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We present a model of charge transport in organic molecular semiconductors based on the effects of lattice
fluctuations on the quantum coherence of the electronic state of the charge carrier. Thermal intermolecular
phonons and librations tend to localize pure coherent states and to assist the motion of less coherent ones.
Decoherence is thus the primary mechanism by which conduction occurs. It is driven by the coupling of the
carrier to the molecular lattice through polarization and transfer integral fluctuations as described by the
Hamiltonian of Gosar and Choi �Phys. Rev. 150, 529 �1966��. Localization effects in the quantum coherent
regime are modeled via the Anderson Hamiltonian with correlated diagonal and nondiagonal disorders �M.-N.
Bussac et al., Europhys. Lett. 66, 392 �2004�� leading to the determination of the carrier localization length.
This length defines the coherent extension of the ground state and determines, in turn, the diffusion range in the
incoherent regime and thus the mobility. The transfer integral disorder of Troisi and Orlandi �J. Phys. Chem. A
110, 4065 �2006�� can also be incorporated. This model, based on the idea of decoherence, allowed us to
predict the value and temperature dependence of the carrier mobility in prototypical organic semiconductors
that are in qualitative accord with experiments.
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I. INTRODUCTION

Molecular electronics is a field that is rapidly gaining im-
portance because of its potential in producing a new breed of
plastic organic devices. A physical quantity that is critical to
their operation is the charge-carrier mobility in the organic
molecular semiconductor that forms the active layer in these
devices. It is therefore not surprising that along with this
resurgence of interest in molecular electronics in recent
years, charge transport mechanisms in organic semiconduc-
tors are once again at the forefront of condensed-matter
physics research. Consequently, important debates in this
field have been rekindled recently4 to which we would like to
contribute by the present work.

Experimental observations of “bandlike” charge transport
in single-crystalline organic molecular semiconductors have
previously been observed in stilbene,5 perylene,6 acenes,7,8

or rubrene.9,10 Hole mobilities of 1–50 cm2/V s at room
temperature were reported. In many cases, these mobilities
were shown to decrease with increasing temperatures. At low
temperatures, values of a few hundred cm2/V s were even
seen in a “time-of-flight” measurement.6 Earlier theoretical
explanations of these results invoked rigid-band models to
account for the power-law temperature dependence of the
mobility.7 Later on, the electron-phonon interaction became
widely recognized as the key factor that determines the mo-
bility, leading to the development of several polaronic mod-
els of charge transport in these materials.11–17

The first proposed polaronic models have emphasized the
influence of the molecular character of organic molecular
crystals on charge transport. One approach calculated the
reorganization energies on a single molecule and used the
Marcus theory of charge transfer11–14 to determine the mo-
bility. Another15–17 stressed the importance of low-energy
phonons and librations and derived an average mobility from

the Kubo formula. In their recent works, Troisi and Orlandi
criticized both these approaches based on polaron theories.
They have suggested that the formation of a small polaron
with the charge localized on a single molecule is unlikely18

because the nuclear reorganization energy in these crystals is
comparable to the average intermolecular charge transfer
while the more general approach based on intermolecular
vibrations suffers some problems of averaging.3 Subse-
quently, these models were extended to describe the effects
of thermal disorder and thermal fluctuations on charge trans-
port. In this case, low-energy phonons and librations are able
both to localize the charge and to drive its diffusion in the
lattice. In a previous work,2 we implemented the idea of
phonons acting as a source of disorder and localizing the
charge using an Anderson Hamiltonian with the carrier
coupled to low-energy intermolecular phonons and librations
through the fluctuations of the polarization energy. On the
other hand, the model of Troisi and Orlandi focused on the
effects of fluctuations of the transfer integral which are con-
sidered to be large enough to localize and then move the
carrier in the lattice.3 We note that these theoretical
considerations2,3 have been introduced in the pioneering
work of Gosar and Choi1 on the determination of the mobil-
ity of an excess charge in a molecular crystal.

The present work focuses on quantum coherence effects
on charge transport in organic semiconductors that have been
ignored so far because of the technical difficulty of treating
decoherence in a system with strong electron-phonon inter-
actions. We calculate the carrier localization length resulting
from the fluctuations of the electronic polarization energy.
The fluctuations of the transfer integrals treated in Ref. 3 can
also be included without problem. This localization length
allowed us to determine the carrier diffusion coefficient lead-
ing to the prediction of the mobility of charge carrier in
organic molecular crystals. We find that these results can
explain the main trends of time-of-flight mobility measure-
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ments performed in pure organic semiconductor single
crystals.

