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We use the framework setup recently to compute nonperturbatively inelastic scattering from quantum im-
purities �G. Zaránd et al., Phys. Rev. Lett. 93, 107204 �2004�� to study the energy dependence of the single-
particle S matrix and the inelastic scattering cross section for a number of quantum impurity models. We study
the case of the spin S=1/2 two-channel Kondo model, the Anderson model, and the usual S=1/2 single-
channel Kondo model. We discuss the difference between non-Fermi-liquid and Fermi-liquid models and study
how a crossover between the non-Fermi-liquid and Fermi-liquid regimes appears in the case of channel
anisotropy for the S=1/2 two-channel Kondo model. We show that for the most elementary non-Fermi-liquid
system, the two-channel Kondo model, half of the scattering remains inelastic even at the Fermi energy. Details
of the derivation of the reduction formulas and a simple path integral approach to connect the T matrix to local
correlation functions are also presented.
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I. INTRODUCTION

Quantum interference effects play a major role in mesos-
copic systems: they lead to phenomena such as Aharonov-
Bohm interference,1 weak localization effects,2,3 universal
conductance fluctuations,4 or mesoscopic local density of
state fluctuations.5 All these interesting phenomena rely on
the phase coherence of the conduction electrons. This phase
coherence is, however, destroyed through inelastic scattering
processes, where some excitation is created in the environ-
ment, and which thus lead to a loss of quantum interference
after a characteristic time, ��. This characteristic time is
called the dephasing time or sometimes as the inelastic scat-
tering time. The excitations created in course of an inelastic
scattering process may be phonons, magnons, electromag-
netic radiation, or simply electron-hole excitations, where in
the latter case, the “environment” is provided by the conduc-
tion electrons themselves.

A few years ago, Mohanty and Webb measured the
dephasing time ���T� very carefully down to very low tem-
peratures through weak localization experiments and re-
ported a surprising saturation of it at the lowest
temperatures.6,7 These experiments gave rise to many theo-
retical speculations: intrinsic dephasing due to electron-
electron interaction,8–10 scattering from two-level
systems,11,12 and even coupling to zero point fluctuations
have been proposed to explain the observed saturation, and
induced rather harsh discussions. Finally, it has been shown
recently that an apparent saturation can also appear due to
inelastic scattering from magnetic impurities.3,13

Triggered by these results of Mohanty and Webb, a num-
ber of experimental groups also revisited the problem of in-
elastic scattering and dephasing in quantum wires and disor-
dered metals: A series of experiments has been performed to

study the nonequilibrium relaxation of the energy distribu-
tion function in short quantum wires of various
compositions.14 Depending on the material, these energy re-
laxation experiments could be well explained in terms of the
orthodox theory of electron-electron interaction in one-
dimensional wires15 and/or inelastic scattering mediated by
magnetic impurities.9,16–20 Parallel to, and partially triggered
by these experiments, a systematic study of the inelastic scat-
tering from magnetic impurities has also been carried out
recently, where inelastic scattering at energies down to well
below the Kondo scale has also been studied.21–23 Describing
inelastic scattering from magnetic impurities around and be-
low the Kondo scale has been a theoretical challenge, since
this regime can be reached only through nonperturbative
methods. This goal has been finally reached in Refs. 13 and
24: In Ref. 13, a theory of inelastic scattering has been de-
veloped at T=0 temperature, while the authors of Ref. 24
showed that the finite temperature version of the formula
introduced in Ref. 13 describes the dephasing rate that ap-
pears in the expression of weak localization in the limit of
small concentrations too. Except for very low temperatures,
where a small residual inelastic scattering is observed,22,23

these calculations are in very good agreement with the ex-
periments that clearly show that magnetic impurities in con-
centration as small as 1 ppm can induce substantial inelastic
scattering.13,24,25 The source of the small residual inelastic
scattering is unclear: It may be due to some mispositioned
magnetic impurities with anomalously small Kondo tempera-
ture or structural defects created by the ion implantation, but
an intrinsic effect cannot be excluded either, although the
residual dephasing seems to be proportional to the impurity
concentration. Furthermore, we have to emphasize that other
experiments on very dirty metals probably cannot be ex-
plained in terms of magnetic scattering, and possibly other
mechanisms are needed to account for the dephasing ob-
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served at very low temperatures in these systems.26

The purpose of the present paper is to demonstrate how
the rather general theory of Ref. 13 can be applied to various
quantum impurity problems. In our previous work, we pre-
sented results only for the single-channel S=1/2 Kondo
model, while in the present paper, we extend our study to
different quantum impurity models �two-channel S=1/2
Kondo model and Anderson model� as well, and we also
discuss some analytical expressions for various scattering
rates in the single-channel Kondo model. In addition, we
present many details of derivation of the formalism shortly
discussed in Ref. 13.

Reference 13 formulates the problem of inelastic scatter-
ing in terms of the many-body S matrix defined through the
overlap of incoming and outgoing scattering states:

out�f �i�in � in�f �Ŝ�i�in. �1�

The incoming and outgoing scattering states, �i�in and �f�out,
are asymptotically free, and they may contain many excita-
tions, i.e., they are true many-body states. In the interaction

representation, Ŝ is given by the well-known expression

Ŝ = T exp	− i

−�

�

Hint�t�dt� , �2�

with T the usual time-ordering operator, and Hint the interac-
tion part that induces scattering.

The many-body T matrix is defined as the “scattering
part” of the S matrix

Ŝ = Î + iT̂ , �3�

where Î denotes the identity operator. Energy conservation
implies that

in�f �T̂�i�in = 2���Ef − Ei��f �T�i� , �4�

with the �f �T�i� the on-shell T matrix.
The results of Ref. 13 rely on the simple observation that

the on-shell matrix elements of the many-body T matrix be-
tween single-particle states, �p��T�p����, determine both the
total ��tot� and the elastic ��el� scattering cross sections of
the conduction electrons �or holes� at T=0 temperature. The
total scattering cross section of an electron of momentum p
and spin � is given by the optical theorem as

�tot
� =

2

vF
Im�p��T�p�� , �5�

where the velocity of the incoming electron is approximated
by the Fermi velocity vF. In the case of elastic scattering, an
incoming single electron state is scattered into an outgoing
single electron state, without inducing any spin or electron-
hole excitation of the environment. The corresponding cross
section can be expressed as

�el
� =

1

vF

 dp�

�2��32����� − ����p���T�p���2, �6�

with � the energy of the electron measured from the Fermi
surface. In contrast to �el

� , the total scattering cross section

also includes those scattering processes, where some excita-
tions are left behind, and thus the outgoing state is not a
single-particle state. The inelastic scattering cross section as-
sociated with these processes is thus clearly the difference of
these two cross sections:

