
Electron-electron interaction in a two-dimensional electron gas: Bound states at low densities

I. Nagy,1,2 M. J. Puska,3,2 and N. Zabala4

1Department of Theoretical Physics, Institute of Physics, Technical University of Budapest, H-1521 Budapest, Hungary
2Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián, Spain

3Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland
4Elektrizitatea eta Elektronika Saila, Zientzia eta Teknologika Fakultatea, UPV-EHU 644 P.K., 48080 Bilbao, Spain

and Unidad Física de Materiales, Centro Mixto CSIC-UPV/EHU, 20018 Donostia, Spain
�Received 20 November 2006; published 29 June 2007�

If the bare interaction between two electrons is dressed in the two-dimensional electron gas by the response
of the many-body environment, pairing may occur. Here, we study numerically the existence and character of
bound states in the case where the dressing in the pair-interaction energy is described by the Overhauser
geminal model �A. W. Overhauser, Can. J. Phys. 75, 683 �1995��. The starting point of the model is the
exchange correlation hole around a single electron. We constrain the hole by arguments based on the results for
the exchange-correlation energy and the contact density of the pair-correlation function. We find a bound state
with the energy minimized at a certain electron gas density. On the basis of the behavior of the binding energy
we discuss recent experimental findings for the electron density dependence of the critical temperature in
cuprate, Chevrel-phase, and Li-intercalated LixZrNCl superconductors.
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I. INTRODUCTION

Strongly correlated two-dimensional �2D� electron sys-
tems offer a rich phenomenology raising theoretical interest
in the role of reduced dimensionality with Coulomb forces
between fermions and a practical interest in possible techno-
logical applications. Maybe the most important phenomenon
is the competition between electrostatic and kinetic energies
in the quantum range. Within the idealized model of a 2D
homogeneous electron gas and charge-compensating rigid
background the competition leads to different phases, such as
unpolarized and polarized liquids,1–3 possible intermediate
states,4–6 and the Wigner crystal.7–10

In this work we are interested in a possible Cooper chan-
nel with effective electron-electron attraction in 2D. This
pairing has been discussed explicitly by Randeria et al.11

using a qualitative model for pair interaction and by Ghazali
and Gold12 applying a dielectric screening to model an effec-
tive potential. A Cooper channel other than the conventional
phonon-mediated attractive interaction between electrons
seems necessary in order to understand the measured trends
in the critical temperature of cuprate, Chevrel-phase, and
LixZrNCl superconductors.13,14 Moreover, this kind of chan-
nel could explain the recent finding of a bosonic contribution
to the thermal conductivity of underdoped YBa2Cu3Ox.

15

Recent success using the geminal representation for a
correlated-pair state and different effective pair
potentials16–20 to calculate associated pair-correlation func-
tions has motivated a further study on the possibility of pair-
ing in 2D. As the onset of superconductivity is related to
some form of increased order in the motion of the electrons,
it is necessary, therefore, to take into account ways in which
electrons interact with each other.21

Briefly, the motivating attempts16–20 are based on properly
weighted positive-energy scattering states �below the Fermi
energy� needed to construct pair correlation functions. The
success achieved suggests a similar attempt in the negative-

energy, bound-state region of the pair interaction. The physi-
cal picture behind the pair-correlation function governs a
path on which a consistent pair-potential construction can be
based. We apply, from these attempts, the screened-electron-
screened-electron model20 to construct a pair potential Vee�R�
which describes the relative movement of two electrons in
their host system. In the present work we constrain our
model by pair-correlation and energetic arguments. By a nu-
merical solution of the ensuing effective one-particle
Schrödinger equation we find a bound state, the energy ei-
genvalue of which is minimized at a certain low electron
density.

Of course, showing the possibility of bound pair states in
an effective two-body potential is only a first step. Other
arguments11 and further many-body efforts are needed to
achieve a definite statement on the physical reality of super-
conductivity in 2D.