II. GENERAL FRAMEWORK OF THE CONDUCTION
MODEL

Low-energy phonons and librations play an ambivalent
role in limiting charge-carrier transport in molecular semi-
conductors. Depending on the quantum coherence of the
electronic state of the carrier, thermal phonons will tend to
localize pure coherent states or assist the motion of less co-
herent ones. As long as the carrier electronic states keep their
quantum coherence, they are essentially localized by thermal
disorder within a localization length L, which defines the
coherent extension of the ground state. At longer time scales,
thermal fluctuations cause decoherence and assist the diffu-
sive motion of the carrier. This process is driven by the cou-
pling of the carrier to the molecular lattice, through polariza-
tion fluctuations and transfer integral fluctuations, as
described by Gosar and Choi.1 The localization length L de-
termines the diffusion range and thus the mobility. To deter-
mine this quantity in the quantum coherent regime, we first
introduce a transfer-matrix formalism in two dimensions de-
picting the quantum interference processes in the plane of
high conduction of these organic semiconductors. The
Hamiltonian for this quantum model is the Anderson
Hamiltonian19 with correlated diagonal and nondiagonal dis-
orders established in Ref. 2, and which is extended in the
present work by adding the purely diagonal transfer integral
disorder computed in Ref. 3. The role of spatial and energetic
correlations will be studied with particular emphasis for the
case of polarization fluctuations. For the sake of concrete-
ness, we shall apply the results derived here to widely stud-
ied molecular single crystals such as the acenes or rubrene.

The lattice dynamics in these materials has been investi-
gated extensively. Inelastic neutron scattering in naphthalene
by Natkaniec et al.20 revealed 12 intermolecular phonon
branches in crystalline acenes. Structural refinements using a
molecular-dynamics model yielded a satisfactory fit to the
measured phonon-dispersion curves. More recently, some of
these modes along with their relative electron-phonon cou-
pling constants were obtained by a density-functional theory/
local-density approximation scheme applied to the acene se-
ries from naphthalene to tetracene.17 Both these calculations
converge on the existence of a vibrational band centered near
50 cm−1 with three acoustic modes, three optical modes, and
six librations. The directional average of the root-mean-
square amplitudes of the translational vibrations of the mol-
ecules is 0.17 Å at room temperature in anthracene as ob-
tained from the x-ray measurements of Cruickshank.21 This
work also showed a typical librational amplitude of 3° or 4°
at room temperature. The largest hole transfer integral be-
tween adjacent sites in pentacene, the prototype acene com-
pound, is about 1000 cm−1 �0.12 eV� as determined indepen-
dently in Refs. 18 and 22. Thus, the thermal motion can
essentially be considered as static within the hole residence
time of the order of 0.1 ps. More details on time scales are
given in Appendix A. This is enough time to build a large
quantum coherence into the system based on quantum inter-

ference in the Anderson weak localization regime. For times
longer than 1 ps, the coupling of the extra charge with the
intermolecular phonon reservoir now becomes the source for
decoherence.23 In this case, we treat the charge motion
within an adiabatic classical diffusion approximation, as the
charge follows the motion of the low-energy phonon wave
packet. The characteristic length of this diffusion is just the
localization length determined in the short time scale coher-
ent regime. Intramolecular vibrations play a negligible role
in the decoherence. In fact, according to Ref. 12, there is
essentially one mode that contributes to the reorganization
energy of the positively ionized molecule. In pentacene, this
corresponds to vibrational modes at 1340 cm−1. This mode is
too fast to localize the charge. Its main effect is to renormal-
ize the transfer integral, as outlined in our calculation pre-
sented previously in Appendix C of Ref. 24. That calculation
yielded a further reduction of the bare transfer integral by a
factor of 0.75.

III. CALCULATIONS OF THE LOCALIZATION LENGTHS

A. Hamiltonian

On each site of a real molecular crystal at finite tempera-
ture, the molecular positions and angles fluctuate with re-
spect to their values in the perfect crystal. The carrier motion
in the lattice is determined by its interaction with these fluc-
tuations. In order to construct the Hamiltonian that properly
accounts for these interactions, a clear distinction must be
made between fast and slow interactions with respect to the
transfer time h /J0, where J0 is the larger transfer integral in
the conducting plane of the molecular semiconductor. This
classification of the interactions according to their time scale
is described in Appendix A: we show that the interaction
with the electronic polarization and with intramolecular vi-
brations is fast, while the interaction with intermolecular
phonons and librations is slow. Fast interactions can be av-
eraged; they just renormalize the parameters of the
Hamiltonian.24 On the contrary, slow or static interactions
have to be included explicitly in the Hamiltonian.

This is the case for intermolecular phonons, which as we
mentioned earlier, form a band around 50 cm−1 in acenes.
These displacement fields on each crystal site can be consid-
ered as uncorrelated because of the nearly degenerate 12
phonon modes of acenes: many low-frequency phonons can
also be treated as independent random displacements �rj and
�� j on each site j. These lattice fluctuations, as shown below,
induce, in turn, site energy fluctuations � j and transfer inte-
gral fluctuations � j,j+h� . These random variables are character-
ized by mean-square values � and ��, respectively. We can
now start the construction of the Hamiltonian.

In a previous paper,2 the long-range Coulomb Hamil-
tonian describing the Coulomb polarization induced by a
charge in the molecular lattice is mapped onto a short-range
tight-binding Hamiltonian containing the polarization energy
Ep�n� on each molecular site n and the renormalized transfer

integral J̃n,n+h which couples two adjacent sites n and n+h.