�inel
� = �tot

� − �el
� . �7�

These processes are schematically shown in Fig. 1.
For quantum impurities in a free electron gas, it is more

transparent to introduce angular momentum channels, L
��l ,m�, and define the scattering states in terms of radially
propagating states �p ,��→ �p� ,L ,��:

�p,�� =
 2

�
�
L

 d	p̂YL�p̂���p�, �L,�� , �8�

with YL�p̂� the spherical functions, and �=���p�� the density
of states of the conduction electrons. In this basis, the on-
shell S and T matrices become matrices in the angular mo-
mentum quantum numbers that depend only on the energy

���p ,�� of the incoming particle. The S matrix can then
be expanded as

�p��S�p���� =
2

�
�
L,L�

YL
*�p̂�sL�,L����
�YL��p̂�� , �9�

and the on-shell T matrix is given by a similar expression,
the coefficients of the expansions being related by

sL,�;L����
� = �L,L���,�� + itL,�;L����
� . �10�

The eigenvalues S� of the matrix sL,�;L��� must all be within
the complex unit circle for any 
, and they are directly re-
lated to the inelastic scattering cross section. To see this, let
us consider the case of scattering only in the s channel �L
=0� and assume spin conservation. In this case, sL,�;L��� be-
comes a simple number, s�
�=1+ it�
�,

s�
� = 2���p��S�p���� = 2��S�
�

and the inelastic scattering cross section can be expressed as

�inel�
� =
�

pF
2 �1 − �s�
��2� =

�

pF
2 �2 Im t�
� − �t�
��2� ,

�11�

where we assumed free electrons of dispersion �=p2 /2m
−� with a Fermi energy � and a corresponding Fermi mo-
mentum pF. Equation �11� implies that the scattering be-
comes totally elastic whenever s�
� is on the unit circle, and

σ
σ

σ
σ

σ
σ

a b

FIG. 1. �Color online� Sketch of �a� elastic and �b� inelastic
scattering processes. In the case of an inelastic scattering, the out-
going electron leaves spin- and/or electron-hole excitations behind.
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it is maximally inelastic if the corresponding single-particle
matrix element of the S matrix vanishes. The former situa-
tion occurs at Fermi liquid fixed points, while the latter case
is realized, e.g., in the two-channel Kondo model or the two-
impurity Kondo model. The total scattering cross section, on
the other hand, is related to the real part of s�
� as

�tot�
� =
2�

pF
2 �1 − Re�s�
��� =

2�

pF
2 Im t�
� . �12�

It is easy to generalize this result to the case of many scat-
tering channels, and one finds that inelastic scattering can
take place only if some of the eigenvalues of sL,�;L��� are not
on the unit circle.27

To compute the off-diagonal matrix element �p��T�p����,
we first relate it to the conduction electrons’ Green’s function
through the so-called reduction formula detailed in Sec. II,28

�p,��T�p���� = − �G0�±p,±�
−1 ���G±p±�,±p�±������G0�±p�±��

−1 ��� .

�13�

Here, the 
 signs correspond to electron and hole states with
��0 and ��0 and of energy E= ���, G0 denotes the free
electron Green’s function, and G the full many-body time-
ordered electron Green’s function. Thus, the positive fre-
quency part of the Green’s function describes the scattering
of electrons, while the negative frequency part that of holes.
Strictly speaking, our derivation of this formula only holds
for Fermi liquids, i.e., for models where the ground state has
no internal degeneracy and can continuously be related to a
noninteracting ground state. The consideration of internal
ground state degeneracy needs some care, and the definition
of inelastic scattering in that case is not straightforward.27

However, the finite temperature results of Ref. 24 show that
Eqs. �5�–�7� together with Eq. �13� provide the physically
meaningful definition even in this case at T=0.

According to Eq. �13�, to compute the inelastic and elastic
scattering cross sections, we need to evaluate the self-energy
of the conduction electron’s Green’s function. We do this by
relating the self-energy to some local correlation function
that we then compute either analytically within some ap-
proximation or numerically using the powerful machinery of
numerical renormalization group �NRG�.29 This step depends
on the specific impurity model at hand and can be achieved
through equation of motion methods,30 diagrammatically,13

or through a straightforward path integral treatment, as we
do it in Sec. III. The recently formulated scattering Bethe
ansatz approach can possibly provide a way to avoid this
numerical computation, and determine the full energy depen-
dence of the S matrix analytically.31

Let us close this Introduction by illustrating the power of
this formalism through the simple examples of the single-
and two-channel Kondo models defined through the Hamil-
tonian:

H = �
�=1

f

�
p,�

�pap�,�
† ap�,� +

J

2
S� �

�=1

f

�
p,p�

���

ap�,�
† �� ���ap���,�.

�14�

Here, ap��
† creates a conduction electron with momentum p,

spin � in channel �, S=1/2 is the impurity spin, and f =1
and f =2 for the single- and two-channel Kondo models, re-
spectively.

In both models, the T matrix can be related to the Green’s
function of the so-called composite Fermion operator, F��

����,pS� ·�� ���ap���,30 which can then be computed using
NRG.29 The evolution of the eigenvalue of the numerically
obtained S matrix is shown in Fig. 2. In both cases, s�
�
=s�
 /TK� is a universal function that depends only on the
ratio 
 /TK, with TK the so-called Kondo temperature, TK
�EFe−1/�J, with EF the Fermi energy and � the density of
states at the Fermi energy for one spin direction.32,33

For the single-channel Kondo model, the scattering be-
comes elastic both in the limit of very large and very small
energies, 
�TK, and 
�TK, respectively, where the eigen-
values lie on the unit circle. The reasons are different: At
large energies, conduction electrons do not interact with the
impurity spin efficiently. At very small energies, on the other
hand, the impurity’s spin is screened and disappears from the
problem apart from a residual phase shift of � /2 and an
irrelevant local electron-electron interaction.34 The maxi-
mum inelastic scattering is reached when the eigenvalue s�
�
is closest to the origin, i.e., at energies in the range of the
Kondo temperature, 
�TK.

For the two-channel Kondo model, on the other hand,
s�
→0�=0, implying that the scattering is maximally in-
elastic even at the Fermi energy, 
→0. This property of the
S matrix has been first noticed by Maldacena and Ludwig35

and is characteristic of a non-Fermi liquid, where incoming
electrons do not scatter into an outgoing single electron state,

-1 -0.5 0 0.5 1
Re s(ω)

-1

-0.5

0

0.5

1

Im
s(

ω
)

ω = Dω = 0

1 CK

2 CK

FIG. 2. �Color online� Renormalization group flow of the eigen-
values of the single-particle S matrix for the single- and two-
channel Kondo models. For the single-channel Kondo model, the
scattering becomes elastic ��S�=1� both in the limit of very large
and very small energies, 
→�, and 
→0, respectively. For the
two-channel Kondo model, s�
→0�=0, implying that half of the
scattering remains inelastic even for 
→0.
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even at the Fermi energy. Note, however, that the vanishing
of the S matrix does not imply that all the scattering is fully
inelastic. In fact, from Eqs. �5� and �6�, it follows that

�inel
2CK = �el

2CK =
�tot

2CK

2
,

i.e., half of the scattering remains still elastic. In other words,
in the elastic channel, the unscattered and scattered
s-electron wave functions are completely out of phase, and
therefore there is no net outgoing particle in the s channel.

