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Low-temperature scanning tunneling spectroscopy and ab initio based theory reveal electron wave-vector
quantization due to electron confinement in a nanostructure. A Fourier transformation of the spatial modulation
pattern of the local density of states �LDOS� indicates quantization of the electron wave vector within the
nanostructure, which gives rise to a discontinuous, staircaselike dispersion relation. Our results show that each
step of the dispersion relation corresponds to an extremum of the LDOS and it identifes an eigenstate. The
sequence of steps reveals the complete eigenstate spectrum, where states are enumerated and classified accord-
ing to their even-odd parity.
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Since early work on quantum interference on metal sur-
faces by scanning tunneling microscope �STM�,1,2 many
STM studies have been devoted to the analysis of the elec-
tron local density of states �LDOS� in nanostructures. Fasci-
nating maps of the spatial modulation of the LDOS have
been obtained by STM and scanning tunneling spectroscopy
�STS�.3 The LDOS modulation patterns reflect the electron
confinement in the nanostructures, which is due to electron
scattering at the border of the nanostructures.

Important electronic properties such as the electron eigen-
states of a confined system have been extracted for a variety
of nanostructures such as nanometer-sized islands of
adatoms4–6 and also for vacancy islands.7,8 The energy width
of these eigenstates has been discussed with respect to elec-
tron lifetime, and estimates regarding relevant electron-
scattering mechanisms which determine the electron lifetime
have been presented.7

In contrast to the two-dimensional LDOS modulation pat-
tern which characterizes electron eigenstates of spatially ex-
tended nanostructures, experimentally the energy positions
of electron eigenstates have been determined mainly from
single-point STS. The differential conductance dI /dU �I,
tunneling current; U, gap voltage Ugap� is usually measured
at a high-symmetry point within the nanostructure,4,7,9–12 and
peak positions of dI /dU spectra have been identified with
energy eigenvalues. This previously established procedure
rests on an energy analysis of dI /dU spectra and it strin-
gently requires supporting models to identify the assignment
between a peak position of the dI /dU spectra and the respec-
tive energy eigenvalues.3,9 The resulting spectrum of eigen-
states is incomplete, and this has been exploited in previous
studies to explore states which fulfill certain symmetry con-
straints. Following the common quantum mechanics ap-
proach for the classification of eigenstates of symmetric sys-
tems, we show here that all eigenstates with even and odd
parities can be determined in our analysis, whereas the pre-
vious study has only identified states of even parity.9,10

Here, we analyze the complete map of the spatial modu-
lation of the LDOS of the whole nanostructure. The striking
result of our experiments and calculations is that we observe
and quantitatively analyze quantization of the electron wave
vector k, and this analysis opens the way to completely de-
scribe and count electron eigenstates in a nanostructure.

We performed ab initio based calculation of the LDOS
within the nanostructure to check the validity of our ap-
proach. Both experiment and theory reveal the k quantiza-
tion. A noncontinuous staircaselike electron-dispersion rela-
tion is measured and calculated, where only discrete values
of k are observed. These discrete k values identify all eigen-
states of the system, as evidenced by the combined analysis
of our experimental and theoretical results. Our analysis
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FIG. 1. �Color� Spatial modulation of the LDOS in a hexagonal
crater of 20.5 nm size, measured by STS at the indicated gap volt-
age �I=1 nA�. The LDOS patterns at −0.206 and −0.156 V show
the eigenstates n=10 and n=11 �see text�. The center one is a su-
perposition of these states. Center row: map of the Fourier transfor-
mation �FT� of the top LDOS patterns �red, high intensity; green,
low intensity�. Bottom row: Linescans through the FT maps along
the red line. The linescan at the intermediate gap voltage −0.176 V
shows the simultaneous presence of the two wave numbers
k �0.51 nm−1, 0.56 nm−1� which characterize two eigenstates at
−0.206 and −0.156 V, respectively.
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avoids a shortcoming of the previous measurements which,
due to their local nature, identified just a subset of states,
namely, even eigenstates with maxima at the nanostructure
center.

We use hexagonal craters �vacancy islands� on Cu �111�
to study electron confinement in nanostructures.8 These
monolayer deep �0.21 nm� depressions are often of almost
perfect hexagonal shape. STM topography measurements re-
veal a size between a few nanometers and 25 nm, which is
given by the distance between opposite edges at half depth.
The hexagonal craters form in a self-assembled manner on
Cu�111� upon deposition of submonolayer quantities of Co at
300 K. The Cu�111� crystal is cleaned prior to Co deposition
by cycles of ion bombardment �Ar+, 1 keV, 1 �A� and sub-
sequent annealing at 700 K �15 min� in an ultrahigh vacuum
chamber ��5�10−11 mbar�. Morphology and LDOS of the
hexagonal craters are investigated by low-temperature STM
and STS at 7 K. STS data are collected by modulating Ugap
�defined as the sample voltage� with an ac signal of 5 mV
amplitude at 4.8 kHz and detecting the resulting modulation
of the tunnel current with a lock-in amplifier. Thus, dI /dU
maps and dI /dU spectra are recorded, and the data reflect
maps of the LDOS and local LDOS spectra, respectively.13