Ĥ = �
n

Ep�n��n��n� − �
n,n+h

J̃n,n+h�n��n + h� . �1�
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In the case of a perfect crystal, the polarization energy is
uniform and shifts the ground state uniformly by about 1 eV,
as observed experimentally in acenes.25,26 Consequently, the
bare bandwith is significantly narrowed, regardless of the
temperature, both by the polarization cloud and the intramo-
lecular phonon cloud which dress the charge. The reduction
factors of the bare integral J have been calculated in Ref. 24
for pentacene to be 0.79 for polarization and 0.75 for in-
tramolecular phonons.

The situation changes greatly when intermolecular ther-
mal disorder enters the system. Thermal disorder on each site
is parametrized by six Gaussian random variables attributed
to each translational and librational degree of freedom of the
molecules.

We designate the position fluctuations �r� j =r� j −r� j
0 and the

angular fluctuations are represented by ��� j =�� j −�� j
0. Follow-

ing Ref. 2, the polarization energy in the presence of thermal
disorder can be written at each site n as

Ep�n� = Ep
0�n� + �n, �2�

where

�n = �
j�n

�Ep�n�

�rj
�

��rj
� − �rn

� � +
�Ep�n�

�� j
�

��� j
� − ��n

� � .

The renormalization factor of the transfer integral at each
site due to polarization effects is given by2

J̃n,n+h

Jn,n+h
= exp

�n + �n+h

�
, �3�

where �, an energy of the order 1 eV, defines the importance
of renormalization.2 It is also possible to introduce in the
Hamiltonian the fluctuations of the bare transfer integrals,
Jn,n+h, following the model of Troisi and Orlandi3 as

Jn,n+h�r�n+h − r�n,��n+h − ��n� = Jn,n+h
0 + �n,n+h� , �4�

where �n,n+h� =�� ��r�n+h+�r�n�+�� ����n+h−���n�. Then, Hamil-
tonian �1� becomes an Anderson Hamiltonian with correlated
diagonal and nondiagonal disorders and includes both polar-
ization fluctuations �n and transfer integral fluctuations
�n,n+h� .

Ĥ = �
n

�Ep
0�n� + �n��n��n� − �

n,n+h

�Jn,n+h
0 + �n,n+h� �

�exp
�n + �n+h

�
�n��n + h� . �5�

In principle, the integral energy fluctuations �n,n+h� and the
polarization fluctuations �n are correlated because they are

derived from the same thermal displacement field ��r�n ,���n�.
It is possible that the complexity of the displacement fields
dilutes the effects of these correlations. Troisi and Orlandi
have studied the effects of �n,n+h� alone. Here, we shall focus
on the polarization fluctuations �n, which appear both in the
diagonal and the nondiagonal parts of the Anderson Hamil-
tonian. Thus, in the following, we shall set �n,n+h� =0 in the
Hamiltonian of Eq. �5�. We are left with the random variable
�n, the distribution of which has a root-mean-square value �.

Polarization fluctuation effects are long ranged. Indeed,
the polarization cloud extends over many molecules as the
contribution of the induced dipoles decreases like the recip-
rocal distance to the carrier �1/r�. It is thus important in our
calculations to explore the amplitude of the correlations. This
has been done in Appendix C. The result is that spatial cor-
relations due to these disordered dipoles are much shorter
range. Thus, the correlations between the polarization energy
of two adjacent sites can be neglected. Nevertheless, diago-
nal and nondiagonal disorders are correlated through the
renormalization factor �. The disorder parameters which
constitute the starting point of the transfer-matrix calculation
are presented in Table I. The root-mean-square values � of
the polarization fluctuations have been calculated as follows.
For a given distribution of lattice displacements that we
know from the experimental work of Cruickshank,21 the po-
larization energy has been calculated according to our previ-
ous papers.2,24 Then, by varying the number of samples, the
distribution of �n can be reconstructed. We have checked that
it is Gaussian with a root-mean-square energy �.

B. Localization length

The Hamiltonian of the carrier coupled to slow lattice
fluctuations of Eq. �5� is of the Anderson type �with corre-
lated diagonal and nondiagonal disorders�. It is well known
that such types of Hamiltonian lead to Anderson localization:
the carrier quantum state results from the interference pro-
cess between the wavelets scattered at each site; this process
weakens the forward scattering in favor of the backward one.
Such a problem cannot be treated by averaging the energy
distribution because the coherence of the quantum state, ex-
pressed by the phases of the wave function at each molecular
site, should be preserved. The only transport model which is
completely quantum is the transfer-matrix formalism,27,28

which determines, in amplitude and phase, the carrier trans-
mission and reflection coefficients in a disordered lattice.
These coefficients cannot be directly averaged. Only the
Lyapunov exponent of the distribution obeys a central limit
theorem and can be averaged.27–29 We used the transfer-
matrix formalism to calculate the localization length of the
carrier. In two dimensions, this method can be applied to a
long strip.

We consider a two-dimensional �2D� lattice array system
of size N�M sites, as illustrated in Fig. 1. Each site �n ,m�

TABLE I. Thermal energetic disorder � resulting from the trans-
lational, librational, and both translational and librational lattice
fluctuations is the root-mean-square value of the disorder distribu-
tion. The renormalization factor � independent of the type of dis-
order �see Eq. �5�� is related essentially to the highest-occupied-
molecular-orbital–lowest-unoccupied-molecular-orbital gap �Ref.
2�.