The structure of the flow of s�
� appears more directly in
the energy dependence of the various scattering cross sec-
tions shown in Fig. 3 for these two cases. In the single-
channel case, it is quite remarkable that the low-energy �
2

inelastic scattering cross section expected from Fermi-liquid
considerations34 is limited only to the regime 
�0.05TK,
and for 0.05TK�
�0.5TK, the inelastic scattering cross sec-
tion is quasilinear. Furthermore, above TK, a wide plateau
appears �rather than a peak�, where ��
� is large and almost
independent of the energy 
 of the incoming particle. Both
features also appear in a finite temperature calculation,24 are
in quantitative agreement with the experimental results of
Refs. 7 and 22 on magnetically doped wires, and provide a
possible explanation of the observed saturation of the
dephasing time in some experiments on dephasing.6 As we
show in Sec. VI, these universal features are robust and
present in the Anderson model too.

It is important to emphasize here that in the present paper,
we computed the inelastic scattering rate of electrons rather
than that of quasiparticles. This is motivated by the trivial
observation that in a real experiment, the external electro-
magnetic field couples with a minimal coupling to the bare

conduction electrons. Precisely, for this reason, the Kubo for-
mula contains the conduction electron current operators, and
also, the relevant quantity to determine dephasing is thus the
inelastic scattering rate of electrons. This is what we have
computed here and that has been computed in Refs. 13 and
24.

The definition of quasiparticles depends on the context in
which they emerge. If one defines them as stable elementary
excitations of the vacuum, as Nozières did,34 or as they ap-
pear in Bethe ansatz,47 then, by definition, these quasiparti-
cles do not decay at all at T=0 and scatter only elastically.34

Such quasiparticles are, however, usually complicated ob-
jects in terms of conduction electrons. For this reason, they
are typically not minimally coupled to the gauge field, and
therefore the current operator in the Kubo formula is a very
complicated many-body vertex in the language of quasipar-
ticles. Excepting for 
=0, a real conduction electron is com-
posed of many such stable quasiparticles, and it decays in-
elastically even at T=0 temperature, even if quasiparticles do
not. In the Kondo model, at the Fermi energy, quasiparticle
states are simple phase shifted conduction electron states.
However, the connection between quasiparticles and conduc-
tion electrons is not trivial for any finite energy. Therefore, if
one considers inelastic scattering at a finite energy, one must
precisely specify how finite energy quasiparticle states are
defined, how they couple to a gauge field, and how a finite
energy electronic state is decomposed in terms of these qua-
siparticles. Unfortunately, except for the Bethe ansatz, we are
not aware of any work which would provide this necessary
connection in sufficient detail and would go beyond a simple
heuristic treatment �which might still give the correct result�.
In the present framework, we avoided this difficulty by for-
mulating the problem in terms of electrons rather than qua-
siparticles.

The paper is organized as follows: In Sec. II, we present
the derivation of the reduction formulas. In Sec. III, we de-
termine the T matrix for the Kondo model. In Secs. IV–VI,
we present results on the inelastic scattering rate for the
single- and two-channel Kondo model and for the Anderson
model, respectively. In Sec. VII, the results are summarized.
In the Appendix, some details of the derivation of the T
matrix for the Anderson model are discussed.

II. REDUCTION FORMULAS

A. Definition of scattering states in the Heisenberg picture

Although reduction formulas are often used in the litera-
ture in a heuristic way, apart from the derivation of Langreth
for the Anderson model,36 we do not know of any work that
would establish a rigorous connection between the single-
particle matrix elements of the T matrix and the conduction
electron’s Green’s function for a general quantum impurity
problem. Here, we therefore present a short derivation of the
reduction formulas by generalizing the procedure used in the
domain of particle physics.28,37

In this section, following the field theoretical language,
we shall use the Heisenberg picture and describe scattering
in terms of the field operators,28 ���x�, where we introduced
the four-vector notation, x��t ,x�. The evolution of this field

0.5

1
σ

/σ
0

σelastic
σinelastic
σtotal

0 1 2 3
ω/TK

0

0.5

1

σ
/σ

0
1 CK

2 CK

FIG. 3. �Color online� Top: Inelastic, elastic, and total scattering
rates for the single-channel Kondo model in units of �0=4� / pF

2 for
a spin up electron. �inel scales approximately linearly with 
 for
0.05TK�
�0.5TK, behaves as �
2 for 
�0.05TK, and remark-
ably shows a plateau above TK. Bottom: Same for the two-channel
Kondo problem for a spin up electron in channel 1. Note that the
inelastic scattering cross section remains finite at 
=0 and is pre-
cisely half of the elastic scattering cross section.
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operator is described by the time-dependent Hamiltonian,
with the interactions switched on and off adiabatically with a
rate �→0,

H � H�t� = H0 + e−��t�Hint. �15�

Here, H0 denotes the noninteracting Hamiltonian

H0 =
 d3x��
†�x��−

�

2m
− �����x� , �16�

with � the Laplace operator, and � the chemical potential of
the electrons. The interaction part Hint does not need to be
specified at this point and depends on the particular model
considered. For the sake of simplicity, we assume that the
quantum impurity interacts with free electrons, but the pro-
cedure described can be generalized for electrons with more
complicated dispersions, too.

Within the Heisenberg picture, states are independent of
time, and all nontrivial scattering is incorporated in the time
evolution of the fields. Scattering states can be defined
through the asymptotic form of the field operators. Incoming
and outgoing scattering states can be defined based on the
simple observation that for times t→ ±�, the equation of
motion of ���x� is generated by H0, and therefore ���x�
behaves asymptotically as a free field:

���x,t → − �� →
 d3p

�2��3e−ip·xap�,in, �17�

where ap�,in�ap�,in are just the annihilation operators of in-
coming �one particle� scattering states. Here, for the sake of
compactness, we introduced the four-momentum p��� ,p�,
with �=��p�=p2 /2m−� the energy of the conduction elec-
trons, measured from the Fermi energy, and p ·x=�t−px. The
operators ap�,in�ap�,in satisfy standard anticommutation re-
lations

�ap�,in,ap���,in
† � = �2��3��,����p − p�� . �18�

Note that the operators ap�,in
† do not create free electrons,

rather, they are creation operators of incoming electrons in
scattering states, which are asymptotically free.48

The operators ap�,in
† can be used to construct incoming

single-particle scattering states, �p ,��in. For electrons, i.e.,
excitations of momenta larger than the Fermi momentum,
�p�� pF, these scattering states can be simply defined as49

