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We present GW calculations for small and large gap systems comprising typical semiconductors �Si, SiC,
GaAs, GaN, ZnO, ZnS, CdS, and AlP�, small gap semiconductors �PbS, PbSe, and PbTe�, insulators �C, BN,
MgO, and LiF�, and noble gas solids �Ar and Ne�. It is shown that the G0W0 approximation always yields too
small band gaps. To improve agreement with experiment, the eigenvalues in the Green’s function G �GW0� and
in the Green’s function and the dielectric matrix �GW� are updated until self-consistency is reached. The first
approximation leads to excellent agreement with experiment, whereas an update of the eigenvalues in G and W
gives too large band gaps for virtually all materials. From a pragmatic point of view, the GW0 approximation
thus seems to be an accurate and still reasonably fast method for predicting quasiparticle energies in simple
sp-bonded systems. We furthermore observe that the band gaps in materials with shallow d states �GaAs, GaN,
and ZnO� are systematically underestimated. We propose that an inaccurate description of the static dielectric
properties of these materials is responsible for the underestimation of the band gaps in GW0, which is itself a
result of the incomplete cancellation of the Hartree self-energy within the d shell by local or gradient corrected
density functionals.
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I. INTRODUCTION

The GW approximation1 is a widely used method to pre-
dict quasiparticle band gaps, as opposed to density-
functional theory �DFT�, which is only applicable to ground-
state properties.2,3 The large computational effort associated
with this method limits GW calculations to rather small sys-
tems, and various approximations, such as the plasmon-pole
model4 or model GW,5 have been used to make GW calcu-
lations more tractable. The most common approximation is
the non-self-consistent evaluation of the quasiparticle self-
energy on top of some computationally less demanding
scheme, usually the local-density approximation �LDA� or
generalized gradient approximation �GGA� to density-
functional theory.4 Although the calculated values are con-
siderably improved compared to LDA/GGA results, single
shot GW �usually called G0W0� has a tendency toward too
small gaps compared to experiment.6–9 For many materials
�e.g., Si or diamond�, the discrepancy of the LDA based
G0W0 gaps with experiment is relatively small, although for
others, it may be quite significant: e.g., various reports on
GW calculations for ZnO and ZnS yield gaps that are either
overestimated10,11 or, more commonly, seriously underesti-
mated for LDA based G0W0 calculations �e.g., typically
1–2 eV�.12–15 It is believed that calculations beyond the
usual single shot LDA+G0W0 approximation will remedy
most of these problems.

However, GW calculations with a full update of the
Green’s function G and screened potential W carried out for
the free-electron gas16 and more recently for metals �K� and
semiconductors �Si� �Ref. 17� show a significant overestima-
tion of the bandwidth and band gaps, equal in absolute mag-
nitude to the underestimation in LDA calculations. Such poor
performance is usually explained by a shift of intensity from
quasiparticle �QP� peaks into satellites, with a concomitant
reduction of the screening. Although in a subsequent paper
claims were made that the poor accuracy of the self-

consistent GW for Si can be cured by a more accurate treat-
ment of the semicore electrons,18 it remains a controversial
issue whether fully self-consistent GW calculations without
vertex corrections can yield accurate band gaps �see also
Refs. 19 and 20�.

Technically, fully self-consistent GW calculations are ex-
ceedingly demanding. To obtain a more tractable approach
and to avoid that intensity is moved from the QP peaks into
satellites, calculations are often performed by updating the
eigenvalues in the one-electron Green’s function and/or the
dielectric function but keeping the one-electron wave func-
tions identical to the LDA/GGA solutions. This method was
already suggested in the pioneering work of Hybertsen and
Louie4 and has been pursued by several groups. Most of
these calculations rely on the plasmon-pole model21,22 often
used in combination with model functions for the static di-
electric matrix.23–27 Overall, partially self-consistent GW cal-
culations yield larger gaps than the single shot G0W0 method
for a wide range of materials, at least within the applied
approximations �model dielectric function and plasmon
pole�. Other calculations with a more explicit evaluation of
the frequency-dependent dielectric matrix have also been
carried out.15,28,29 They confirm the trend to increase the
band gaps, although general conclusions on the absolute ac-
curacy cannot be drawn, as only few materials have been
considered and the applied approximations vary a lot. For
instance, Louie and co-workers often updated only the eigen-
values in G and kept W fixed,21,23–27 whereas for II–V com-
pounds, both G and W were updated.22 Fleszar and Hanke,15