Disorder � �meV� � �eV�

0.1 Å 42.1 	0.4

3° 9.4 	0.4

3° +0.1 Å 44.9 	0.4
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corresponds to one molecule and is characterized by an en-
ergy �nm from a Gaussian distribution. The ground-state
wave function ���,

��� = � an,m�n,m� , �6�

is the solution of the Schrödinger equation

Ĥ��� = E��� . �7�

We impose periodic boundary conditions and only take
into account next-neighbor interactions. Then, Eq. �7� can be
written explicitly as

�n,m��Ĥ − E���� = 0,

⇔��n,m − E�an,m + Jn,m
n,m+1an,m+1 + Jn,m

n,m−1an,m−1 + Jn,m
n+1,man+1,m

+ Jn,m
n−1,man−1,m = 0. �8�

Using An= �an,1 , . . . ,an,M�, then the former equation be-
comes

An+1 = MnAn + M̃n−1An−1, �9�

with Mn and M̃n given in Appendix B. This equation can be
recast into the transfer-matrix formalism as


An+1

An
� = 
Mn+1 M̃n

I O
�
 An

An−1
� = Tn
 An

An−1
� . �10�

We define �N=�1
NTn, then


An+1

An
� = �n
A1

A0
� . �11�

For the limiting case of n going to infinity, �n exposes the
asymptotic behavior of the ground-state wave function ���.
According to Oseledec’s theorem,30 the following limit
yields the quantity �i, called ith Lyapunov exponent where vi
is the ith eigenvalue of �n.

lim
n→	

ln�vi�
n

= − �i �12�

is well defined so that when n increases, vi is simply

vi  e−n�i. �13�

Now, �i
0 describes the exponential rate of decrease of
the components of the ground state ���. Then, any solution of
the Schrödinger equation will decrease faster than the mini-
mum rate given by

� = min
i

��i� . �14�

L=1/� is called the localization length and represents a mea-
sure of the extension of the ground-state wave function.

To calculate the localization length, we sorted 2N random
vectors and calculated their evolution via the transfer-matrix
process. Actually, if we start from a vector V0, after n steps,
its image Vn is dominated by the largest Lyapunov exponent.
To obtain the smallest one that corresponds to the localiza-
tion length, we used an orthogonal normalization31 process
applied to 2N random vectors in order to get rid of the con-
tribution of the 2N−1 first Lyapunov exponents that screen
the one we look after.

These Lyapunov exponents were calculated for arrays of
finite width M. We have to use a finite-size rescaling to ex-
tract the actual localization length L from the localization
length L�M� for finite values of M. According to Ref. 32, as

the diagonal parameter � / J̃ is lower than 4, we identify in
our 2D system the localization length L of the infinitely wide
array by taking the limit

lim
M→	

L�M� , �15�

where L�M� is the localization length obtained for an array
of width M. Figure 2 shows the values of L�M� /M versus
1/M for different energy positions in the bandwidth calcu-
lated for �=0.4, as established in Ref. 2 for an angular dis-
order. As 1/M goes to 0, we can fit, as represented in Fig. 2,
L�M� /M �that also goes to 0� with a second-order polyno-
mial a /M +b /M2 to find the expected localization length L
equal to the parameter a.

A complete study of such a 2D system was recently car-
ried out by Unge and Stafström. The results of Ref. 27 were

FIG. 1. Two-dimensional strip of width M and length N.

FIG. 2. Localization length in a strip of finite width L�M�. Each
curve corresponds to a different energy in the band and a disorder of
0.5 J. When 1/M tends to 0, the localization length for a given
energy corresponds to the asymptotic slope of the corresponding
curve.
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partly used to validate our procedure of calculation of the
Lyapunov exponents.

Since we are interested in charge transport, we explore the
behavior of the localization length near the band edge. Fig-
ure 3 represents the results for an energy range between
−3.95 and −4.05 J with the band edge of the perfect 2D
lattice being equal to −4 J.

IV. EVALUATION OF THE MOBILITY

At time scales of a fraction of picosecond or less, inter-
molecular phonons can be viewed as static disorder; then, at
this time scale, quantum coherence induces carrier localiza-
tion. A carrier placed in such a system extends coherently
over a characteristic length L. The question is how can this
electron that is localized by thermal disorder move to a new
position? If all types of intramolecular phonons whether
acoustic, optical, and librational are able to localize the
charge efficiently, they cannot drive the motion of the charge
with the same efficiency.