II. MODEL AND RESULTS

In the geminal representation we consider a pair of elec-
trons with antiparallel spins and model the screening density,
superimposing20 normalized Gaussian charges

�n�r� = ��2/��exp�− �2r2� , �1�

centered around both electrons. The statistical and dynamical
correlations are encoded in a normalized hole.21 The value of
� will depend on the 2D electron density n0=1/ ��rs

2�, and it
will be constrained below. The screened-electron-screened-
electron electrostatic interaction energy for the interelectron
distance of R can be obtained in our symmetric model most
easily as a convolution of quantities in the wave-vector �q�
space:

Vee�R� =
1

2�
�

0

�

dqqJ0�qR�Vee�q�

=
1

2�
�

0

�

dqqJ0�qR��1 − �n�q��
2�

q
�1 − �n�q�� . �2�
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Here J0�x� is the zeroth-order Bessel function and �n�q�
=exp�−q2 / �2��2� is the Fourier-Hankel transform of the
Gaussian screening density of Eq. �1�.

The above informative representation for Vee�q� shows
that Vee�q→0��q3. Thus, Vee�R� belongs to the class of
circularly symmetric potentials obeying

�
0

�

2�rdrV�r� = 0. �3�

This class of potentials was investigated by Simon22 who
proved the theorem that a not-everywhere non-negative ef-
fective potential �V�r� has a bound state for all ��0. The
existence of the bound state is the mathematical basis of our
present study.

At this point we notice an important fact, which is related
to the physical reality of the present potential construction.
In 2D, one defines a Friedel-like sum23

S�2D,kr� =
2

�
�

m=−�

�

�m�kr� �4�

of scattering phase shifts �m�kr�. In the present case kr is the
relative momentum in the center-of-mass system of two dis-
tinguishable particles. In our model, the first-order Born ap-
proximation gives S�2D,kr�=0 because S�2D,kr��Vee�q
=0�, perturbatively.24 Consequently, no new excess charge or
change in the associated spectral density25 is generated; we
have only distortion26 in the density profile due to interac-
tions. Due to this fact, the competing kinetic energy-density
change, which is mediated by pair interactions
�collisions�,27,28 also vanishes, since it is proportional to the
product of the density n0 of the uniform 2D electron gas and
Vee�q=0�.

By performing the integration in the above Equation �2�,
we obtain

Vee�R� =
1

R
− 2

1

R
�2�zI0�z�e−z +

1

R
��zI0�z/2�e−z/2, �5�

where the shorthand z=�2R2 /2 is introduced and I0 is the
modified Bessel function. The effective potential is repulsive
at short distances and diminishes as +�9/ �16�4R5�� for
R→�. The shielding function F�z�	RVee�R� is shown in
Fig. 1 for the range z� �0,10�. A negative minimum appears
at about z=0.5, heralding the optimal value �R
1. We note
that a quite similar shape for the 2D effective interaction was
obtained by Khalil et al.29 by using a many-body method
based on polarization and fluctuational diagrams. Remark-
ably, they also suggested that this kind of effective potential
may have a possible role in superconductivity.

In our model we have to constrain the parameter ��rs�.
We outline two options in order to motivate our final simple
choice ��rs�=1/rs for the low densities of the 2D electron
gas at which the binding of the two electrons is optimal. In
the first option we consider the interaction energy 	int�rs�
�Ref. 30� of an electron with its screening hole—i.e.,

	int�rs� = −
1

2
2��

0

�

drr
1

r
�n�r,�� = −

���

2
. �6�

This can be related to the exchange-correlation energy 	xc�rs�
of the 2D electron gas. By using for 	xc�rs� the Padé inter-
polation form1 based on the data �for rs� �1,20�� of Monte
Carlo calculations results in rs��rs�
1 for rs
8; for ex-
ample, at rs=20 one has rs��rs�
1.07. This means that the
change in the contact electron density due to the exchange-
correlation hole, in our model �n�r=0�= ��2 /��, would be
slightly larger than the uniform density n0=1/ ��rs

2�, which is
unphysical in principle.