�p,��in � ap,�,in
† �0� = lim

t→−�

 d3xe−ip·x��

†�x��0� . �19�

Outgoing single electron scattering states, �p ,��out
��p ,��out, can be defined in a similar way by expanding the
field ���x , t→ +��,

�p,��out � ap,�,out
† �0� = lim

t→+�

 d3xe−ip·x��

†�x��0� . �20�

Incoming and outgoing hole states must be defined
slightly differently, because an incoming hole of energy E
�0, momentum p, and spin � is created by removing an
electron of energy �=−E, momentum −p, and spin −� from

the Fermi surface. In other words, incoming hole scattering
states are defined for �p � � pF as

�p,��in/out � a−p,−�,in/out�0� = lim
t→��


 d3xe−ip·x�−��x�

��0� ��p� � pF� . �21�

B. Reduction formulas and Green’s functions

We proceed to derive a general relation involving Green’s
functions to express the off-diagonal matrix elements

i�p��T̂�p���� = out�p��p����in �p � p�� �22�

for electronic excitations with �p�� pF first. Using the
asymptotic expression �Eq. �19��, this matrix element can be
expressed as

out�p��p����in = lim
y0→−�

out�p,��

y0

d3ye−ip�y���
† �y��0� .

�23�

Integrating by part, we obtain

lim
y0→−�



y0

d3ye−ip�y���
† �y� = −
 d4y

�

�y0
�e−ip�y���

† �y��

+ ap�,��,out
† .

The last term does not give a contribution to the matrix ele-
ment for p�p�; therefore, we drop it. The rest can be ex-
pressed as



−�

�

d4y
�

�y0
�e−ip�y���

† �y�� = − i
 d4ye−ip�y	i
�

�y0

+ H0�y�����
† �y� ,

where we obtained the right-hand side of this equation by
using the fact that p� is on the energy shell, and therefore
p0�e

−ip�y = �− 1
2m�y−��e−ip�y, and then by integrating by part

with respect to y. Thus, the off-diagonal matrix elements of
the S matrix simplify to

out�p��p����in = i
 d4ye−ip�y	i
�

�y0

+ H0�y��out�p�����
† �y��0� . �24�

Using the asymptotic relation of the outgoing states �Eq.
�20��, we can now write the full matrix element as
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out�p��p����in = i
 d4ye−ip�y	i
�

�y0

+ H0�y�� lim
x0→�


 d3xeipx�0����x����
† �y��0� .

�25�

Once again, we convert the last integral into an integral over
the whole space-time, which yields

lim
x0→�


 d3xeipx�0����x����
† �y��0�

= 

−�

�

d4x
�

�x0
eipx�0�T���x����

† �y��0� , �26�

where the time-ordering operator T has been inserted to as-
sure that the x0→−� contribution vanishes by Eq. �19�:
limx0→−��d3xeipx�0����

† �y����x��0�=0.
We can manipulate the remaining expression in the same

way as before to finally obtain

out�p��p����in = −
 d4xd4ye−ip�yeipx��− i��x0
− H� 0�x��

��T���x����
† �y���i��y0

− H0�y��� , �27�

where the arrows indicate forward and backward differentia-
tions, respectively. Observing that the operator �−i�x0
−H0�x����x−x�� is simply the matrix element of the inverse
of the noninteracting Green’s function,

�x��Ĝ0
−1�x� = ��x� − x��− i��x0

− H0�x�� ,

=�i��x0�
− H0�x�����x� − x� ,

Eq. �27� can be simply expressed as

out�p��p����in = − i
 d4xd4yeipx−ip�y�Ĝ0
−1 � Ĝ � Ĝ0

−1�x,y ,

�28�

with “*” the four-dimensional convolution operator, and Ĝ
the usual interacting Green’s function,

G����x,y� = − i�T���x����
† �y�� . �29�

The Fourier transformation of Eq. �28� then yields

out�p��p����in = − iG0,�
−1 �p�G�,���p,p��G0,�

−1 �p�� ��p� � pF� .

�30�

Translational invariance in time further implies that

G�,���p,p�� = 2�����p�� − ��p��Gp�,p������p�� .

Inserting this into Eq. �30� and comparing it with Eq. �4�
yields Eq. �13� for ��0.

The derivation for holes follows exactly the same lines
excepting that the matrix element to be computed is now

out�p��p����in = �0�a−p,−�,out
† a−p�,−��,in�0� , �31�

and correspondingly, the final expression of the S-matrix el-
ement now reads for p�p�,

out�p��p����in = iG0,−��
−1 �− p��G−��,−��− p�,− p�G0,−�

−1 �

− p� ��p� � pF� .

III. T MATRIX OF THE KONDO MODEL

For practical calculations, one needs to determine the T
matrix of Eq. �13� somehow. For most really interesting
cases, this can be done analytically only approximately and
in a limited energy range, and numerical methods must be
used. The most adequate way to perform the calculation is to
first relate the T matrix to some local correlation function
that can then be computed using Wilson’s numerical renor-
malization group method.29 To establish the desired relation,
one can use equation of motion methods,30 or do diagram-
matic perturbation theory and sum up the diagrams up to
infinite order,13 but here we show yet another rather elegant
way, in terms of path integrals.

Although this method works for essentially any quantum
impurity problem, here we show how it works for the Kondo
model, already defined in the introduction �see Eq. �14��. The
application of this method to the Anderson model is dis-
cussed in the Appendix. To use a field theoretical formalism,

following Abrikosov, we represent the impurity spin S� by
fermionic operators, f�,

S� =
1

2 �
�,��

f�
†�� ���f��, �

�

f�
† f� � 1. �32�

Next, we define the generating functional for the conduction
electron Green’s functions as follows:

Z���,�̄�� =
 D�a�ā��D̃�f� f̄��e−iSei�̄·a+iā·�, �33�

where the tilde on the second integration measure indicates
that one must impose the constraint ��f�

† f��1 when per-
forming the path integral, and we introduced the shorthand
notation �̄ ·a��p,��dt�̄p,��t�ap,��t�. The action S in Eq.
�33� consists of three terms, S=Se+Sf +Sint: The first term,
Se, describes the conduction electrons,