also for the II–V compounds, obtained excellent results when
updating the eigenvalues in G and W as well. Given the
numerous approximations used in the past �model dielectric
functions, plasmon-pole approximation, pseudopotential ap-
proximation, and approximate treatment of core-valence in-
teraction�, there is a need for a careful assessment of the
effect of partial self-consistency, ideally pursued using a full-
potential method. This is the main goal of the present work.
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Admittedly, justifying the applied approximations is not
an entirely easy matter, except by observing, a posteriori,
good agreement with experiment. The most profound short-
coming of the applied method is that it still entirely depends
on the wave functions supplied as input to the GW calcula-
tions, and although LDA/GGA wave functions are most
likely reasonable for many semiconductors, more difficult
materials—such as transition-metal oxides or rare-earth
oxides—are not well described using LDA/GGA. We there-
fore avoid calculations on systems where LDA/GGA is be-
lieved to give unreliable wave functions but note that Faleev
et al. have recently proposed a method to construct an ap-
proximate Hermitian Hamiltonian, which permits one to in-
clude the off-diagonal elements of �.30 This method is par-
ticularly useful for materials such as NiO, MnO, or ceria,
where the LDA/GGA wave functions are qualitatively
wrong, but for simple sp-bonded systems, results are sug-
gested to be rather close to the simpler diagonal approxima-
tion used in the present work �1%–2%�. Systematic tests on
the difference between LDA/GGA wave functions and wave
functions by this method are discussed in Ref. 31 for Si and
Ar. We finally note that this self-consistent quasiparticle GW
technique �scQPGW� seems to overestimate band gaps typi-
cally by 10%–15%,9,32 and as we will show, this also holds
for the much simpler diagonal approximation if the eigenval-
ues in G and W are updated.

To address the issue of self-consistency, we perform GW
calculations using two different degrees of self-consistency
on a wide range of materials in the framework of the full-
potential projector augmented wave �PAW� method.8 Starting
from standard G0W0 calculations, we perform GW0 and GW
calculations. In both cases, the wave functions are kept fixed
�i.e., equal to GGA wave functions�, whereas the eigenvalues
are updated in the Green’s function only for the case of GW0
and in the dielectric matrix of the screened potential W and
Green’s function G in the case of GW. These methods do not
pose significant computational burdens compared to G0W0
calculations and can be used routinely for the prediction of
band gaps even for fairly large systems.8

II. COMPUTATIONAL METHOD

A. GW method

The quasiparticle energies in the GW approximation are
calculated as follows �for details on the notation and imple-
mentation, we refer to Ref. 8�:

Enk = Re���nk�T + Vn−e + VH + ��Enk���nk�� , �1�

where T is the kinetic-energy operator, Vn−e the potential of
the nuclei, VH the Hartree potential, and n and k the band
and k-point indices, respectively. The diagonal elements of
the self-energy matrix are given by

��nk�������nk� =
1
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In Eq. �2�, W is the dynamically screened potential calculated
in the common random-phase approximation, and � is the
Fermi energy. In our present calculations, we set the nondi-
agonal elements of the self-energy matrix to zero, which is
justified for materials where GGA wave functions are close
to the GW ones. The updated quasiparticle energy �Enk

N+1� is
then obtained from the quasiparticle energy at the previous
iteration �Enk

N � by linearization of Eq. �1� as follows:4

Enk
N+1 = Enk

N + Znk Re���nk�T + Vn−e + VH + ��Enk
N ���nk� − Enk

N � ,

�3�

where Znk is the renormalization factor,

Znk = 
1 − Re��nk�� �

��
�����

Enk
N

��nk��−1

. �4�

Initially, we perform single shot G0W0 calculations using Eq.
�3� and setting Enk

1 =Enk
GGA �i.e., we used GGA eigenvalues as

initial input to the GW calculations�. For the GGA calcula-

tions, the gradient corrected Perdew-Burke-Ernzerhof �PBE�
functional is applied.33 Then, the single electron energies
En�k−q are updated in the denominator of Eq. �2� using the
values obtained after the first iteration. W is kept fixed for the
GW0 case, whereas in the GW case, the dielectric matrix �
and W�r ,r� ,��=
dr��−1�r ,r� ,�� / �r�−r�� are re-evaluated
in each iteration using the new QP energies. The iterative
procedure is carried out until self-consistency is reached. In
our calculations, four updates proved to yield well converged
results, so in the following, we provide results for the fourth
iteration. In the G0W0 and GW0 calculations, we used an 8
�8�8 k-point grid centered at the 
 point, whereas the GW
calculations were performed using 6�6�6 k points. With
respect to the k-point mesh, the results are converged to
within roughly 10 meV, except for ZnO �discussed below�.
For simplicity, the total number of bands is always 150. Re-
sidual errors due to the number of unoccupied bands are
expected to be of the order of 1% and 20–30 meV for ma-
terials with small band gaps. To demonstrate this, we show
the QP convergence for the direct band gap in Si and ZnS
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and the indirect band gap in Si at the X point in Fig. 1. For
both materials, convergence to the previously specified
threshold is reached around 150 bands. It is, however, clear
that convergence for the d-band position is slower, and we
estimate that they are converged to only roughly 100 meV,
which we believe to be sufficient in view of the large errors
for the d-band position even on the GW level �see below�.

