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We propose a method to control the roughness of a growing surface via a time-delayed feedback scheme.
The method is very general and can be applied to a wide range of nonequilibrium growth phenomena, from
solid-state epitaxy to tumor growth. Possible experimental realizations are suggested. As an illustration, we
consider the Kardar-Parisi-Zhang equation �Phys. Rev. Lett. 56, 889 �1986�� in 1+1 dimensions and show that
the effective growth exponent of the surface width can be stabilized at any desired value in the interval �0.25,
0.33�, for a significant length of time.
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The control of unstable states in chaotic or pattern-
forming nonlinear dynamical systems has attracted much in-
terest recently.1,2 Time-delayed feedback control3 has been
especially successful in stabilizing a variety of dynamic and
spatial structures, including noise-induced oscillations and
patterns found, e.g., in semiconductor nanostructures.4–7

Here, we propose to apply these control techniques to a com-
pletely new class of dynamical phenomena, namely, far-
from-equilibrium surface growth.8–10 The goal is to stabilize
desired surface characteristics, such as spatiotemporal
height-height correlations or the surface roughness, during
the growth process. Even if such control can only be sus-
tained in a finite window of time, its experimental potential
is undiminished since the growth process can simply be ter-
minated when the desired characteristics have been achieved,
thanks to today’s precise in situ characterization capabilities.
Moreover, paradigmatic growth models, such as the Kardar-
Parisi-Zhang �KPZ� equation,11 find applications in many di-
verse areas of science, e.g., thin film growth,12–15 fluctuating
hydrodynamics,16 driven diffusive systems,17–19 tumor
growth in biophysics,20–22 propagating fire fronts,23 and
econophysics.24 Therefore, broad implications can be ex-
pected if methods from control theory can be successfully
implemented in this vast context.

In this Brief Report, we provide an exploration of these
ideas. We choose the most promising type of control, time-
delayed feedback, and study its effects on the KPZ
equation.11 Specifically, we attempt to control the effective
dynamic growth exponent � associated with the roughness of
the growing surface. By implementing two realizations of the
control scheme, we will see below that we can, indeed, sta-
bilize � in a range of values between the two universal lim-
its, 1 /4 and 1/3, over at least one to two decades in time. In
the following, we will use the language of surface growth,
but our findings are just as relevant in the context of all other
applications of the KPZ equation. For instance, in recent
work on tumor growth,20 it has been shown that an efficient
method to influence the proliferation of tumor cells at the
border is coupled to the growth exponents and the universal-
ity class of growth. The authors suggest and establish a
therapy which rests on the possibility of tunable roughness.

The fabrication of nanostructures typically involves the
deposition of a material onto a substrate. One of the primary
experimental goals is to achieve nanoscale control of layer

thickness and surface morphology. For many thin film appli-
cations, for instance, in optics25 or in semiconductor nano-
structures, it is essential to control and adjust the roughness,
e.g., in order to minimize scattering losses. On the theoretical
side, considerable effort has been focused on developing
suitable evolution equations for the growing layer.10 While
many different versions8,9,26–31 of such equations exist, de-
pending on the details of deposition processes and molecular
interactions and kinetics, all of them share certain fundamen-
tal characteristics: they are noisy, nonlinear partial differen-
tial equations in space and time, and describe an important
class of generic nonequilibrium phenomena.

If overhangs and bulk fluctuations can be neglected, a
single-valued variable, h�x , t�, suffices to denote the height of
the surface above a reference plane and fluctuates as a func-
tion of time t and position x �measured in this d-dimensional
plane�. The simplest such equation is the KPZ equation,11

which describes the growth of a surface in the absence of any
conservation laws:

�th�x,t� = ��2h�x,t� +
�

2
��h�2 + ��x,t� . �1�

Here, ��0 denotes an interface smoothing term, associated
with a surface tension; the nonlinear coupling � reflects the
strength of lateral growth, and ��x , t� models the height fluc-
tuations due to random deposition of material. An overall,
constant growth velocity has already been eliminated by
transforming into a suitable comoving frame. Focusing on
large-scale, long-time properties of the surface, it is sufficient
to consider Gaussian white noise, i.e., ���x , t��=0,
���x , t���x� , t���=2D�d�x−x����t− t��. For simplicity, we re-
strict ourselves to one spatial dimension. We monitor the
time dependence of the �root mean square� surface roughness
w, defined by

w2�L,t� =
1

L��
x

�h�x,t� − h̄�t��2	 . �2�

Here, L denotes the system size, and h̄�t�
L−1�xh�x , t� is the
mean surface height at time t. Configurational averages are
denoted by �¯�. The sum over x anticipates the space dis-
cretization associated with the numerical integration scheme.