Se = − �
p,�

 dtdt�āp��t��G0�p

−1�t − t��ap��t�� , �34�

with G0 the time-ordered free electron Green’s function. The

term Sf �−i���dt f̄��t� d
dt f��t� generates the spin dynamics,

while the last term simply describes the interaction

Sint �
J

2 �
p,p�

�,��


 dtS��t�āp��t��� ���ap����t� . �35�

The full time-ordered Green’s function is related to Z by
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Gp�,p����t − t�� = � 1

i

�2 ln Z��̄,��
��̄p��t���p����t��

�
�=�̄=0

. �36�

We can derive the required identity by simply shifting the
integration variable in Eq. �33�,

ap��t� → ap��t� −
 dt�Gp
0�t − t���p��t�� . �37�

As a result, the exponent in Eq. �33� transforms to

S − �̄ · a − ā · � ⇒ S + �
p,�

 dtdt��̄p��t�Gp�

0 �t − t���p��t��

−
J

2�
p,�

 dtdt��F̄��t�Gp�

0 �t − t���p��t�� + H.c.�

+
J

2 �
p,p�

�,��


 dtdt�dt��̄p��t�Gp�
0 �t − t��S��t���� ���Gp�

0 �t�

− t���p���t�� ,

where we introduced the composite fermion field, F��t�
��p,��S

��t��� ���ap,���t�. Carrying out now the functional
derivation of Eq. �36�, we obtain the following simple rela-
tion:

Gp�,p����t − t�� = �p,p�Gp�
0 �t − t�� +
 dt̃dt̃Gp�

0 �t − t̃�	��t̃

− t̃�
J

2
�S���� ��� − i

J2

4
�F��t̃�F̄���t̃���Gp���

0 �t̃

− t�� . �38�

The average in this expression must be carried out by com-
puting the appropriate path integral and results in the corre-
sponding time-ordered Green’s function. Comparing Eqs.
�38� and �13�, and using the analytical properties of the time-
ordered and retarded Green’s functions at T=0 temperature,
we finally obtain the relations

Im�T��,����
�� = �
J2

4
�F,����
� ,

− � Re�T��,����
�� =
J

2
�S���� ��� +

J2

4
P
 d
�

�F,����
�


 − 
�
,

�39�

with �F,����
� the spectral function of the composite Fermi-
on’s Green function, and �=sgn �. Note that scattering takes
place only in the s channel, and therefore these matrix ele-
ments do not depend on the incoming and outgoing momenta
of the excitations. Equations �38� and �39� can be easily vi-
sualized in terms of diagrammatic perturbation theory, as
shown in Fig. 4. The spectral function appearing in Eq. �39�
is just a local correlation function that can be easily obtained
through the NRG method.29 In the following sections, we
shall primarily use this method to compute the single-particle
T matrix and the inelastic scattering rates of the basic quan-

tum impurity models, the single-channel Kondo model, the
two-channel Kondo model, and the Anderson model. Calcu-
lations for the spin S=1 Anderson model have been per-
formed in Ref. 38.

IV. INELASTIC SCATTERING IN THE KONDO MODEL

In the previous sections, we have related the single-
particle T matrix and therefore the elastic and inelastic scat-
tering amplitudes of electrons with local correlation func-
tions through the reduction formulas. In this section, we shall
use these results to analyze the T=0 temperature scattering
properties of the Kondo model using Wilson’s NRG.29 How-
ever, before presenting detailed numerical results, let us
shortly discuss what one can learn from simple perturbation
theory.

Let us discuss the high-energy scattering of conduction
electrons in the absence of external magnetic field. In this
limit, one can attempt to do perturbation theory, and in first
nonvanishing order, one obtains

t�
� = i2��T�
� = − i
�2

2
S�S + 1�j2 + ¯ , �40�

where the dimensionless coupling j=�J has been introduced.
Summing up the leading logarithmic diagrams amounts in
replacing J by the renormalized coupling and gives

t�
 � TK� � i
�2

2
S�S + 1�

1

ln2�
/TK�
,

with TK�EFe−1/J� the Kondo temperature. Thus, in leading
logarithmic order, the total scattering cross section is given
by

+

+ + . . .

+

+=

=

FIG. 4. Diagrammatic representation of the T matrix in the
Kondo problem. Dashed lines denote pseudofermion propagators
and describe the evolution of the impurity spin, while continuous
lines denote free conduction electron propagators. Filled circles
stand for the exchange interaction J. The first term of the T matrix
is simply proportional to the expectation value of the impurity spin,
it is frequency independent, and vanishes in the absence of mag-
netic field. The second term can be identified as the composite
fermion correlation function.
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�tot�
 � TK� �
�3

pF
2 S�S + 1�

1

ln2�
/TK�
.

The first nonvanishing contribution to the elastic scattering
cross section, on the other hand, scales as �el��t�2� j4, and
therefore �el�
� asymptotically behaves as

�el�
 � TK� �
�5

4pF
2 S2�S + 1�2 1

ln4�
/TK�
.

This implies that asymptotically, all the scattering is inelastic

�inel�
 � TK� � �tot�
� �
�3

pF
2 S�S + 1�

1

ln2�
/TK�
. �41�

This is a very surprising result and contradicts to the con-
ventional wisdom, which tries to associate inelastic scatter-
ing with spin-flip scattering from a free spin. In fact, this
rather nontrivial result has been explained in Ref. 39 in the
following way: At high energies, incoming electrons are
scattered by the impurity spin fluctuations. These fluctuations
can absorb an energy of the order of �TK, and therefore the
energy of the incoming electron is not conserved in leading
order, but it typically changes by a tiny amount, �
�TK. In
the most pedestrian perturbative approach, this tiny energy
transfer is neglected and therefore one concludes incorrectly
that the energy is conserved in leading order.

We can also relate the cross sections above to scattering
rates. Assuming a finite concentration nimp of magnetic im-
purities, we can compute the impurity averaged conduction
electron Green’s functions and from that the conduction elec-
tron lifetime:

1

�
= nimpvF�tot�
� � nimp

�S�S + 1�
2� ln2�
/TK�

. �42�

In fact, the first part of this equation gives a general rule to
connect various cross sections to the corresponding scatter-
ing times, and for the inelastic scattering rate, e.g., we have

1

�inel
= nimpvF�inel�
� . �43�

For very large frequencies, again, the inelastic scattering rate
is approximately equal to the elastic scattering rate:

1

�inel
� nimp

�S�S + 1�
2� ln2�
/TK�

. �44�

Note that this rate is a factor of 3 /2 larger than the Nagaoka-
Suhl expression, which only takes into account spin-flip
processes.40

For energies �
��TK, perturbation theory breaks down,
and it is more appropriate to use Nozieres’ Fermi-liquid
theory, which states that at the Fermi energy, scattering is
completely elastic, and34

t��
 = 0+� = 2��T�
1CK�
 = 0+� = 2 sin ��ei��, �45�

where we now allowed for a magnetic field pointing along
the z direction, and �� stands for the phase shifts of electrons
with spin � at the Fermi energy. Equation �45� then yields

�tot,��
 → 0� =
4�

pF
2 sin2���� , �46�

�inel,��
 → 0� = 0. �47�

The maximum total scattering cross section is reached in the
unitary limit, ��=� /2.