Dispersionless optical phonons are not efficient in moving
charges. Emin was the first to observe this fact33 which was
established more rigorously in Ref. 34. Furthermore, we con-
sider the charge motion to be adiabatic, because transfer in-
tegrals are at least 1 order of magnitude larger than intermo-
lecular phonon energies. The most efficient process for
moving the extra charge is thus to use an acoustic phonon
moving in the conduction plane. Then, during the lifetime of
the localized excitation, the charge follows the phonon
packet adiabatically. It moves along with the acoustic pho-
non with a speed that is basically equal to the sound velocity
vs. Values of the sound velocity in naphthalene are given in
Ref. 1 and can also be deduced from the phonon-dispersion
curves of Ref. 20. We have taken a value of vs=3.3 km s−1,
which we consider a good order of magnitude for acenes.
Thus, the decoherence from the Anderson localized state to
the classical diffusion in the plane leads to a mobility

� =
�e�D
kBT

=
�e�vsL

4kBT
. �16�

Einstein’s relation used here is valid for a nondegenerated
hole gas. This condition is achieved in time-of-flight mea-

surements and in field-effect transistors. From the transfer-
matrix calculation applied near the hole band edge, we find a
localization length L /a varying as a power law of the polar-
ization energy fluctuation �see Fig. 4�

L

a
= 8
�

J̃
�−1.4

, �17�

where a=5 nm is the lattice spacing parameter and J̃
=58 meV the renormalized transfer integral.

If we combine the effect of a Gaussian translational dis-
order with a root-mean-square amplitude of 0.1 Å and a
Gaussian librational disorder of 3° around each axis, we get
from Table I a resulting energetic disorder of 45 meV. From
Fig. 4, we deduce a localization length of 11a. Using Eq.
�16�, we get a mobility of 18 cm2 V−1 s−1.

Furthermore, because the polarization coupling is linear in
the different molecular degrees of freedom �Eq. �2��, the
fluctuation � is proportional to �kBT�1/2 at high temperatures.
Then, we find that the mobility varies as a power law of the
temperature with exponent �	−1.7.

It is important to have an idea of the temperature range of
validity of the power laws that results from our theory. They
are based on a diffusionlike view of the transport. The dis-
order characterized by � is a site disorder, whereas the local-
ized wave function spans multiple sites and is therefore char-
acterized by a disorder that is lower by a factor of �a /L�. The
condition ��a /L��kBT guarantees the diffusive aspect of the
motion; otherwise, for cases in which the effective disorder
exceeds kBT, a hopping process appears. With the values of
Table I, concerning thermal disorder and polarization fluc-
tuations, this condition yields T
50 K.

V. COMPARISON WITH EXPERIMENT

The present theoretical work is applicable to the evalua-
tion of the intrinsic mobility of a carrier, which propagates
through a single-crystalline molecular semiconductor such as
pentacene or rubrene. In particular, it is not directly appli-
cable to the channel of a molecular transistor with an oxide

FIG. 3. Localization length close to the hole band edge for dif-
ferent values of the diagonal disorder. When the disorder increases,
the localization length decreases.

FIG. 4. Neper logarithm of the localization length calculated at
E=−4J versus the Neper logarithm of the diagonal disorder. The
linear relation leads to a power-law behavior as in experiments. The
slope is about −1.4.
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gate. In these transistors, surface Fröhlich polarons have
been shown to play a major role.24,35 Moreover, the field-
effect mobility is affected by the presence of traps, particu-
larly at the gate interface. Charge-carrier traps dominate
transport in thin-film transistors and often in single-
crystalline transistors.4,36,37 These traps have not been con-
sidered here.

The temperature range of interest is between 50 and
400 K where the mobility decreases with increasing tem-
perature with a power law T−�. The relevant experiments
were performed on large ultrapurified molecular crystals by
using the time-of-flight technique. The exponent � was
found to be 2.9 for holes and 1.4 for electrons in
naphthalene,7,8 1.5 for holes and 1.26 for electrons in
anthracene,38 and 1.87 for electrons in perylene.6 More re-
cently, the measured values of � in sublimation grown
perylene single crystals were found to be 2.8 for electrons
and close to zero for holes.39 In biphenyl single crystals, the
electron mobility exponent is 1.18 for both electrons and
holes.6 In phenenthrene, the hole mobility varies with the
exponent 1.8 and the electron mobility with the exponent
0.95.6 In tetracene single crystals, an exponent � of 2 was
reported for holes,40 while for air-gap transistor in rubrene, a
value of 1.45 can be deduced above 240 K from the curve of
Fig. 3 in Ref. 36.

All the experiments cited above demonstrate that in ultra-
pure single crystals of molecular semiconductors, the mobil-
ity decreases as a power law with increasing temperature.
The precise value of the exponent depends on the details of
the crystal structure, on the transfer integrals, on the polariz-
abilities of the molecules, and on the interaction of the extra
charge with the lattice. The exponent � varies essentially
between 1 and 2 depending on these factors.

In this sense, our theoretical model, which contains no
adjustable parameter and describes a prototypical crystalline
molecular semiconductor, gives the good order of magnitude
of the intrinsic mobility and accounts qualitatively for the
usual temperature power-law variations. The model can be
easily adapted to calculate � in many systems by entering the
relevant material-specific parameters. The geometry of the
lattice can also be chosen according to more precise crystal-
lographic data �in the present analysis, the conducting plane
of acenes is assumed to be a square molecular lattice�. The
values of the relevant transfer integrals and their number can
also be varied �here, we have considered a single transfer
integral�. In general, these values are different for electrons
and holes. The calculation of thermal disorder at a given
temperature can also be varied according to the polarizabil-
ities of the individual molecules and the characteristics of the
coupling to the lattice. Moreover, the presence of defects and
impurities acting as traps in the actual crystals can always
change the temperature dependence of the mobility, even for
temperatures far outside of the hopping regime. Only intrin-
sic effects have been included in the present calculation.