The GGA calculations are performed using a consistent
GGA treatment of valence and core electrons, but in the GW
calculation, the core-valence interaction is re-evaluated on
the Hartree-Fock level. We have shown in our previous work
that this allows us to keep most of the electrons in the core.8

For materials that contain semicore d electrons �ZnO, ZnS,
GaAs, GaN, CdS, and PbX�, the quasiparticle energies have
been calculated by treating these d electrons as valence.
Treating the p states with the same main quantum number as
valence states as well had little influence on the gaps as
discussed in Sec. II B and in Ref. 8. For the GW0 and GW
calculations, the energies of all occupied and eight unoccu-
pied states were updated, whereas the remaining eigenvalues
were kept fixed at the initial GGA energies. Updating 32
unoccupied states �for a 6�6�6 k-point grid� yielded val-
ues within 10 meV, justifying the previous approximation.
Finally, we note that the PAW potentials have been con-
structed with considerable care in order to guarantee an ac-
curate description of the scattering properties up to 100 eV
above the vacuum level.8 Overall, we expect that our calcu-
lations are thus converged to around 2% or 30 meV for small
gap materials, with the dominant error stemming from the
finite number of unoccupied bands.

The values of the calculated gaps are corrected for spin-
orbit �SO� coupling effects. This is crucial for PbS, PbSe,

and PbTe, as for these materials, the corrections due to spin-
orbit coupling are rather large �Table I�. Spin-orbit coupling
is significantly smaller for GaAs �only 0.1 eV� and negligi-
bly small for other materials. Since our present GW code
does not allow us to include spin-orbit coupling fully consis-
tently, we have determined the reduction of the gap using
self-consistent Hartree-Fock hybrid density-functional calcu-
lations with 25% exact exchange.34 These hybrid functionals
already yield band gaps close to experiment, and from com-
parison to full-potential calculations and experiment, we
conclude that the calculated SO corrections are accurate to
within 20 meV.46

The calculations were performed at T=0 K lattice con-
stants, if available, or at the room-temperature lattice con-
stants otherwise. The lattice constants are compiled in Table
I, with underlined values corresponding to low-temperature
values. In general, we found that, with the exception of the
lead chalcogenides, the GW results depend very little on the
employed lattice constants, with typical changes between T
=0 K and T=300 K lattice constants being only 1%–2%.
The dependence of the measured gaps on temperature is of-
ten much larger, pointing toward strong anharmonic electron-
phonon couplings, and we have generally tried to compare
with gaps measured at T=0 K wherever available �experi-
mental low-temperature gaps are again underlined�. If not
available, we compare with the band gaps measured at room
temperature. The calculations were performed for the dia-
mond structure for C and Si, the NaCl structure for the lead
chalcogenides, MgO, and LiF, the zinc-blende structure for
other semiconductors, and the simple fcc structure for rare-
gas solids.

B. Potential details

In the present implementation, the GW Hamiltonian is
only evaluated on the plane-wave grid, whereas the one-
center terms are calculated using the Hartree-Fock approxi-
mation. This allows for a fairly simple implementation, and
usually the results are quite insensitive to the chosen core
radius for the construction of the PAW potentials. Also, re-
sults change little upon moving electrons from the core to the
valence: in pseudopotential GW codes, it is, for instance,
often found that, for ZnO, ZnS, GaAs, and GaN, the 3s and
3p shells must be treated as valence electrons in order to
obtain reasonable values for the position of the 3d states and
the band gap. Approximating the core-valence interaction by
the Hartree-Fock Hamiltonian usually allows us to keep
these 3s and 3p states in the core, as discussed in our previ-
ous work.8 Upon careful convergence studies with respect to
the PAW core radius rc, we found that it is essential that the
shape of the pseudized 3d wave functions follows closely the
shape of the all-electron 3d wave functions, since the ex-
change interaction within the 3d shell is partially screened by
the other valence electrons. In the present work, all potentials
involving 3d electrons have been carefully optimized to ob-
serve these criteria. We note that this was not the case in Ref.
8, placing the 3d states at too deep energies for GaAs �see
Table III in Ref. 8�. The present calculations are more precise
in this respect, although we note that band gaps for GaAs are
hardly changed �typically 30 meV�.
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FIG. 1. G0W0 quasiparticle energies determined with respect to
the valence-band maximum for Si and ZnS.
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III. RESULTS