Let us now proceed and compute the various scattering
cross sections using Wilson’s NRG.29 In the previous section,
we showed how the imaginary part of the single-particle T
matrix is related to composite fermion’s spectral function,
�F�
�. Within NRG, spectral functions of local operators are
computed using their Lehman representation. The imaginary
part of the T matrix, related to the total scattering rate, has
already been computed in this way by Costi to obtain the
magnetoresistivity of Kondo alloys.30 To evaluate the inelas-
tic scattering amplitude, however, one needs to go one step
further and compute the real part of the T matrix as well
through a Hilbert transformation, Eq. �39�. In such a calcu-
lation, it is essential to have high quality data. The most
challenging task is to obtain the correct �
2 low-energy
behavior of the inelastic amplitude since we get this small
quantity as a difference of two quantities of the order of
unity. Therefore, it is also crucial to get the normalization
factor of T correctly. In the case of the single-channel Kondo
problem, this can be obtained through the Fermi-liquid rela-
tion �Eq. �45��: This relation connects the normalization of
t�
� to the phase shifts at the Fermi energy, which we extract
from the NRG finite size spectrum very accurately.41

The renormalization group flow of the eigenvalues of the
single-particle S matrix has already been shortly discussed in
the Introduction in the absence of magnetic fields �see Fig.
1�. The eigenvalues s�
� of the S matrix lie within the com-
plex unit circle, and inelastic processes are allowed only
when the eigenvalue s�
� of the S matrix satisfies �s�
��
�1. Incoming particles of high enough energy �
→�� do
not see the impurity, and therefore s�
�→1, corresponding
to the weak coupling fixed point with phase shift ��0. As
expected for Fermi liquids, at the Fermi energy �
→0�, the
s�
� approaches the unit circle again, s�
=0�=−1, corre-
sponding to the strong coupling fixed point of the Kondo
model characterized by a phase shift �=� /2.

Application of a local magnetic field makes the flow more
complicated �see Fig. 5�: At low energy, the system still be-
haves like a Fermi liquid but the position of the point where
the s�
� approaches the unit circle now varies with magnetic
field. This is due to the magnetic field dependence of the
scattering phase shifts at zero frequency.

For intermediate energy values of the incoming electron,
�s�
���1, and the inelastic scattering cross section is non-
zero. The total, elastic, and inelastic scattering cross sections
of an electron scattered off a magnetic impurity are shown in
Fig. 6. As expected, the inelastic amplitude always vanishes
at the Fermi level. In the lower panel, we show the inelastic
scattering rate as compared to the Nagaoka-Suhl formula.
The numerical results are consistent with the analytical ex-
pression �41� at large energies, while for energies much
smaller than TK, we recover the quadratically vanishing in-
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elastic rate expected from Fermi-liquid theory.42 Note that
the Nagaoka-Suhl approximation systematically underesti-
mates the inelastic scattering rate by a factor of 2 /3 since it
considers any spin-diagonal process as elastic scattering. At
high energies, however, in leading order, all the scatterings
are inelastic since even a spin-diagonal process breaks up the
Kondo singlet and leaves the system in an excited state, and
therefore it cannot be elastic. Apart from this prefactor, the
Nagaoka-Suhl result is perfect at high energies; however, it
starts to deviate strongly from the numerically exact curve at
approximately 10TK, and it completely fails below the
Kondo temperature TK. At energies well above TK, almost all
the scattering is inelastic, i.e., the inelastic amplitude varies
as �ln−2�
 /TK� while the elastic part vanishes faster as

�ln−4�
 /TK�, in agreement with the analytical results.
Even though the numerics recover the expected asymptot-

ics, interesting features appear both in the low- and high-
energy parts of the scattering properties. First, as shown in
Fig. 3, the �inel�
2 regime appears only at energies well
below the Kondo temperature, and we find that the inelastic
scattering rate is roughly linear between 0.05TK�

�0.5TK. Even though our calculation is done at T=0 tem-
perature, we expect that �inel�T ,
=0� behaves very similar
to �inel�T=0,
�. Our results are thus consistent with the ex-
isting experimental data, explain the linear behavior ob-
served in many experiments,2,7,21 and surprisingly even
quantitatively fit the finite temperature experimental
curves.21 Of course, in reality, a finite temperature calcula-
tion is needed which has been performed in Ref. 24.

Another remarkable feature is the broad plateau in the
inelastic scattering cross section above the Kondo scale,
where the energy dependence of the inelastic scattering rate
turns out to be extremely weak. This weak energy depen-
dence provides a natural explanation for the experimentally
observed plateau of the dephasing rate in many
experiments.3,6

The inelastic scattering amplitude in the presence of a
magnetic field is shown in Fig. 7. Applying a local magnetic
field breaks the spin symmetry of the scattering and changes
the inelastic scattering properties of spin up and down par-
ticles dramatically. Already, a relatively small magnetic field
B�0.1TK results in a very strong spin asymmetry of the
inelastic scattering. For B�TK, the effect is even more dra-
matic: At this field, the impurity is practically polarized and
aligned with the direction of the field and points upward. As
a result, an incoming spin up particle cannot flip the local
spin in a first order process, and higher order processes are
needed to generate inelastic scattering. A spin down electron
or hole, on the other hand, can exchange its spin with the
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FIG. 5. �Color online� Renormalization group flow of the eigen-
values of the single-particle S matrix for the single-channel Kondo
model in the presence of a local magnetic field.
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scattering rates for the single-channel Kondo model in units of �0
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2 at T=0 and B=0, as a function of the incoming electron’s

energy. Only the electronic contribution �
�0� is plotted. For 

�TK, the inelastic rate as well as the total scattering rate varies as
ln−2�TK /
� while the elastic part decays as ln−4�TK /
�. The lower
panel shows the �
2 and ln−2�TK /
� regimes for 
�TK and 

�TK, respectively. The Nagaoka-Suhl approximation, corrected
with a factor of 3 /2 �see the text�, is also shown.
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FIG. 7. �Color online� Energy dependence of spin-dependent
elastic and inelastic scattering rates for the single-channel Kondo
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2 , at T=0 and in the presence of a local
magnetic field B. Note that the positive frequency side corresponds
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magnetic impurity, resulting in the maximum of the inelastic
rate at energy �B and a very broad inelastic background for

�B.

V. INELASTIC SCATTERING IN THE TWO-CHANNEL
KONDO MODEL

In this section, we shall present results for the two-
channel Kondo model, the prototype of all non-Fermi-liquid
impurity models.43,44 In the channel-symmetric case, there
are two types of conduction electrons that try to screen the
impurity independently leading to the overscreening of the
local moment. This frustration of the screening processes
manifests itself in the formation of a strongly correlated state
which cannot be described in the framework of Fermi-liquid
theory. This unusual correlated state manifests in the nonzero
residual entropy, the logarithmic divergence of the impurity
susceptibility, and the power law behavior of transport prop-
erties with fractional exponents.