The second option, which is also tied to two-body phys-
ics, could rest on recent results31 for the on-top values g�r
=0,rs� of the average pair-correlation function. They should
equal the values of our screening hole at the origin—i.e.,
g�0,rs�=1− ��n�r=0,��rs��� /n0. At low densities this con-
straint for ��rs� would lead to the approach of the total
charge depletion limit ��rs�→1/rs from below, because of
the small finite g�0,rs� values. Figure 2 of Ref. 31 shows that
g�0,rs� is very close to zero already at rs=5 �g�0,rs=5�
�0.02�.

The two above options bracket at low electron densities
the total charge depletion case ��rs�=1/rs, which shall there-
fore be our practical choice. This choice results only in a
weak violation of the equality 	int�rs�=	xc�rs�. At rs=5 one
gets 	int�rs�
−0.17 hartree while 	xc�rs�
−0.15 hartree.
At rs=20 we have 	int�rs�
−0.044 hartree while 	xc�rs�

−0.047 hartree. The deviations are small which, together
with the above analysis on distortion and a negligible
kinetic-energy change, suggest that our one-parameter model
is physically well optimized already from about rs
5. With
our choice for ��rs� the important minimum in the residual
interaction appears at R
rs. We have thus, via the residual
form, a picture of the combined effects32 of averaging,
screening, and correlating which affect the net interaction,
similarly as in Landau’s theory for quasiparticle-
quasiparticle interactions.

Now when we have fixed the interaction potential Vee�R�
for different rs values we turn our attention to the determi-
nation of the bound-state energy Eb and corresponding wave
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FIG. 1. The shielding function F�z� defined in the text, as a
function of z=�2R2 /2.
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function ��R� of the two-electron system. We solve
numerically30 the 2D Schrödinger equation

�−
1

2
�2 + Vee�R� − Eb��R� = 0, �7�

where =1/2 is the reduced mass. In circular symmetry the
wave function separates in the standard manner as

��R� =
eim�

�2�
Umn�R� , �8�

in which m=0, ±1, ±2,… is the azimuthal quantum number
and n=1,2 ,3 ,… is the radial quantum number related to the
number of radial nodes �n−1� of the radial wave function
Umn�R�. In this work we are interested in the ground state
n=1 and m=0. By making the substitution umn�R�
=R1/2Umn�r� we obtain the differential equation

d2umn�R�
dR2 + �2�Eb − Vee�R�� −

�m2 − 1/4�
R2 �umn�R� = 0.

�9�

This is the same form as the radial equation studied in
spherically symmetric problems. We solve the equation on
an exponentially expanding radial mesh, R�j�=rmin exp��j
−1��x�, with j=1, . . . ,N. With a given guess for the
eigenenergy Eb the function umn�R� is integrated outwards
from the origin and inwards from a large radius by starting
with its asymptotic expansion. At a matching point close to
the classical turning point the logarithmic derivatives of the
outward and inward integrated solutions are required to co-
incide by adjusting the eigenvalue Eb. The parameters of the
radial mesh, Rmin, �x, and N, are varied until numerical con-
vergence of the eigenvalue is obtained.

By using ��rs�=1/rs we calculate the binding energies Eb

from Eq. �9� with the potential of Eq. �5�. The results are
shown in Fig. 2 as a function of the density parameter rs. The
binding energy increases rapidly with increasing rs, attains a
minimum around rs
13.9, and decreases thereafter slowly
towards lower electron densities. The radial density
2�R���R��2 corresponding to the energy minimum is exhib-

ited in Fig. 3. The density is fairly localized, due to the
well-like nature of the circular Vee�R�.