The calculated G0W0 and GW0 quasiparticle energies for a
wide range of materials are illustrated in Fig. 2 and presented
in Table I. Note that the lead chalcogenides are excluded

from Fig. 2 to allow a better presentation of the other mate-
rials. Furthermore, in Table II, the columns rG0W0

and rGW0
show the relative error of the predicted band gaps with re-
spect to experiment. These relative errors are defined as
rG0W0

= �EG0W0
−Eexp� /Eexp and rGW0

= �EGW0
−Eexp� /Eexp,

where EG0W0
, EGW0

, and Eexp are the G0W0, GW0, and experi-
mental gaps, respectively.

We first note that these calculations are very well con-
verged with respect to the number of k points. In fact, if a
less accurate 6�6�6 k-point mesh is used, the eigenvalues
for all materials, except ZnO, change by ±20 meV for all
calculations �PBE, G0W0, and GW0�. The band gap of ZnO,
however, converges exceedingly slowly, and even the 8�8
�8 k-point grid results in errors of roughly 0.1 eV, as indi-
cated by G0W0 calculations using 12�12�12 k points. We
have thus corrected all reported values for ZnO by this esti-
mated convergence error.

As already amply demonstrated in the literature, the
G0W0 band gaps are significantly larger than the GGA ones
�Fig. 2�. However, with the single exception of C, the G0W0
calculations still yield consistently underestimated values
�see also Table II�. As we will discuss below, the slight over-
estimation for C is most likely related to the random-phase
approximation �RPA� yielding a too weak screening. The

TABLE I. Results of DFT-PBE and quasiparticle �G0W0, GW0, and GW� calculations. An 8�8�8
k-point mesh is used for all calculations except for the GW case �see text�. Experimental values for gaps
�Expt.�, lattice constants �a�, and the calculated values for spin-orbit coupling �SO� are also provided.
Underlined values correspond to zero-temperature values. The mean absolute relative error �MARE� and the
mean relative error �MRE� are also reported; lead chalcogenides are excluded in the MARE and MRE.

PBE G0W0 GW0 GW Expt. a SO

PbSe −0.17 0.10 0.15 0.19 0.15a 6.098b 0.40

PbTe −0.05 0.20 0.24 0.26 0.19c 6.428b 0.73

PbS −0.06 0.28 0.35 0.39 0.29d 5.909b 0.36

Si 0.62 1.12 1.20 1.28 1.17e 5.430f

GaAs 0.49 1.30 1.42 1.52 1.52e 5.648f 0.10

SiC 1.35 2.27 2.43 2.64 2.40g 4.350g

CdS 1.14 2.06 2.26 2.55 2.42h 5.832h 0.02

AlP 1.57 2.44 2.59 2.77 2.45h 5.451h

GaN 1.62 2.80 3.00 3.32 3.20i 4.520i 0.00

ZnO 0.67 2.12 2.54 3.20 3.44e 4.580h 0.01

ZnS 2.07 3.29 3.54 3.86 3.91e 5.420h 0.02

C 4.12 5.50 5.68 5.99 5.48g 3.567g

BN 4.45 6.10 6.35 6.73 6.1–6.4j 3.615h

MgO 4.76 7.25 7.72 8.47 7.83k 4.213l

LiF 9.20 13.27 13.96 15.10 14.20m 4.010n

Ar 8.69 13.28 13.87 14.65 14.20o 5.260p

Ne 11.61 19.59 20.45 21.44 21.70o 4.430p

MARE 45% 9.9% 5.7% 6.1%

MRE 45% −9.8% −3.6% 4.7%

aReference 35.
bReference 46.
cReference 36.
dReference 37.

eReference 38.
fReference 47.
gReference 39.
hReference 40.

iReference 41.
jReference 42.
kReference 43.
lReference 48.

mReference 44.
nReference 47.
oReference 45.
pReference 49.
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FIG. 2. �Color online� PBE and quasiparticle energies G0W0 and
GW0. Logarithmic scale is used for both axes.
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other extreme cases are ZnO, ZnS, GaAs, GaN, and CdS,
where the G0W0 gaps are more than 10% smaller than the
experimental ones. For the cases of GaAs and ZnO, this
might be explained by the rather small PBE gaps, i.e., less
than half of the experimental value, necessitating a treatment
beyond first-order perturbation theory.