Since the non-Fermi-liquid behavior is a direct conse-
quence of the frustration of the screening processes, any in-
finitesimal asymmetry in the couplings ���j1− j2� / �j1+ j2�
leads to the appearance of another low temperature energy
scale T*��2 /TK at which the system crosses over to a Fermi
liquid: Electrons being more strongly coupled to the impurity
form a usual Kondo singlet with the impurity spin, while the
other electron channel becomes completely decoupled from
the spin.

In the two-channel Kondo case, unfortunately, no Fermi-
liquid relations similar to Eq. �45� are available. However,
there is an exact theorem by Maldacena and Ludwig that
allows us to get the right normalization of the T matrix. This
theorem states that, at the two-channel Kondo fixed point,
the single-particle elements of the S matrix vanish at the
Fermi energy, s2CK�
→0�=0,35 and as a consequence

t2CK�
 = 0+� = − i .

This relation allows us to obtain the proper normalization of
the numerically computed T matrix even at the non-Fermi-
liquid fixed point. However, it also leads to the surprising
result mentioned already in the Introduction that exactly half
of the scattering is inelastic at the Fermi energy, while the
other half of it is inelastic. This counterintuitive result can be
understood as follows: The identically zero single-particle S
matrix indicates that an incoming electron cannot be de-
tected as one electron after the scattering event, and it “de-
cays” into many electron-hole pairs. To get such a “decay,”
the scattering process must have an elastic component too
which interferes destructively with the not scattered direct
wave and results in the absence of the outgoing single-
particle amplitude in the s channel.

The universal flow of the eigenvalue of the S matrix was
shown in Fig. 2. In Fig. 8, we show what happens if we make
the couplings in the two channels slightly asymmetric. For
any small asymmetry, the Fermi-liquid behavior reappears:
The S matrix in the more strongly coupled channel flows first
close to the two-channel Kondo fixed point with s�
��0,
and then below the Fermi-liquid scale 
�T*, it suddenly
crosses over to the strong coupling fixed point characterized

with phase shifts �=� /2. Similarly, s�
� in the other channel
also approaches the two-channel Kondo fixed point, but then
it becomes suddenly decoupled and therefore S flows to the
s�
�=1 fixed point.

The inelastic scattering rates for the two-channel Kondo
model are shown in Fig. 9 as a function of the energy of the
incoming particle. In the channel-symmetric case, inelastic
processes are allowed even at 
=0, which is a clear signa-
ture of the non-Fermi-liquid behavior. The non-Fermi-liquid
nature is also reflected in the �

 singularity of the scatter-
ing cross sections at 
=0. Note that this cusp is much less
pronounced in the inelastic scattering rate.

For ��0, the total scattering rate approaches the unitary
limit in channel “1” below the Fermi-liquid scale T*. For �
�0, on the other hand, the total scattering rate goes to 0 in
channel 1 below the Fermi-liquid scale T*. In both cases, the
inelastic scattering freezes out, and �inel�
� shows a dip be-
low T*, and it ultimately scales to 0 as
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FIG. 8. �Color online� Renormalization group flow of the eigen-
values of the single-particle S matrix for the two-channel Kondo
model for various values of channel asymmetry. The curves corre-
spond to j1+ j2=0.12.
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FIG. 9. �Color online� Energy dependence of elastic and inelas-
tic scattering rates for the two-channel Kondo model in channel “1”
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�inel�
� � const

2

T*2 .

Note that the inelastic scattering cross section is very similar
for ��0 and ��0, while the total scattering contributions
differ dramatically in these two cases.

VI. INELASTIC SCATTERING IN THE ANDERSON
MODEL

As a final example, let us consider the Anderson model
defined by the Hamiltonian

H = �
p�

��p�ap�
† ap� + �d�

�

d�
†d� + Ud↑

†d↑d↓
†d↓ + V�

�,p
�cp�

† d�

+ H.c.� , �48�

where now d� denotes the local d-level’s annihilation opera-
tor, U is the on-site Coulomb repulsion, and the conduction
band and the local electronic level are hybridized by V. The
T matrix for the Anderson model can be related to the
d-level’s Green’s function, as first discussed by Langreth.36

The required relation can trivially established the path inte-
gral formalism presented in Sec. III. The final result of this
derivation, which is to some extent discussed in the Appen-
dix, can be written as

Im�T��
�� = �V2�d,���
� ,

− � Re�T��
�� = V2
 d
�
�d,���
�

 − 
�

, �49�

with �d,��
� the spectral function of the d fermion’s spectral
function, and �=sgn �.

The ground state of the Anderson model is of a Fermi
liquid. Therefore, the Fermi-liquid relations �45� can be used
again to properly normalize the T matrix. As we discussed in
Ref. 13, the Fermi-liquid relations also imply that at the
Fermi energy, the eigenvalue of the single-particle S matrix
lies on the unit circle, and therefore the inelastic scattering
rate vanishes.

The flow of the eigenvalue s�
� is shown in Fig. 10. This
flow diagram is very similar to that of the Kondo model at
low energies; however, a new interesting feature appears at

�U, where s�
� displays a hook. This hook corresponds to
largely inelastic scattering processes, which are associated
with the charge fluctuations of the d level. It is adequate to
mention here that the low-energy flow is not completely
identical to that shown in Fig. 2 for the Kondo model. The
reason is purely technical: For the Anderson model, we were
using the self-energy trick invented by Bulla et al.45 to obtain
higher quality results, and computed the 
�TK part of the T
matrix �especially its real part� much more accurately.

These features also appear in the various scattering rates,
shown in Fig. 11 for the symmetrical Anderson model with
�d=−U /2. There, we show the inelastic scattering rate for
various ratios of U /�, �=��V2 being the width of the reso-
nance. For moderate values of U /�, the effects of U are
minor in the total and the elastic scattering rate; however,

rather surprisingly, one can see a clear maximum in the in-
elastic scattering rate at energies 
�U even in this case.
Increasing U /�, the Fermi-liquid regime and the charging
regime separate, and two distinct peaks appear, now even in
the total and elastic scattering rates. For large values of U /�,
the various scattering rates follow very nicely the behavior
found for the Kondo model at low energies, and for TK�

�U, the elastic and inelastic contributions scale as
�1/ ln4�
 /TK� and �1/ ln2�
 /TK�, respectively. It is remark-
able that the Hubbard peak at 
�U is essentially entirely
inelastic.

Figure 12 shows the same behavior on a linear scale for
the asymmetrical Anderson model with moderate interaction
strength. The low-energy part of the figure is again strikingly
similar to the one obtained for the Kondo model. This is not
very surprising, since the Kondo model is just the effective
model of the Anderson model in the limit of large U /� and

�U, where charge fluctuations occur only virtually. It is
remarkable that the quasilinear behavior of �inel and the pla-
teau are already present for these moderate values of U /�.