PHYSICAL REVIEW B 75, 233414 �2007�

1098-0121/2007/75�23�/233414�4� ©2007 The American Physical Society233414-1

http://dx.doi.org/10.1103/PhysRevB.75.233414


It is well known that w obeys scaling in the form w�L , t�
=L�f�t /Lz�, where f is a scaling function, and � and z denote
the roughness and dynamic exponents, respectively.32 In the
saturation regime �t /Lz�1� w�L�, whereas in the growth
regime �t /Lz	1� w� t�, with a growth exponent �. Consis-
tency with the general scaling form imposes an exponent
identity, �=� /z. Two universality classes can be distin-
guished: If the nonlinear term of the KPZ equation vanishes
��=0�, the equation reduces to the exactly soluble Edwards-
Wilkinson �EW� equation,33 with �=1/2 and z=2, whence
�=1/4. In contrast, any nonzero value of � belongs to the
KPZ universality class, with �=1/2 and z=3/2, whence �
=1/3.11 These values give us some benchmarks against
which we can check our numerical scheme. We use a
forward-backward Euler method34,35 to solve numerically the
stochastic differential equations. � varies between 0.00 and
0.25. The upper cutoff is chosen so as to avoid numerical
instabilities. Figure 1 shows a scaling plot for w�L , t� before
any control schemes are implemented. Data for three differ-
ent values of � are shown. The roughness exponent � is
consistent with 1/2, independent of �, as expected. For �
=0, we see excellent data collapse with the EW scaling ex-
ponents, and the KPZ exponents are confirmed for the largest
�. The latter should be universal, for all ��0; however, for
0
�
0.25, strong crossover effects between EW and KPZ
behaviors are observed. Remarkably, this crossover mani-
fests itself as a surprisingly clean power law, with a
�-dependent effective growth exponent � below 1/3. Even-
tually, the asymptotic value �1/3� is reached, but only after
an L- and �-dependent crossover time.

We now turn to possible control mechanisms. For chemi-
cal vapor deposition of silica films, there is some experimen-
tal evidence12 that the lateral growth velocity is related to the
temperature, via a temperature-dependent sticking probabil-

ity. In other words, �—and hence effective growth
exponents—can be controlled via the temperature. For our
differential equation, we tune � directly, in order to stabilize
a desired effective growth exponent �0. In detail, the scheme
is as follows. First, we choose the desired value of the
growth exponent �0 and select an appropriate time delay �.
Generating sufficiently many samples of h�x , t�, we record
w�t−�� and w�t� �the argument L will be omitted from now
on�. The local exponent �local at time t is defined as

�local�t� 

log w�t� − log w�t − ��

log t − log�t − ��
. �3�

Depending on the sign and value of �local�t�−�0, we adjust
the nonlinear coupling � of the KPZ equation as follows.
First, we introduce a control function F�t�. For digital con-
trol, we define

F�t� 
 �a if �local � �0

− a if �local � �0,
 �4�

where the parameter a defines the control “bit,” i.e., the
amount by which � changes at each control step. Alterna-
tively, we also investigate a differential method for which

F�t� 
 K��0 − �local� , �5�

and K sets the amplitude of the control strength. Given one
of the two choices of F�t�, the control scheme sets in at time
t0. From then on, the nonlinearity � is updated at times tn

 t0+n�, n=1,2 , . . ., starting from an initial value �0, ac-
cording to

��t� = ��0 if t 
 t0

��t − �� + F�t� if t = tn

��tn� if tn 
 t 
 tn+1.
� �6�

Our scheme is successful if �local�t� approaches �0 and then
settles at the desired value within a reasonable time frame
after the control has been activated. Some comments are in
order. Starting from a random initial condition, we first
choose a starting value, �0, for the nonlinearity and integrate
the KPZ equation without control up to time t0 in order to
eliminate transients. A reasonably stable growth regime is
achieved around t0�10, independent of L �provided L is not
too small, i.e., L64�. Then, we turn on the control, follow-
ing either the digital or the differential scenario. Regarding
the choice of the time delay �, it must be large enough com-
pared to the time increment �t so as not to interfere with the
integration procedure, but small enough to provide respon-
sive control. We find that we get good results for a time delay
0.1
�
1.0. Similarly, we choose the control amplitudes a
and K such that the increments in � are small compared to
�0, but large enough to generate a noticeable response. For
example, for �=1.0, choosing a in the range �0.002,0.02� and
K in the range �0.005,0.05� provides the best results.

Figures 2 and 3 show our results. Starting from three ini-
tial values of �0, namely, 0, 0.1, and 0.25, we attempt to
stabilize the effective growth exponent at �0=0.29, midway
between the KPZ and EW values. Irrespective of �0, we find
that both digital and differential control result in an effective

FIG. 1. �Color online� Scaling plots of the roughness w�L , t� and
height-height correlation function C�l�
�h�l , t�h�0, t��� l� �insets�
for system sizes L=1024 �red/light gray� and L=4096 �black� and
three choices of �: �i� �=0 �shifted by a factor 100�, �ii� �=0.1
�shifted by a factor 10�, and �iii� �=0.25. �=0.1, D=0.5 for all data
sets; space discretization �x=1 and time increment �t=10−3. The
green broken lines provide guides for the eyes.
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growth exponent very close to the desired value, over at least
a decade of integration time �100� t�1000�. For suffi-
ciently large time, the control function ��t� appears to ap-
proach a constant value, close to 0.15. However, the details
of the approach depend on the initial �0. For strong initial
nonlinearity �0=0.25, ��t� is approximately monotonically
decreasing, apart from significant fluctuations. For both weak
and vanishing initial couplings, ��t� approaches its “limit”
from below. This behavior is observed for both digital and
differential control. We tested several other choices of 0.25
��0
0.33 and �0, and found similar behavior.