Partially self-consistent GW0 calculations rectify this de-
ficiency by further increasing the gaps �Fig. 2�. The band
gaps are enlarged by a roughly constant 7% shift across most
of the materials. There are two important exceptions to this
rule, namely C, where GW0 increases the band gap only by
an additional 4%, and ZnO, where the band gap increases by
almost 16%. This is satisfactory, since the already overesti-
mated G0W0 band gap of C becomes hardly worse in GW0,
whereas for ZnO, the agreement with experiment is im-
proved. For the three materials Si, AlP, and the already men-
tioned C, the band gaps are now slightly too large, but for the
other materials, the band gaps remain underestimated, with
fractional errors being largest for ZnO, ZnS, GaAs, and CdS
�Table II�.

To analyze the origin for this rather large scatter of the
predicted quasiparticle band gaps around the experimental
values, we have calculated the static dielectric constant in the
random-phase approximation, i.e., on the same level of
theory as applied in the construction of W0. Although we
compare only the head of the dielectric matrix with experi-
ment and not the entire matrix, we believe that this compari-
son provides a general idea on the adequacy of the entire
static dielectric matrix. Table II reports the relative difference
between the experimental and the theoretically predicted di-

electric constants, defined as r
= �
exp−
RPA� /
exp, and Fig. 3
graphically shows the relative error versus the error in the
calculated dielectric constants.

Figure 3 clearly shows that a linear correlation between
rGW0

and r
 exists, demonstrating that an accurate prediction
of band gaps requires an accurate prediction of the static
screening properties of the considered material. If the RPA
overestimates the screening, the band gaps tend to be too
small �GaAs, ZnO, and ZnS�, whereas if the screening is
underestimated, the band gaps tend to be too large �C�.

TABLE II. Differences between calculated band gaps �G0W0 and GW0� and calculated dielectric constants
�in RPA� and experimental results, normalized by experimental values �rG0W0

, rGW0
, and r
, respectively�. For

BN, two values of rG0W0
and rGW0

are provided for minimum and maximum experimental gaps �Table I�. The
values of the dielectric constants, calculated within the RPA and the experimental values, used to obtain r
 are
given for reference.

rG0W0
rGW0


RPA 
expt r


Si −0.04 0.03 12.09 11.90a −0.02

GaAs −0.15 −0.07 12.84 11.10a −0.16

SiC −0.05 0.01 6.56 6.52a −0.01

CdS −0.15 −0.07 5.80 5.30b −0.09

AlP −0.00 0.06 7.53 7.54a 0.00

GaN −0.13 −0.06 5.68 5.30c −0.07

ZnO −0.38 −0.26 5.12 3.74d −0.37

ZnS −0.16 −0.09 5.62 5.13a −0.10

C 0.00 0.04 5.54 5.70a 0.03

BN 0.0/−0.05 0.04/−0.01 4.30 4.50e 0.04

MgO −0.07 −0.01 2.99 3.00b 0.00

LiF −0.07 −0.02 1.96 1.90b −0.03

Ar −0.07 −0.02 1.66

Ne −0.10 −0.06 1.25

aReference 39.
bReference 50.
cReference 51.
dReference 52.
eReference 53.
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FIG. 3. �Color online� Band-gap error rGW0
versus error in the

calculated dielectric constants r
. The line shows a linear fit rGW0
=0.01+0.75r
 to all data points.
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PbS, PbSe, and PbTe have not been included in Table II.
Actually, we generally find that our present calculations
without inclusion of SO coupling underestimate the static
dielectric constant in these materials, with errors sometimes
even exceeding 20%. However, if spin-orbit coupling is in-
cluded on the DFT level, the band order in these materials is
no longer properly predicted as demonstrated elsewhere,46

and the static dielectric constants are now too large. Also,
GW calculations including a full treatment of SO coupling
are presently not possible using our code. Altogether, we
tend to believe that the agreement on the GW0 level is partly
fortuitous, but it is gratifying that the GW0 approximation
yields the correct band order EPbS�EPbTe�EPbSe. For de-
tails, we refer to Ref. 46.