It is worth summarizing here the different parameters that
we have used in the model and recalling their origin. Most of
these values concern pentacene, but in the cases where the
values do not exist for this compound, we can also infer the
value from experiments on other acenes as follows: �a� bare
transfer integral: 100 meV from Refs. 22 and 18; �b� ef-

fective transfer integral renormalized twice according to Ref.

24, J̃=58 meV; �c� relevant intramolecular phonon
frequency:12 1340 cm−1; �d� typical intermolecular phonon
frequencies:17,20 50 cm−1; �e� sound velocity in the plane:1,20

3.3 km/s; �f� amplitude of the translational vibrations at
room temperature:21 0.17 Å; �g� amplitude of the librations
at room temperature:21 3°; and �h� polarization energy of a
carrier Ep=−1.5 eV, calculated in Ref. 24.

Special cases have also been observed where the mobility
is relatively constant over a large temperature range. In field-
effect transistors, this is now attributed to the existence of
Fröhlich polarons.35 In the present form, our model cannot
account for such a low value of � �close to zero�.

VI. COMPARISON WITH RECENT THEORIES

The present theory depicts the behavior of a carrier in a
random medium resulting from lattice fluctuations. It is im-
portant to compare it to other existing models that pursue the
same purpose by using other scenarios: polarons, reorganiza-
tion energies, etc.

In our model, lattice fluctuations are coupled to the charge
carrier through fluctuations of the Coulomb polarization
energy.1,2 The idea is to consider possible dynamic localiza-
tion processes induced by these Coulomb fluctuations acting
on the carrier as a random field. This means that at short time
scales, the motion of the carrier is coherent and can be
treated quantum mechanically using the transfer-matrix for-
malism. At this stage, we avoid any averaging of the cou-
pling energies. We keep quantum interference and Anderson
localization, which are relevant to this problem. A study of
Anderson localization in molecular semiconductors using the
same transfer-matrix formalism was recently published by
Unge and Stafström.29 The Hamiltonian they use is the same
as Eq. �5� and comes from Ref. 2. Our results are consistent
with theirs, but the authors do not follow the same analysis
or present a transport model.

We consider the localization process to be dynamical. At
time scales longer than 1 ps �see Appendix A�, decoherence
occurs. Then, the localized carrier “surfs” adiabatically on
the acoustic-phonon waves: in fact, the carrier localizes in a
certain landscape but the landscape moves slowly and the
carrier is forced to follow this motion.

In some respect, this picture resembles the scenario pro-
posed by Troisi and Orlandi3 to achieve the same purpose.
Our model is 2D instead of theirs which is one dimension
and we use quantum transport instead of a semiclassical
simulation. Both models insist on the fact that lattice fluctua-
tions can both localize the carrier and drive its diffusion in
the lattice. It is also important at this stage to compare our
theory with well established recent models based on reorga-
nization energies and polarons.

In these last years, the Marcus theory has been exten-
sively used to deduce charge transport parameters in molecu-
lar organic semiconductors. The model has been established
half a century ago to predict charge-transfer rates between a
reactant and a product in a donor-acceptor reaction. More
recently, it has been widely used to determine small polaron
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hopping rates in oxides such as chromia, iron oxide, anatase,
and rutile41 and in molecular organic semiconductors.11–14

The advantages of this model are that the transport param-
eters are considered to depend only on a pair of adjacent sites
and that the carrier is coupled to the lattice through optical or
intramolecular vibration modes only. The result is simple and
the charge-transfer rate kij can be written in the semiclassical
and nonadiabatic approximation

kij = tij
2� 

�2kBT�ij
exp�−

��Eij − �ij�2

4�ijkBT
� , �18�

where �ij is the reorganization energy, �Eij =�i−� j, �i, and � j
are the energies of the initial and final states, and tij is the
transfer integral between the two sites.

The value of �ij corresponds to the dimer energy differ-
ence between the situation where the pair is charged but the
geometric configuration corresponds to a neutral pair, and the
situation where the pair is charged and is in the true geom-
etry.

It is worth noting that in this form, the Marcus theory is
strictly equivalent to the earlier Emin-Holstein model of
small polaron hopping.33 Emin and Holstein introduced the
concept of polaron binding energy EB �equal to one-quarter
of the reorganization energy� and the idea of coincidence,
which is equivalent to the idea of a transition state in the
Marcus theory.