To extract the energy dependence of the LDOS, we have
measured STS maps of hexagonal craters of different sizes at
gap voltages Ugap=−0.44 to +0.5 V, in steps of 10 mV. Fig-
ure 1 shows three maps of the dI /dU signal, taken at a
20.5 nm size hexagonal crater, at the indicated gap voltages.
The dI /dU maps indicate a pronounced spatial modulation
of the LDOS due to electron scattering at the rim of the
crater.8 The images clearly reveal a change of the LDOS
pattern with energy; e.g., from −0.206 to −0.156 V, the cen-
ter intensity changes from a minimum to a maximum. These
two patterns correspond to eigenstates at energies of −0.206
and −0.156 eV with odd and even parities, respectively. The
pattern at −0.176 V is ascribed to a superposition of the two
neighboring eigenstates shown in Fig. 1.

We perform a Fourier transformation �FT� of the LDOS
pattern inside the hexagonal crater to extract the wave vector
k of the LDOS spatial modulation.14,15 The result of the FT is
shown in the center row of Fig. 1. The map of the FT is
centrosymmetric and reflects the hexagonal symmetry of the
LDOS pattern. Clear maxima of the FT intensity are ob-
served, which are separated by 60° along the azimuthal di-
rection. These maxima identify wave vectors which cause
the spatial modulation of the original LDOS pattern. In the
following, we analyze the variation of the intensity and the
peak position of one of these maxima. Thus, we analyze the
confinement along one direction of the hexagon, i.e., be-
tween two opposite straight sides, as indicated by the red line
in Fig. 1. The same analysis made for other directions gives
equivalent results, which depend on the distance between
opposite sides, as will be shown below.

The plots at the bottom line of Fig. 1 show linescans
through the FT maps along the direction indicated by red
lines. At −0.206 and −0.156 V, we deduce from the linescan
pronounced maxima at 0.51 and 0.56 nm−1, respectively.
However, at the intermediate value −0.176 V, the linescan
indicates two peaks at 0.51 and 0.56 nm−1, but no peak at the
intermediate value, as one might have expected for a con-

tinuous variation of k with energy. Further, peaks of the li-
nescans identify other eigenstates, and these peaks reach
their maximum amplitude at different energies.

We calculate the LDOS within the nanostructure by our
previously established approach, which reproduces essential
aspects of electron confinement in a nanostructure such as
spatial modulation of the LDOS and peak position and width
of the LDOS in close agreement with experimental data.8 In
short, our calculations are based on density-functional theory
and the Korringa-Kohn-Rostoker Green’s-function method,
which we recently developed for quantum resonators on
metal surfaces.8,16

The FT analysis of the measured and calculated LDOS
patterns gives the correlation between k and the electron en-
ergy eUgap. Thus, we obtain the complete dispersion relation
E�k�. Figure 2 summarizes our results, which we measured at
a step edge and at craters with sizes of 20.5 and 13.5 nm.
The dispersion relation of the step edge gives a continuous
parabola �see inset of Fig. 2�a��, as expected for surface-state
electrons. A parabolic fit of this curve gives the surface-state
band edge E0=−0.43±0.01 eV and the electron effective
mass m* /me=0.39±0.01, where me is the electron mass.
These values are in very good agreement with previous stud-
ies on the dispersion relation of surface-state electrons of
Cu�111�.1 We have also analyzed the LDOS pattern by fitting
Bessel functions,1,17 and we obtain the same result, proving
the validity of our FT analysis.

Figures 2�a� and 2�b� reveal that in contrast to the disper-
sion relation obtained at a step edge, the dispersion relation
of the confined system is a discontinuous curve. Although
measurements and calculations are performed in steps of
10 mV, we observe the absence of k values within certain k
ranges. Experimental and theoretical data points are always
clustered around discrete, quantized k values. An indication
of a noncontinuous dispersion relation has been displayed,
without further analysis, for Co islands.18,19 Our results show
that the quantization of k is determined by the lateral size of
the crater. The larger the crater, the denser the spacing be-
tween the observed k values. This finding follows from the
data for the 20.5 nm crater in �a�, as compared to the
13.5 nm crater in �b�.

The inset of Fig. 2�b� shows that the observed sequence of
k values can be described by the quantization rule
kn=n� /d, where n is an integer and d is the crater size. The
slope of the curve is � /d in each case, and it gives the crater
sizes of 20.1 and 12.8 nm, respectively, in very good agree-
ment with our topological STM measurements. This quanti-
zation rule allows one to number every state. An even �odd�
index n identifies an odd �even� state with a minimum �maxi-
mum� of the LDOS at the vacancy symmetry center.