Although the GW0 calculations widen the gap as com-
pared to G0W0, they still have a tendency to yield underesti-
mated values. Therefore, we investigated how well self-
consistent GW calculations perform. Again, we have limited
the present investigations to an update of the eigenvalues
only, but now in the Green’s functions G and the screened
potential W, neglecting nondiagonal elements in the GW
Hamiltonian. The gaps are indeed larger than the ones we
obtained using GW0, but with few exceptions �ZnO, ZnS,
and Ar�, they are now too large. This observation agrees with
the results published by Kotani and co-workers,9,32 although
we note that an inclusion of the nondiagonal elements of the
GW Hamiltonian has the tendency to open the gaps even
further. In particular, for GaAs, Chantis et al.32 reported a
larger gap of 1.80 eV using the scQPGW. Using a similar
method as suggested in Refs. 9 and 32, we found that the
GaAs band gap indeed increases to 1.79 eV using our code
�including SO corrections�, implying that the inclusion of
nondiagonal elements will worsen the agreement with ex-
periment even further. The “best” results—in the sense that
they are closest to experiment—are thus obtained on the
level of the GW0 approximation, with the self-consistent qua-
siparticle GW calculations yielding generally too large gaps.
The reason for the failure of the self-consistent GW calcula-
tions lies in an underestimation of the static dielectric con-
stants: although a precise determination of the static dielec-
tric constants using the self-consistent GW approximation is
beyond the scope of this work and would require much
denser k-point grids, we find in exemplary studies for Si and
SiC that the static dielectric constants in the GW-RPA be-
come 9.9 and 5.5, respectively, i.e., significantly underesti-
mating the experimental values. We note that the correspond-
ing data points for Si and SiC are lying almost exactly on the
straight line shown in Fig. 3. Thus, we conclude that the
self-consistent GW approximation generally worsens the
agreement with experiment, because it underestimates the
screening if it is used in combination with the random-phase
approximation.

A further important aspect is the position of the d bands.
It is emphasized again that in the present calculations, not all
orbitals with the main quantum number equal to the main
quantum number of the semicore d shell are included in the
valence. Contrary to conventional pseudopotential calcula-
tions, the core-valence interaction is evaluated on the
Hartree-Fock level in the present PAW implementation �Sec.
II B�, which allows us to keep these orbitals in the core with-

out sacrificing the precision of the quasiparticle band gaps.
Nevertheless, we have performed additional calculations
with the 3s and 3p shells in the valence for GaAs, GaN,
ZnO, and ZnS. Since these calculations are significantly
more time consuming, only a 6�6�6 k-point grid was ap-
plied, which is sufficient to converge the position of the d
band. On passing, we note that unfreezing the 3s and 3p
shells had a negligible impact on the band gaps, with values
changing by typically 1% �using an identical k-point set�.
The calculated positions of the d bands are presented in
Table III. They have been determined by calculating the
mean value of the d band over the entire Brillouin zone. The
results indicate that the inclusion of the 3s and 3p electrons
hardly influences the position of the 3d states, and thus the
Hartree-Fock approximation for the 3sp-3d interaction
seems to be fairly reliable.

In comparison to experiment, the PBE d-band positions
are much too shallow, whereas the G0W0 and GW0 calcula-
tions place these bands at deeper binding energies. Compari-
son to previously published values is generally very good.
For instance, for GaN, the present d-band position is in good
agreement with the G0W0 calculations by Rohlfing et al.,
who obtained a value of −15.7 eV.14 The remaining differ-
ence is most likely related to their pseudopotential approxi-
mation. For ZnS, Fleszar and Hanke obtained a binding en-
ergy of 6.87 eV at the G0W0 level, in good agreement with
the present work,15 and Miyake et al. reported a value of
−6.95 eV, also in excellent agreement with the present value.
Using an all-electron code, Kotani obtained 3d-band posi-
tions of −18.1 eV for GaAs, −16.4 eV for GaN, and −7.1 eV
for ZnS, also in reasonable agreement with our results �de-
viations of typically 7%�, in particular, in view of the rather
slow band convergence of the 3d-band position with the
number of unoccupied bands and the small number of bands
often used in all-electron calculations �see Fig. 1�.

Concerning comparison to experiment, one observes that
the G0W0 and GW0 approximations both yield too shallow d
states. The error is approximately constant and amounts to
roughly 1 eV on the GW0 level across all considered mate-
rials. Most likely, this is related to an unsatisfactory descrip-

TABLE III. The calculated positions and experimental values of
the d bands for GaN, GaAs, ZnO, and ZnS. The results for calcu-
lations with the 3s and 3p electrons treated as valence are referred
to as Ga3sp and Zn3sp.

PBE G0W0 GW0 Expt.