Finally, in the light of the binding energy versus the
rs-parameter curve in Fig. 2 we discuss the behavior of the
critical temperature �Tc� measured for cuprate and Chevrel-
phase superconductors13 as well as for the Li-intercalated
�Li-doped� LixZrNCl superconductor.14 In these materials the
conduction electrons can be thought to form a 2D electron
gas. According to Uemura et al.,13 TC increases in the cu-
prate and Chevrel-phase superconductors as a function of the
increasing charge carrier density until it saturates and is
eventually suppressed. From a similar parabolic dependence
�Uemura plot� of the transition temperature on condensate
density universal trends, based on experimental results, has
been concluded and the crucial constraining role of these
trends on the microscopic theory has been pointed out.33 This
behavior can be understood if we assume, as a first
approximation,34 that TC is proportional to the binding en-
ergy Eb of the electron pair. Then the increase of TC means
the approach of the energy minimum from the side of the
high-rs values and the saturation and suppression would sig-
nal the passing of the energy minimum. The 2D charge-
carrier densities giving the maximum TC values in Fig. 3 of
Ref. 13 are around 0.66n0�me /m*�
5�1013 cm−2. From
this and based on the assumption m*=me, one gets rs

12 a.u. �n0=1/ ��rs

2��, which is indeed in the optimal range
in our Fig. 2.

Taguchi et al.14 measured TC for the LixZrNCl supercon-
ductor as a function of the Li doping x. They were able to
reduce x down to the occurrence of the insulator phase at x
=0.05 and keeping the Li intercalation uniform without
phase separation. TC showed a strong increase when x de-
creased from 0.12 to 0.06, corresponding to the increase of
the 2D rs parameter from 7.3 to 10.3. Again, assuming that
TC is proportional to Eb the increase in TC is in agreement
with the strong increase in the binding energy from the low-
rs values toward the minimum energy at around rs
13.9. At
higher Li concentrations 0.12�x�0.31, TC increases mod-
erately with decreasing x. The switching to this behavior
may signal the gradual domination of the electron-phonon
interaction in the electron pairing with increasing electron
density. We notice that in a special two-band model of me-
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FIG. 2. Binding energies Eb�rs� in the screened electron-electron
potential of Eq. �5�. The energies are solutions to Eq. �9� with the
effective mass =0.5.

FIG. 3. The radial density 2�R���R��2 and the electron-electron
screened potential for the optimal value of rs=13.9.
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tallic �three-dimensional� hydrogen35 the density dependence
of Tc, without phonons, resembles our findings above; the
dependence heralds increasing Tc with decreasing electron
gas density.

III. SUMMARY AND COMMENTS

We have pointed out the possibility of pairing of two elec-
trons in the 2D fermionic environment by using an effective
pair interaction to their relative motion. The study performed
complements earlier11,12 and more recent30 attempts in this
field and provides a reasonable physical picture to the rich
phenomenology of strong correlation effects. The basis of
our model is the charge depletion around an electron. We
estimate it in a physically reasonable way which is valid also
within the important low-density range. However, the most
important ingredient to the existence of the bound state for
the two electrons is the oscillating nature of the effective
interelectron potential. This oscillation is behind the mini-
mum nature of the kinetic energy change, also.

The problem of how our results can appear at the total
wave-function level needs further attempts. The question of
necessary and sufficient conditions was already investigated
by stating11 that the many-body ground state is unstable to
pairing if and only if a two-body bound state exists. Thus the

possible existence of a bound state in a consistently con-
strained effective interaction implies the nontrivial problem
related to a self-consistent construction of the pair-
correlation function in a geminal model; such a construction
also needs future considerations.

In order to demonstrate the importance of our results in a
physical case we discussed the behavior of the critical tem-
perature in superconductors where the charge carriers can be
thought to form a 2D electron gas. The attractive electron-
electron interaction with the energy minimun at rs
13.9 can
account for the experimental findings in contrast to the con-
ventional phonon-mediated interaction.
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