This quantization rule reflects the boundary conditions of
a particle confined to a one-dimensional potential step of
extension d with inversion symmetry. This strikingly simple
result comes as a surprise, as it does not seem to reflect the
two-dimensional nature of the problem explicitly. Our results
suggest that the confinement can be properly ascribed to par-
allel straight edges of the crater at a distance d. At first
glance, our system seems to exhibit inversion symmetry, and
therefore, it follows the classification scheme of the eigen-
states in terms of even and odd parities. Based on our results,
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we find no indication that the crystalline order of the nano-
structure breaks the inversion symmetry of the confining po-
tential. We ascribe this to the much shorter length scale of
the order of a tenth of a nanometer, which describes struc-
tural details, as opposed to the coarser electron wavelength
of the order of nanometers, which determines the formation
of the LDOS modulation pattern.

In addition to the sequence of quantized k values, impor-
tant additional information on the electron eigenstates and
their energy width can be extracted from the FT analysis of
the LDOS pattern, as presented in Fig. 1.

We have extracted the amplitude of every peak of the
linescan �bottom row of Fig. 1� through the FT map of the
LDOS pattern and plotted it as a function of energy in Fig.
3�a�. We thus obtain a sequence of individual peaks com-

posed of distinct data points, as shown in Fig. 3�a�. Figure
3�a� indicates that all data points composing one individual
peak are given by the data of one corresponding k-state, as
indicated by the red arrows in Fig. 2�a� of the 20.5 nm crater.
We conclude that maxima of the peak positions of Fig. 3�a�
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FIG. 2. �Color� �a� Dispersion relation obtained by the FT analy-
sis of the LDOS of a 20.5 nm crater. Experiment, red square;
theory, green triangle. �b� Experimental results of a 13.5 nm crater.
Note the discontinuous curves, where just discrete k values are ob-
served. The inset in �a� shows the continuous dispersion curve of
electrons scattered, measured at a step edge. The horizontal error
bars increase with wave vector: ±0.04 nm−1 around 1 nm−1 and
±0.12 nm−1 around 3 nm−1. The black arrows show the two states
corresponding to the STS maps of Fig. 1. The inset of �b� reflects
the quantization rule kn=n� /d. The first eigenstates in �a� and �b�
are enumerated according to this rule.
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FIG. 3. �Color� �a� Intensity of each eigenstate as extracted from
the FT analysis according to Fig. 1. Adjacent states with index n are
plotted in red and blue for clarity. �b� dI /dU spectrum taken at the
center of the 20.5 nm hole. To enhance the appearance of minima
and maxima, we have subtracted the dI /dU spectrum taken at a flat
Cu terrace. �c� Calculated LDOS at the center position and 1 nm off
center within the confined system. The dashed lines show clearly
the correspondence of peak positions of �a� and minima and
maxima of �b� and �c�.
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correspond to the energy of electron eigenstates of the con-
fined system.

In order to compare our study with previously published
approaches which rely on an energy analysis of local dI /dU
spectra,9,10 we have plotted in Fig. 3�b� a dI /dU spectrum
measured at the center of the 20.5 nm crater. Comparing
Figs. 3�a� and 3�b�, it is striking that all maxima and minima
of the dI /dU spectrum coincide with peaks of the FT-based
analysis, as shown by the dashed lines.

Previous works have ascribed maxima of dI /dU spectra
recorded at the center of the nanostructure to eigenstates. For
hexagonal systems, the labeling scheme of observed states
relies on an involved analysis.9 These local dI /dU measure-
ments detect only a subset of eigenstates. Other eigenstates
are accessible by measuring off center.10 In contrast to the
previous local STS analysis, the FT-based analysis exploits
the complete two-dimensional LDOS modulation pattern
within the nanostructure, and this reveals all eigenstates. Our
results show that each step of the discontinuous dispersion
curve of the confined system of Fig. 2 gives rise to an extre-
mum �maximum or minimum� of the density of states. This
means that we identify even and odd states, whereas maxima
of local dI /dU measurement at the center of the structure
identifies only even states.

Figure 3�c� presents our calculations of the LDOS spectra
within the nanostructure. We find close agreement between
the peak positions of the measured dI /dU curve of Fig. 3�b�
and the calculated LDOS for the center position. However,
calculating the LDOS off center gives minima at positions
where maxima were located for the center position. The
comparison between experiment and theory shows that
where the calculated LDOS spectra have a vanishing slope,
peaks of the FT analysis are observed. This finding corrobo-
rates our claim that the FT analysis of the LDOS modulation
pattern identifies the complete eigenstate spectrum.

In conclusion, we have presented clear experimental and
theoretical evidences for electron wave-vector quantization
in a confined system. The resulting discontinuous steplike
dispersion relation has been exploited to derive the complete
set of eigenstates of a confined system in a model-free ap-
proach. We find that the two-dimensional nature of our FT-
based analysis is the key point which identifies the complete
set of even and odd eigenstates. Our approach offers a de-
tailed understanding of the relation between quantized wave
vectors, LDOS, and eigenstates of a nanostructure.

The authors thank K.-H. Rieder and W. Wulfhekel for
fruitful discussions.
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