Due to the fact that the Marcus theory always yields a
transfer rate that increases with temperature, it cannot ad-
equately describe the charge mobility in the bulk of single
crystals where the temperature behavior is just the opposite.
Even in the hopping regime, relation �18� has many restric-
tions. For example, this equation is only applicable when
� /4 is much larger than tij, a condition that is not satisfied
for acenes and related compounds.12 It is also valid only
when the relevant intramolecular phonon frequency respon-
sible for charge transfer �1340 cm−1� is much lower than the
transfer integral tij. This is also not the case in acenes and
related compounds.12 A third restriction is that small polaron
hopping in a crystal must obey selection rules.33,34 The opti-
cal modes involved in the small polaron formation cannot
lead to carrier motion in the lattice. Acoustic phonons are
mandatory for this hopping process to occur. This solid-state
effect is not accounted for in the Marcus theory.

Finally, relation �18� includes only short-range interac-
tions which are usually deduced from ab initio software
packages. As emphasized in Ref. 42, “the polarization effect
in these systems is largely electrostatic in nature and can
change dramatically upon transition from a dimer to an ex-
tended system.”

In order to overcome the problem of nonlocality and to
introduce the low-energy acoustic phonons that are of para-
mount importance in charge-transfer processes in molecular
semiconductors, Hannewald and Bobbert have worked on
the basis of a Peierls-Holstein Hamiltonian. Both the carrier
and the phonons are treated quantum mechanically. The role
of low-energy phonons is to modulate the carrier energy on
each site and the transfer integrals between adjacent sites.
From this theory, the authors predict polaron bandwidth

narrowing17 and anisotropy effects in phonon-assisted
charge-carrier transport.16 These results are used to build a
theory of charge-carrier conduction in ultrapure organic crys-
tals that has been applied with success to naphthalene.43 Our
model, presented here, differs in two aspects.

�i� It includes electronic polarization effects that have
been shown to be important, and not only pure electron-
phonon interactions.

�ii� The modulation of carrier energies due to nonlocal
couplings to low-energy phonons induces weak localization
effects. Hannewald and Bobbert do not include this possibil-
ity because in their way of calculating the bandwidth narrow-
ing contribution, they average the electronic energies, as al-
ready observed by Troisi and Orlandi.3

VII. POLARIZATION ENERGY FLUCTUATIONS OR
TRANSFER INTEGRAL FLUCTUATIONS?

In general, thermal energetic disorder in organic molecu-
lar semiconductors comes either from a distribution of polar-
ization energies or of transfer integrals or a combination of
both of these fluctuations. Troisi and Orlandi3,18 have shown
that by an appropriate choice for the values of the parameters
in their model, transfer integral fluctuations alone are able to
account for the order of magnitude of the mobility and its
observed temperature dependence. Here, we have also shown
that polarization fluctuations alone can achieve the same re-
sult.

In fact, the intermolecular potentials contain both short-
range and long-range contributions due to the presence of an
extra charge. It is typical in quantum chemistry and
molecular-dynamics calculations3,18 that only the short-range
part of these potentials is considered. However, long-range
polarization effects are not negligible and must be included
in any realistic calculation.

It is important to emphasize the result of two recent ex-
periments which show that polarization contributions cannot
be avoided and do not represent special cases. The measure-
ments of Stassen et al.10 have shown unambiguously that the
hole field-effect mobilities in single crystals of rubrene or
tetracene depend strongly on the dielectric permittivity of the
gate. We have recently shown24 that such dependence can be
understood only if polarization effects are taken into account.
Our recent thermopower measurements44 on high quality
pentacene films evaporated on different substrates revealed a
large intrinsic temperature-independent contribution to the
Seebeck coefficient of 265 �V/K. This implies that each
carrier transports an intrinsic vibrational entropy of 3kB. We
have shown quantitatively that this large entropy is associ-
ated with local variations of the low-energy vibration fre-
quencies around a carrier by 30% with respect to the bulk.
This fact, which is not considered in Ref. 3, is easily under-
stood when one considers that polarization effects induced
by the carrier locally change the character of the interaction
between molecules from van der Waals bonds to point-dipole
or dipole-dipole interactions. They validate the concept of
polarization fluctuations which was introduced initially by
Gosar and Choi.1
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In fact, the role of long-range polarization in the motion
of carriers in acenes and related compounds was addressed
for the first time in 1954 �Refs. 1 and 45� and considered
seriously in the 1970s.46 Nowadays, it tends once more to be
widely recognized in the scientific community.29,42,47

VIII. CONCLUSION

Following the work of Gosar and Choi,1 we have pro-
posed a model that accounts for the main features of trans-
port in semiconducting acenes and related compounds. Like
Troisi and Orlandi,3 we think that charge transport is due to
lattice fluctuations. An important contribution of the present
model is the inclusion of quantum interference effects, which
are generally ignored in other transport models.

