ,	i�, polarization e�
i�, and the scattered pho-
ton with the momentum and energy qf = �q f ,	 f�, polarization
e�
f�,

W�qi,
i;qf,
 f� =
�w�4

4	i	 f

N

2 �
���

Y���
+− �q�
�

�

e�
�
i�LB

��	i;	�e�
�
f�
2

,

�21�

where q=qi−qf.

B. Correlation function

We consider diagrams where one electron-hole pair re-
mains after the RIXS process, as shown in Fig. 8�a�. We
write Y��,�

+− �q� in the form,

Y��,�
+− �q� = �

�1�2�3�4

��1�2,��
* �q���1�2,�3�4

+−�0� �q���3�4,��q� , �22�

with

FIG. 7. Diagrams for the RIXS intensity within the Born ap-
proximation to the 1s core-hole potential. The solid lines with 4p
and 1s represent the bare Green’s functions for the 4p electron and
the 1s core electron. The dotted lines represent the core-hole poten-
tial V. The shaded part represents the Keldysh-type Green’s func-
tion, which connects the outward time leg on the top half and the
backward time leg on the bottom half.

FIG. 8. �a� Diagrams for Y+−�q�. Solid lines with double arrows
are not the time-ordered Green’s functions but the Keldysh-type
ones connecting the outward time leg with the backward time leg.
�b�Vertex function ��q� within the RPA. Solid lines with arrows are
the conventional time-ordered Green’s functions. The square repre-
sents the four-point vertex of the 3d Coulomb interaction effective
only at the same Ni sites. �c� Diagrams for the time-ordered YT�q�
within the RPA.
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��1�2,�3�4

+−�0� �q� = 2�
2

N�
k

�
j,j�

��	 − Ej��k + q� + Ej�k�…

��1 − nj��k + q��nj�k�U�1j��k + q�

�U�3j�
* �k + q�U�4j�k�U�2j

* �k� , �23�

where j and j� denote energy eigenstates. The � function in
�+−�0��q� indicates that the interband transition from the va-
lence band to the conduction band gives rise to the RIXS
intensity. Only the weight of 3d states in the bands contrib-
utes to the intensity. The vertex function is given by
��3�4,��q�=��3,�4

��4,� in the lowest order. Within the RPA, it is
calculated by collecting the ladder diagrams shown in Fig.
8�b�. We obtain

��1�2,��q� = �Î − �̂F̂−−�q���1�2,��
−1 , �24�

where Î represents a unit matrix. The component of the ma-

trix F̂−−�q� is given by the conventional time-ordered propa-
gator

�F̂−−�q���1�2,�3�4

= − i
2

N�
k

 dk0

2�
�Ĝ�k,k0���4�2

�Ĝ�k + q,k0 + 	���1�3

=
2

N
�
k

U�4j�k�U�2j
* �k�U�1j��k + q�U�3j�

* �k + q�

�� nj�k��1 − nj��k + q��

	 − Ej��k + q� + Ej�k� + i�

−
nj��k + q��1 − nj�k��

	 − Ej��k + q� + Ej�k� − i�
� . �25�

The component of the matrix �̂ is given by the four-point
vertex, which is nonzero only for �1, �2, �3, �4 belonging to
the same Ni site. Explicitly, it is given by

��̂��1�2,�3�4
= ��0���1�4;�2�3� , �26�

�1=��1, �2=��2, �3=��3, �4=��4 with �=1,2, and, other-
wise, it is zero.

As already pointed out, the Keldysh-type Green’s function
Y��,�

+− �q� is equivalent to the conventional correlation func-
tion. Therefore, it may be more convenient to analyze the
function with the help of the conventional time-ordered
Green’s function,

Y��,�
T �q� = − i
 �T���q��m����

†�t��q�m��0���ei	tdt , �27�

with T being the time-ordering operator. Considering the dia-
grams shown in Figs. 8�b� and 8�c�, it is expressed within the
RPA as

Y��,�
T �q� = �F̂−−�q��Î − �̂F̂−−�q��−1�����,��. �28�

This expression leads to Eq. �22� with the help of the
fluctuation-dissipation theorem,

�
���

Y���
+− �q� = − i�

���

�Y���
T* �q� − Y���

T �q�� for 	 � 0.