GaAs −14.8 −16.9 −18.0 −18.9a

Ga3spAs −14.8 −16.9 −18.1

GaN −13.3 −15.8 −16.7 −17.0b

Ga3spN −13.3 −16.0 −16.9

ZnO −5.2 −6.1 −6.6 −�7.5–8.81�c

Zn3spO −5.2 −6.2 −6.6

ZnS −6.1 −7.0 −7.5 −9.03c

Zn3spS −6.1 −7.0 −7.5

aReference 54.
bReference 55.
cReference 56.
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tion of the hybridization between valence states and the d
states using the semilocal-density functionals applied in the
present work and errors for the screening within the localized
d shell. The random-phase approximation in combination
with wave functions from local-density functionals is unreli-
able �see below�. Fleszar and Hanke, for instance, found that
LDA vertex corrections place the 3d shell of ZnS at deeper
binding energies, bringing GW
 results in better agreement
with experiment.15

Returning now to the predicted band gaps, we note that
the errors are largest for materials with semicore d states. In
combination with the unsatisfactory description of the 3d
states, it seems likely that the origin for the error in the band
gaps is related to the LDA/GGA error in the description of
these 3d states. It is well known that the local-density ap-
proximation cancels the Coulomb self-interaction within the
localized d shell not completely. Is that the main reason why
the subsequent GW0 calculations fail?

To test for this hypothesis, we have used a simple DFT
+U approach to shift the semicore d states to lower energies
in the DFT calculations.57,58 Specifically, we have used the
more accurate Ga3sp and Zn3sp potentials �compare Table III�
and set U−J to 8.0 eV for Ga and Zn. In the DFT+U calcu-
lations, the d electrons are now located at −18.9, −17.0, −7.5,
and −8.4 eV for GaAs, GaN, ZnO, and ZnS, which are in
good agreement with experiment �see Table III�. The dielec-
tric constants using DFT+U are in better agreement with the
experimental values �GaAs 12.01, GaN 5.44, ZnO 4.17, and
ZnS 5.2�, with the errors now being within the range of other
simple sp-bonded materials. The subsequent GW0 calcula-
tions also gave GW0 band gaps in better agreement with
experiment �GaAs 1.49, GaN 3.05, ZnO �2.70, and ZnS
3.70�, whereas with the exception of ZnO, the GW band gaps
became too large as previously observed for all other mate-
rials. The positions of the d bands remain in good agreement
with experiment for GaAs and GaN but are still much too
shallow for ZnO and ZnS �GaAs −18.3, GaN −17.2, ZnO
−6.6, and ZnS −7.0�. We conclude that although we do ob-
serve an improvement for the band gaps, the overall descrip-
tion is certainly still far from being satisfactory, in particular,
for the position of the d bands in ZnO and ZnS. Recently,
Miyake et al. performed similar studies for ZnS.59 We note
that their LDA+U implementation is based on Wannier or-
bitals, as opposed to our one-center PAW implementation,58

but similar to our case, they observed a slight increase of the
band gap and no significant improvement of the d-band po-
sition.

On passing, we note that placing the d electrons in the
core, and thus removing any s-d hybridization, also yields
better agreement with experiment, as long as the interaction
between the core and the valence is treated on the Hartree-
Fock level �as done in our implementation�. This approxima-
tion is, however, only applicable to systems where the d shell
is located well below the valence band and thus restricted to
GaAs and GaN.

IV. DISCUSSION

The effect of different degrees of self-consistency �G0W0,
GW0, and GW� has been investigated for a representative

selection of materials. Although it is long established that the
G0W0 approximation yields band gaps in good agreement
with experiment, it is not generally accepted that the G0W0
approximation based on LDA/GGA wave functions and one-
electron energies gives underestimated gaps for practically
all materials. Only a recent work, relying on the all-electron
full-potential linear-muffin-tin-orbital method,6,9 has clearly
established this trend. Given the large amount of pseudopo-
tential calculations yielding excellent band gaps already on
the G0W0 level, some doubt prevailed on whether this under-
estimation might be related to basis-set problems in the
linear-muffin-tin-orbital method. Careful convergence stud-
ies for Si, however, showed that even converged basis sets
�full-potential linearized-augmented plane waves� yield too
small band gaps for Si.60 Our recent study using the PAW
method showed a similar underestimation for Si, GaAs, and
CdS.8 Here, we have extended our studies to a representative
number of insulators and semiconductors confirming the ob-
servation of van Schilfgaarde’s group: generally, the pre-
dicted G0W0 band gaps are within a few percent of those
reported using the linear-muffin-tin-orbital code, and, with
the single exception of diamond, the band gaps are signifi-
cantly underestimated in the G0W0 approximation.