The present theory exclusively concerns conduction in
bulk ultrapure crystals. It is also likely to apply to conduction
in ultrapure crystal transistors made with polymer or air-gap
gates. Although Fröhlich polarons were not considered in the
present work, we have proposed that they dominate the
transport24 in cases where a molecular single crystal is inter-
faced with an oxide gate. This conclusion is consistent with
recent experiments.35

Even in single crystals, the presence of electroactive de-
fects acting as traps has been demonstrated.4,36,37 They
change the temperature dependence of the mobility. In the
case where these traps dominate the transport, typically in
thin-film acene transistors, a hopping regime sets in and the
mobility becomes essentially activated with temperature.
Even in this regime, the electronic polarization induced
around trapped and free charges remains of paramount im-
portance. A work is in progress to demonstrate this point
theoretically.
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APPENDIX A: TIME SCALES

The noninteracting band properties of a perfect pentacene
crystal along all crystallographic directions have been calcu-
lated by Troisi and Orlandi18 and Cheng et al.22 For the bare
transfer integral J0 between molecules along the direction of
easy propagation in the �a ,b� plane, they obtain J0

=100 meV from which one gets h /J0	4�10−14 s as the
characteristic time for in-plane Bloch-wave formation. The
corresponding transfer time in the perpendicular c-axis direc-
tion, h /J�

0 , is 30 times longer than in the plane. Thus, in the
presence of scattering, which substantially reduces the
Bloch-wave lifetime, the carrier motion is essentially two
dimensional.

The above considerations allow for the classification of
the various charge-carrier interactions in organic semicon-

ductors. For fast interactions with characteristic times shorter
than h /J0, the charge can be assumed to be located on a
single molecular site. In pentacene, this is the situation en-
countered during the interaction of the carrier with the elec-
tronic polarizability of the medium or in intramolecular
charge transfer as well as the coupling with intramolecular
carbon stretching vibrations with frequencies around
1340 cm−1. Since fast interactions arise prior to the forma-
tion of the Bloch wave, they have the effect of dressing the
charge with a polarization cloud or a lattice deformation
cloud. Slow interactions, on the other hand, have character-
istic times much longer than h /J0. They act directly on the
Bloch wave or the localized state. Such is the case for inter-
actions of the charge carrier with low-energy intermolecular
thermal phonons and librations �50 cm−1�, which in many
cases can be considered as static with respect to the two-
dimensional band motion. These interactions scatter the
Bloch wave or localize the electronic states when the disor-
der they introduce is large enough. An interesting discussion
of time scales can also be found in the first chapter of the
book by Silinsh and Čápek.46

Because they dress the charge with a polarization cloud or
lattice deformation, fast processes lead to a renormalization
of the bare transfer integrals J0 and J�

0 and, consequently,
increase the effective mass along all crystal directions. The
case involving electron-phonon interactions has been dis-
cussed by several authors including Appel48 and Davydov.49

The purely electronic effects were treated in earlier works2,24

in which we calculated the renormalization effect due to the
electronic polarizability in the bulk of the organic semicon-
ductor.

APPENDIX B: MATRICES Mn AND M̃n

The transfer-matrix equation �Eq. �9�� depends on the

2M �2M matrices Mn and M̃n defined as

FIG. 5. Correlation between Ep�0� and Ep�m� versus the number
of sites between sites 0 and m. The correlation decreases very fast
so that we can neglect spatial correlations.
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Mn =�
E − �n,0

Jn,0
n+1,0 −

Jn,0
n,1

Jn,0
n+1,0 −

Jn,0
n,M

Jn,0
n+1,0

−
Jn,1

n,0

Jn,1
n+1,1

E − �n,1

Jn,1
n+1,1 −

Jn,1
n,2

Jn,1
n+1,1

� � �

−
Jn,m

n,m−1

Jn,m
n+1,m

E − �n,m

Jn,m
n+1,m −

Jn,m
n,m+1

Jn,m
n+1,m

� � �

−
Jn,M−1

n,M−2

Jn,M−1
n+1,M−1

E − �n,M−1

Jn,M−1
n+1,M−1 −

Jn,M−1
n,M

Jn,M−1
n+1,M−1

−
Jn,M

n,M+1

Jn,M
n+1,M

E − �n,M

Jn,M
n+1,M −

Jn,M
n,M+1

Jn,M
n+1,M

� ,

M̃n−1 =�
−

Jn,0
n−1,0

Jn,0
n+1,0

�

−
Jn,m

n−1,m

Jn,m
n+1,m

�

−
Jn,M

n−1,M

Jn,M
n+1,M

� .

APPENDIX C: SPATIAL CORRELATIONS

Consider two sites n and m. The polarization energy Ep�n� depends on the spatial configuration of the molecules that
corresponds to the polarization cloud around the site n. Thus, if the polarization clouds around the given sites n and m overlap,
Ep�m� and Ep�n� are correlated.

In order to evaluate the magnitude of these correlations, we calculated

�n,m = �Ep�m�Ep�n�� − �Ep�m���Ep�n�� �C1�

for m=n+1 �next neighbor of n� to m=n+11 in the direction of highest transfer integral. The discrete cluster radius was set
to 18 Å and the angular disorder to 5°. The results of these discrete calculations are depicted in Fig. 5. The value for m=0
corresponds to the variance of the distribution of the polarization energy.

One can readily see from these results that the correlations decrease very fast with distance to a value smaller than 10% of
the variance. This decrease is to be related to the induced character of the dipoles: permanent dipoles would lead to long-range
correlations characteristic of Coulomb interactions. Therefore, as mentioned previously, we can reasonably neglect the spatial
correlations of the polarization energy distribution and only take into account energetic correlations in the study of the
Anderson Hamiltonian of Eq. �5�.
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