�29�

To show this fact, we first rewrite Eq. �25� as

F̂−−�q� = F̂1
−−�q� + iF̂2

−−�q� , �30�

where F̂1
−−�q� and F̂2

−−�q� are Hermitian matrices. Then, using
the Hermitian property, we transform Y���

T �q�* as

Y���
T �q�* = ��I − �F1

−−�q� − iF2
−−�q����−1

��F1
−−�q� − iF2

−−�q��

��I − ��F1
−−�q� + iF2

−−�q���

��I − ��F1
−−�q� + iF2

−−�q���−1���,����. �31�

Combining the similar expression for Y���
T �q�, we have

Y���
T* �q� − Y���

T �q� = ��I − �F1
−−�q� − iF2

−−�q����−1�− 2i��F̂2
−−�q��

��I − ��F1
−−�q� + iF2

−−�q���−1���,����. �32�

Since −2F2
−−�q� is equivalent to ��0��q� for 	�0, the RXS

intensity given by Eq. �33� through Eq. �29� is equivalent to
the one given by Eq. �22�.

Equation �28� may have poles for some frequencies below
the energy continuum of an electron-hole pair. These bound
states may be called as d-d excitations, and give rise to extra
RIXS peaks. To analyze the problem, we rewrite Eq. �28� as

Y��,�
T �q� = �F̂−−�q�−1 − �̂�����,��

−1 , �33�

where F̂−−�q�−1 becomes a Hermitian matrix when 	 is be-

low the energy continuum. Therefore, F̂−−�q�−1− �̂ can be
diagonalized by a unitary matrix. Let the diagonalized matrix
have a zero component at 	=	B�q� with the corresponding
eigenvector B�1�2

�q�. Then, Y���
T �q� can be expanded around

	�	B�q� as

Y���
T �q� =

C����q�

	 − 	B�q�
, �34�

with

C����q�

=
B�����q�B��

* �q�

�
�1�2�3�4

B�1�2

* �q�
�

�	
�F̂−−�q,	 = 	B�q��−1��1�2,�3�4

B�3�4
�q�

.

�35�

Substituting the right-hand side of Eq. �29� by this equation,
we obtain

�
���

Y���
+− �q� = 2��

���

C����q���	 − 	B�q�� . �36�

This relation is to be inserted into Eq. �21� for evaluating the
RIXS spectra.
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IV. CALCULATED RESULTS

We calculate the RIXS intensity from Eq. �21�. In the
experiment by Ishii et al.,10 the incident photon energy is set
to give the K-edge absorption peak, but the polarization of
photon is not specified. Corresponding to the experiment, we
use the 4p DOS obtained from the KKR band-structure cal-
culation in the calculation of LB

��	i ;	� �Eq. �20��, and tune
the incident photon energy to excite the 1s electron on the
peak of the 4p DOS. In the calculation of Y+−�q�, we replace
the � function by the Lorentzian function with the FWHM
=0.2 eV in order to take account of the instrumental resolu-
tion. Figure 9 shows the spectra, thus, calculated as a func-
tion of energy loss in comparison with the experiment, where
the momentum transfer is chosen along symmetry lines in
the BZ.

The experimental RIXS spectra below 	�9 eV are
roughly made up of two broad peaks, one of which is located
around 	=4–6 eV and another is around 	=8 eV. In the
HFA, we obtain peaks around 	=4–6 eV and 	=8 eV,
which correspond to the experimental ones. In addition, we
find an extra peak around the upper edge of the continuum
spectra, �10 eV, which is not confirmed by the experiment
�the observation is limited below 10 eV�. According to Eq.
�23�, the spectra are given by the excitation from the valence
band to the conduction band. Only the weights of the 3d
states contribute. In addition, as is clear from Eq. �16�, the
excited electron and hole by the core-hole potential have the

same 3d orbital and spin indices. As shown in Figs. 5 and 6,
the unoccupied states are concentrated in the minority spin
states with the eg character. Therefore, eg DOS around
0–2 eV below the top of the valence band in the minority
spin state may be responsible to the RIXS peak around 	
=4–6 eV, and the DOS around 3–4 eV below the top of the
valence band may be responsible to the peak around 	
=8 eV. This interpretation roughly explains the RIXS spectra
on the whole.

As regards the momentum dependence, the shape around
	=4–6 eV considerably changes while that around 8 eV
changes little with changing momenta from the � point to the

FIG. 10. RIXS intensity below the lower edge of the continuum
at � point in comparison with the experiment �Ref 10�. The calcu-
lated intensity is enlarged by multiplying 600 to make the spectra
visible.