To cure this failure, we have applied two well established
strategies. In the first case, the eigenvalues in the Green’s
function G were updated, whereas the screening properties
were calculated in the random-phase approximation using
GGA wave functions and GGA eigenvalues �GW0�. The in-
centive for such an approximation is that gradient corrected
functionals yield reliable static screening properties and thus
possibly an accurate approximation for W. Indeed, using this
approach, the predicted band gaps are in excellent agreement
with experiment, with typical errors being around 3%–5%.
Nevertheless, for materials with shallow d states, the discrep-
ancies to experiment remain larger, and the band gaps are
underestimated by typically 10%, with the largest deviations
observed for ZnO �25%�. We have shown that a quantitative
relationship between the calculated static �ion-clamped� di-
electric constant and the predicted GW0 quasiparticle band
gaps exists �see Fig. 3�. If the dielectric constants, calculated
within the random-phase approximation, are too large, qua-
siparticle band gaps tend to be too small, and vice versa, if
the predicted dielectric constants are too small, the quasipar-
ticle band gaps tend to be too large. This is certainly not
astonishing, but due to the lack of systematic studies, the
trend has not yet been established rigorously.

In the final approach, we have updated the eigenvalues in
the Green’s function and in the dielectric matrix. Except for
materials with shallow d states, this approximation yields
consistently too large band gaps. van Schilfgaarde et al. have
already argued that this is related to the neglect of vertex
corrections in W,9 which would result in additional screening
from the attractive electron-hole interaction. Although the
self-consistent quasiparticle GW technique �scQPGW� of Fa-
leev et al.30 is probably yet the most concise method to per-
form GW calculations, it fails short in an accurate prediction
of band gaps. From a pragmatic point of view, GW0 calcu-
lations are an excellent, may often be even preferable, alter-
native. This method is at least a factor 2–4 faster than a fully
self-consistent quasiparticle calculation and readily available
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in most GW codes. Our conclusion might well change once
vertex corrections, i.e., electrostatic electron-hole interac-
tions, are properly accounted for in the dielectric matrix, but
the effort to do so will be rather large.

The last issue is whether further improvements on the
density-functional side are conceivable. Since we have
shown that a one-to-one correspondence between the pre-
dicted static screening properties and the predicted quasi-
particle band gaps exists, any effort to device density
functionals yielding better static screening properties should
give improvements for the GW0 band gaps as well. For in-
stance, all calculations presented here are based on gradient
corrected functionals which yield slightly larger band gaps
and smaller static dielectric constants already on the DFT
level �compared to LDA� and, therefore, more accurate band
gaps in the GW0 approximation. We have also discussed that
the remaining errors in the screening properties are most
likely related to an incorrect description of the semicore d
states in III–V and II–VI semiconductors within LDA/GGA.
These too shallow d states are a result of the only partial
cancellation of the Coulomb self-interaction within the d
shell. Promising systematic functionals to overcome these
shortcomings are the self-interaction free exact-exchange
optimized effective-potential method, which has been ap-
plied successfully to ZnS and GaN, yielding excellent G0W0
band gaps.13 However, we also note that EXX-OEP+G0W0
calculations give too large band gaps for Si, Ge, and other
semiconductors,61 implying that the suitability of
EXX-OEP+G0W0 calculations is not yet settled. Other
promising approaches to overcome the deficiencies of local
functionals are hybrid Hartree-Fock density functionals, on

which we will report in future work.62 Here, we have used a
simpler approach shifting the d states toward stronger bind-
ing energies using an DFT+U approach in the calculations
preceding the GW calculations. This gave more accurate
static dielectric properties and slightly better quasiparticle
band gaps. However, the d-band position remained much too
shallow in the successive GW0 calculations. More work is
certainly required to understand the failure of the GW ap-
proximation in describing localized electrons.

V. CONCLUSION

Our present work shows that an update of the quasiparti-
cle energies in the one-electron Green’s function yields gen-
erally quasiparticle energies in excellent agreement with ex-
periment, if and only if the screening properties and W are
calculated using density-functional one-electron energies.
With a mean absolute relative error of 5%, the approximation
is superior to the more common single shot G0W0 approxi-
mation �10% error�. The scheme is computationally efficient,
and we firmly believe that this GW0 approximation is and
will remain a valuable tool for the prediction of band gaps.
The success and failure of this approximation are clearly
linked to the accuracy of the predicted static screening prop-
erties in the local-density-functional approximation.
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