Experimentally, it is usually desirable to achieve small
roughness. To push our control schemes to the limit, we test
the most extreme case, namely, �0=0.25 with large initial
nonlinearity �0=0.25. Before the control sets in, the rough-
ness grows considerably faster than t0.25. As soon as the con-
trol sets in, ��t� decreases quite dramatically, leading to a

reduction of the effective �. However, over the time period
considered �t�1000�, it never decreases far enough to reach
the desired 0.25.

Finally, we note that it is not possible to achieve exponent
values outside the interval �0.25,0.33�. Choosing �0�0.33
generates unbounded growth of the control function ��t�, ac-
companied by instabilities in the integration routine. Simi-
larly, �0
0.25 quickly leads to large negative values of ��t�,
which tend to favor KPZ exponents �since the sign of � plays
no role�. As a result, ��t� becomes even more negative until
a numerical instability occurs. To avoid this instability, we
also implemented a symmetrized version of control �with
a→−a when ��t�
0�. In this case, ��t� approaches zero and
fluctuates about it, so that the effective exponent settles at
0.25.

To summarize, both digital and differential control are
quite successful at stabilizing effective growth exponents in
the KPZ equation. For the relatively small system sizes used
here, these exponents can be tuned in the range �0.25,0.33�,
i.e., within the limits set by the EW and KPZ equations,
respectively. Let us emphasize again that only the values 1/4
�for �=0� and 1/3 �for any ��0� correspond to true
asymptotic exponents; for larger system sizes and longer in-
tegration times, these emerge clearly. However, for small
systems, we observe surprisingly clean effective growth ex-
ponents which appear to depend monotonically on the mag-
nitude of the nonlinearity. Hence, it is possible to choose a
desired reference exponent �0 and implement a time-delayed
control of the nonlinearity in such a way that the effective
exponent first approaches �0 and then stabilizes at that value
for a significant length of time �roughly 102� t�103 in our
units�. In all simulations, the �stationary� roughness remains
constant at �=0.5, reflecting the value 1/2, which is com-
mon to both the EW and KPZ equations. The control proto-
col itself is independent of the dimension of the surface.
Work is in progress to test other growth equations and to
extend the KPZ study to 2+1 dimensions. For the experi-
mental implementation and feasibility of our method in epi-
taxial growth, it should be noted that recent achievements of
in situ scanning tunneling microscopy during real-time
growth36–38 open up the possibility to measure the time-
dependent roughness and use it for temperature control in a
feedback loop during the growth process. In the paradigmatic
KPZ equation, which contains only three parameters, the
temperature dependence is dominant in the lateral growth
constant �. Indeed, it has been shown experimentally for
SiO2 films12,13 that temperature changes result in different
growth exponents �, and it was established explicitly that the
two temperatures 611 and 723 K correspond to �=0.2 and
�=3, respectively. Similarly, by using in situ real-time x-ray
reflectivity measurements for ion-sputtered Pd�001�,39 it has
been shown that the surface roughness w and the exponent �
can be manipulated by changing the temperature. Here, an
experimental temperature range from 306 to 440 K was
found to lead to a large variation of the growth exponent � in
the range from 0.5 to 0.1, and this was related to the prefac-
tors in the extended Kuramoto-Sivashinsky model.40 Hence,
one can envisage implementing a time-delayed feedback
loop and stabilizing desired growth exponents by suitable
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FIG. 2. �Color online� Roughness and control function �inset�
evolution for digital time-delayed feedback control for strong �blue/
dark gray�, weak �red/light gray�, and zero �black� initial nonlinear-
ity �0. The desired effective growth exponent is set at �0=0.29. To
provide a comparison, the straight �green� lines have slopes 0.33
�dotted�, 0.29 �dashed�, and 0.25 �dash-dotted�. All data sets are
obtained with �=0.1, D=0.5, and a=0.01.
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FIG. 3. �Color online� Roughness and control function �inset�
evolution for differential time-delayed feedback control for strong
�blue/dark gray�, weak �red/light gray�, and zero �black� initial non-
linearity �0. The desired effective growth exponent is set at �0

=0.29. To provide a comparison, the straight �green� lines have
slopes 0.33 �dotted�, 0.29 �dashed�, and 0.25 �dash-dotted�. All data
sets are obtained with �=0.1, D=0.5, and K=0.02.
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adjustments of the temperature. In summary, this Brief Re-
port proposes to apply novel concepts from control theory to
a broad class of nonequilibrium growth models. The funda-
mentally different aspect is that the scaling exponents can be
controlled, over a significant time span, by an internal feed-
back loop rather than an external manipulation of the under-
lying physical processes.
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