FIG. 9. RIXS spectra as a function of energy loss 	=	i−	 f, in comparison with the experiment by Ishii et al. �Ref. 10� Momentum
transfer is along the symmetry lines: �a� �− 2�

a �0.25,0.25,0.25�−L, �b� �− 2�
a �0.3,0 ,0�−X, and �c� �− 2�

a �0.25,0.25,0�−K. The incident
photon energy is tuned to excite the 1s electron to the peak of the 4p DOS. The broken and solid lines are the results of the HFA and RPA,
respectively. The dotted lines represent the experimental data �Ref. 10�.
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zone boundary in the experiment. In order to explain such
behavior, we need to go beyond the HFA. We take account of
the RPA correction, which enhances the intersite correlation
of Ni atoms. We find that the intensities around 4–5 eV �ex-
cluding 5–6 eV� is strongly suppressed near the zone bound-
ary, and thereby the peak position looks moving with chang-
ing momenta. This behavior does not mean the dispersion of
some mode like a bound exciton but may be simply inter-
preted as changing weights with changing momenta in the
continuum spectra. This reminds us of the RIXS spectra in
La2CuO4, where the peak around 	=2 eV shows consider-
able momentum dependence;25 the peak is strongly sup-
pressed near the zone boundary. We have reproduced well
the spectral change by taking account of the RPA
correction.12 We also find that the RPA corrections are small
on the peak around 8 eV, which changes little with changing
momenta. These characteristics are the same along the three
symmetry lines. Taking into consideration that the adjustable
parameter is only the value of F0, we could say that the
spectral shapes show good agreement with the experiment.10

Note that the sharp peak around 	=10 eV is strongly sup-
pressed with deviating momenta from the � point. This in-
tensity is caused by the excitation due to the transition from
the occupied eg states around −6 eV to the unoccupied eg
states around 3 eV in the minority spin state and is enhanced
by the RPA correlation only around the � point.

Below the lower edge of the continuum spectra, we obtain
a bound state at 	=2 eV, as shown in Fig. 10. The peak
shows little momentum dependence, indicating that the
bound state is well localized at a single Ni atom. This may be
compared with the experimental peak at 1.7 eV, but the cal-
culated intensity is about 2 orders of magnitude smaller than
the experiment. At present, we do not know the real origin
for this discrepancy.

V. CONCLUDING REMARKS

We have analyzed the RIXS spectra in NiO by developing
the formalism of Nomura and Igarashi. This is based on the
Keldysh-Green function formalism and relates the RIXS
spectra to the density-density correlation function under the
Born approximation to the core-hole potential. The use of the
Born approximation had been justified for the RIXS in
La2CuO4 by evaluating the multiple scattering effects.14

Since NiO has a larger energy gap than La2CuO4, we expect
that the Born approximation is better justified in NiO. We
have introduced the tight-binding model including all the
Ni 3d and O 2p orbitals, as well as the full Coulomb inter-
action between 3d orbitals, and have calculated the single-
particle excitation within the HFA. The value of F0 is ad-
justed to give the experimental energy gap in the single-
particle excitation.

The electron correlation is expected to modify the single-
particle energy bands given by the HFA.26 According to the

three-body scattering theory by the present authors,27 one
effect is the reduction of the energy gap from the HFA value.
Since the value of F0 is adjusted to give the experimental
energy gap within the HFA, the present HFA is regarded as
partly taking into account the correlation effect by using the
effective value of F0. Another prominent effect is that a “sat-
ellite” peak is created around 9 eV below the top of the
valence band. The other is that the 3d states are pushed to
upper energy position as a countereffect of the satellite cre-
ation. These modifications are limited to the deep states
around the bottom of the valence band, mostly with the ma-
jority spin states. The RIXS spectra arise from an electron-
hole pair excitation mainly in the minority spin channel. For
the RIXS spectra with relatively low-energy loss values 	
�8 eV, valence electrons around the bottom of the valence
band have little contribution, and, therefore, the large modi-
fication of the single-particle excitation around the bottom of
the valence band by the electron correlation may have little
influence.

We have calculated the RIXS spectra using the single-
particle band, thus, evaluated together with the 4p DOS by
the LDA. The RIXS spectra arise from the band-to-band
transition to screen the 1s core hole. We have obtained sev-
eral peaks in the continuum spectra. Two peaks are found
prominent around 4–6 and 8 eV. We have interpreted the
origin of these peaks in terms of the eg DOS. It is found that
the RPA correction causes a suppression of the intensity
around 	=4–5 eV with momenta approaching to the zone
boundary, by enhancing the intersite correlations of Ni at-
oms. Note that the similar behavior of RIXS spectra was
found in La2CuO4 and that the same analysis has worked
well. For NiO, we have obtained quantitative agreement with
the experiment. We emphasize that the adjustable parameter
is only the value of F0 to give the experimental energy gap in
the single-particle excitation. The good agreement with the
experiment suggests that the present scheme is useful to ana-
lyze the RIXS spectra.

As regards the d-d excitation, we have obtained a bound
state below the lower edge of the continuum spectrum. Its
spectrum shows little momentum dependence, indicating that
it is well localized at a single Ni sites. The peak position has
been found close to the experimental one. However, the in-
tensity is about 2 orders of magnitude smaller than the ex-
perimental one. The presence of crystal distortion might en-
hance the intensity of d-d excitation. At any rate, the real
reason for this discrepancy is not known.
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