VII. CONCLUSION

In this paper, we discussed in detail the theory of inelastic
scattering from quantum impurities at T=0 temperature, as
formulated in Ref. 13, and applied this formalism to various
cases. We computed numerically the flow of the S-matrix
eigenvalues s�
� for three prototypical examples of quantum
impurity models, the Kondo model, the two-channel Kondo
model, and the Anderson model. As we discussed, inelastic
scattering appears, once �s�
���1, and the crucial difference
between Fermi-liquid models and non-Fermi-liquid models
is that for non-Fermi-liquid models, �s�
���1 even at the
Fermi energy, 
→0, while for Fermi liquids, �s�
=0��=1.

We also determined the inelastic scattering cross section,
�inel�
�, for all these models. For the Kondo model and the
Anderson model in the Kondo regime, i.e., for large interac-
tion values, the low-energy part of �inel�
� has features es-
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FIG. 10. �Color online� Flow of the eigenvalue of the S matrix
for the Anderson model for �=0.035, U=0.04, 0.08, 0.16, 0.26,
0.32, 0.40, 0.64, and �d=−U /2.
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sentially identical to those of the Kondo model: Deep in the
Fermi-liquid regime, one has �inel�
���
 /TK�2, while for
0.05TK�
�0.5TK, a quasilinear regime appears, above
which �inel exhibits a plateau with �inel�
��const over a
wide frequency range. These features are quite robust and
survive even in the case of electron-hole symmetry breaking.

We also find that at large frequencies, the scattering be-
comes asymptotically inelastic, and the inelastic scattering
rate scales as

1

�inel
� nimp

�S�S + 1�
2� ln2�
/TK�

,

while the elastic scattering rate falls off much more rapidly
as

1

�el
� nimp

�3S�S + 1�
8� ln4�
/TK�

.

This result implies that—contrary to common wisdom-even
spin—diagonal scattering is inelastic at high energies.39

In addition to these remarkable low-energy features, the
Anderson Hamiltonian exhibits another very interesting in-
elastic scattering peak at 
�U that corresponds to charge
excitations. Rather surprisingly, this peak is present even in
the weak coupling regime, where no Hubbard peak can be
seen in the total scattering cross section. In the Kondo re-
gime, on the other hand, this peak is essentially identical to
the Hubbard peak that appears in the total scattering cross
section, and which corresponds to almost completely inelas-
tic scattering.

In the two-channel Kondo model, the prototype of all
non-Fermi-liquid models, inelastic scattering remains finite
even if 
→0 and is exactly half of the total scattering rate.
However, the tiniest channel symmetry breaking destroys
this non-Fermi-liquid state and generates a new Fermi-liquid
scale, T*, below which inelastic scattering freezes out, and
the scattering becomes totally elastic.

The inelastic scattering rates computed here for the
Kondo and Anderson models and their finite temperature ver-
sions computed in Ref. 24 are in quantitative agreement with
recent experimental studies on magnetically doped mesos-
copic wires excepting the limit of very small temperature,
where a small residual inelastic scattering rate seems to be
present.21–23 The origin of this small residual inelastic scat-
tering rate is not clear yet; it might be due to some structural
defects caused by the implantation process, or just some
magnetic ions located at the interface of the wire. The agree-
ment is even more surprising, since in reality, magnetic im-
purities are not of spin S=1/2 character but have a rather
complicated d-level structure.46 They thus usually have a
large spin associated with them �typically S=2 or S=5/2 for
Fe, Cr, or Mn� subject to crystal fields that does not couple
through a simple exchange interaction to the conduction
electrons. In reality, scattering thus takes place in some
d-electron channels. For S=5/2, e.g., the Fermi-liquid state
forms due to screening in five d channels. Unfortunately,
these realistic impurity models are out of reach for NRG
computations.

In the case of d impurities, scattering cross sections also
become larger due to the many angular momentum channels

10
-6

10
-4

10
-2

10
0

10
2

ω / ∆

10
-2

10
-1

10
0

σ
/σ

0

10
-6

10
-4

10
-2

10
0

10
2

ω / ∆

10
-2

10
-1

10
0

σ
/σ

0

10
-6

10
-4

10
-2

10
0

10
2

ω / ∆

10
-2

10
-1

10
0

σ
/σ

0

σ
tot

σ
el

σ
inel

10
-6

10
-4

10
-2

10
0

10
2

ω / ∆

10
-2

10
-1

10
0

σ
/σ

0

U / ∆ = 0.28 U / ∆ = 2.26

U / ∆ = 9.05 U / ∆ = 18.1

~ ln
-2

(ω / T
K
)

~ ln
-4

(ω / T
K
)

∆/D = 0.035

ε
d

= -U/2
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total scattering cross sections for the symmetric
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that are open to scattering. Assuming spherical symmetry,
e.g., the angle averaged total and elastic scattering cross sec-
tions become

�tot =
2�

pF
2 �

L

Im�tL�
�� , �50�

�el =
�

pF
2 �

L

�tL�
��2, �51�

i.e., the total, elastic, and inelastic scattering cross sections
are about five times larger for d-wave scattering than for
s-wave scattering considered in the usual Kondo problem.
This must also be taken into account when computing the
amplitude of the observed Kondo anomaly or that of the
inelastic scattering rate. Finally, band structure effects may
also play an important role in real materials, where the Fermi
surface is not spherical, and the Fermi velocity depends on
the direction of incidence.25
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APPENDIX: FIELD-THEORETIC DERIVATION OF THE T
MATRIX FOR THE ANDERSON MODEL

Here, we derive the T matrix for the Anderson model
following the lines of Sec. 3. We first introduce the generat-
ing functional for the Green’s functions

Z��,�̄� =
 D�ā�a��D�d̄�d��e−iSei�̄a+i�ā, �A1�

where the source terms are defined as in Sec. III. The action
S=Se+Sd+Shyb+Sint consists of four distinct parts, with Se
defined by Eq. �34� is identical to the one given in Sec. III
and the remaining parts given by

Sd = − �
�

 dtdt�d̄��t��Gd

0���t − t��d��t�� ,

Shyb = V�
�

 dt�ā��t,0�d��t� + c.c.� ,

Sint = U
 dtd̄↑�t�d̄↓�t�d↓�t�d↑�t� , �A2�

respectively. Shifting the integration variables generates the
terms

− �̄ · a − � · ā → �
p,�

 dtdt��̄p,�Gp�

0 �t − t���p,�

− V�
p,�

 dtdt�Gp�

0 �t − t����̄p,��t��d��t�

+ c.c.� , �A3�

and which, after functional differentiation with respect to
�p,�, gives rise to the identity

Gp�,p����t − t�� = �p,p���,��Gp�
0 �t − t�� − iV2��,��
 dt̃dt̃Gp�

0 �t

− t̃��d��t̃�d̄���t̃��Gp���
0 �t̃ − t�� . �A4�

The Fourier transform of this equation yields Eq. �49�.
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