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The superconducting properties of a recently proposed phenomenological model for a weakly doped anti-
ferromagnet are analyzed, taking into account fluctuations of the phase of the order parameter. In this model,
we assume that the doped charge carriers cannot move out of the antiferromagnetic sublattice in which they
were introduced. This case corresponds to free-carrier spectra with the maximum at k= �±� /2 , ±� /2�, as it
was observed in angle-resolved photoemission spectroscopy experiments for some of the cuprates in the
insulating state �A. Damascelli et al., Rev. Mod. Phys. 75, 473 �2003��. The doping dependence of the
superconducting gap and the temperature–carrier density phase diagram of the model are studied in the case of
the dx2−y2 pairing symmetry of the order parameter and different values of the model parameters. A possible
relevance of the results to experiments on high-temperature superconductors is discussed.
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I. INTRODUCTION

The theoretical description of high-temperature supercon-
ductors �HTSCs� remains one of the most important un-
solved problems of modern condensed-matter theory. How-
ever, despite the lack of complete understanding of this
phenomenon, some facts about the cuprate materials are al-
most generally accepted by the scientific community. First of
all, it is believed that superconductivity in these materials is
mainly generated in CuO2 layers, since even samples with
the layer spacing of �10 Å demonstrate a very high critical
temperature. Second, in the undoped regime, these materials
are antiferromagnetic insulators, which transform into super-
conductors when the doping is larger than some critical
value. Experiments indicate the presence of strong antiferro-
magnetic correlations in the superconducting regime.2,3

Third, the symmetry of the superconducting order parameter
is of a d-wave type in many of the compounds.4,5 It is be-
lieved by many researches that these facts contain sufficient
information to understand the phenomenon of HTSC. It is
almost generally accepted that this phenomenon can be de-
scribed in the framework of a simple two-dimensional model
of strongly correlated electrons �for a recent over-review, see
Ref. 6�. The antiferromagnetic correlations produce a
Bardeen-Cooper-Schrieffer �BCS�-type spin-wave pairing
between electrons. One of the most often studied models of
HTSCs is the t-J model7,8 �see, for example, Refs. 9–14�. It
was shown that the solution of this model within different
approximations demonstrates the d-wave superconductivity
in the underdoped regime. This and many other models,
however, are rather oversimplified, and they do not take into
account some properties of the cuprates. In particular, it is
known from angle-resolved photoemission spectroscopy ex-
periments that the free-carrier spectra of some cuprates such
as Sr2CuO2Cl2 in the insulating phase have the maxima
not at the Brillouin zone edge at momenta k= �±� , ±��
but at points k= �±� /2 , ±� /2�.1 This fact suggests

that the free-carrier spectra can be approximated as
��k��−4t2 cos kx cos ky −2t3�cos 2kx+cos 2ky�, i.e., the
doped carriers only move within one sublattice where they
were born. This situation is similar to the case of collinear
antiferromagnetic dielectrics with the Néel ground state,
where electronic and spin excitations cannot move out of one
sublattice to another. It is important that the excitations must
live on nonequivalent sublattices, i.e., on the copper sublat-
tices, which form an antiferromagnet. It is often assumed for
several reasons �see below� that doped holes in cuprates oc-
cupy sites in the oxygen subsystem of the CuO2 planes.15

However, it is known that the next-nearest-neighbor �NNN�
hopping parameter for this sublattice is much smaller than
the nearest-neighbor �NN� hopping parameter, which ex-
cludes the possibility to explain the spectra experiments1 in
this case. One can try to overcome this difficulty by intro-
ducing the Zhang-Rice singlet, which consists of a doped
oxygen hole coupled to one of the closest copper ions. The
hole chooses the ion in such a way that the energy of the
singlet is minimal. Such states can only move within their
magnetic sublattices. However, these states are unstable due
to several reasons. First of all, the “up” and “down” spins of
the copper ions enter as a linear combination in the Zhang-
Rice singlet in an equivalent way, so a hole with the opposite
spin projection will try to form the same singlet with the
neighboring localized ion spin from another sublattice. Also,
the oxygen ions occupy states that are symmetrical with re-
spect to the neighbor copper ions. Therefore, the total ex-
change field, which acts on a hole on the oxygen site, is
compensated, and the hole becomes frustrated with respect to
the choice of the axis of the spin quantization. The proper
axis of quantization can be established, but in this case, the
hole hybridized with copper states will move in the CuO2
plane not feeling the magnetic ordering. This also does not
allow one to explain the spectra experiments.

These difficulties can be avoided by assuming that the
doped holes sit on the copper sites.16 In fact, in the undoped
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state, the CuO2 planes consist of Cu2+ and O2− ions. The
doping leads to a change of the valence of some ions, which
results in the appearance of movable charges in the system.
The assumption that the holes occupy copper ions means that
the Cu2+→Cu3+ transitions take place. These transitions are
different from usually considered O2−→O− transitions in the
case of the holes, which occupy the oxygen sites. The reason
for the last assumption follows from the fact that it is be-
lieved by many researches that the Cu3+O2− configuration
has a higher energy compared to Cu2+O−. However, the
Cu3+O2− configuration can be preferable if one takes into
account the Coulomb attraction VC inside the configurations.

In fact, since VC
Cu3+O2−

�3VC
Cu2+O−

�6VC
Cu+O−

and every copper
ion is surrounded by four oxygen ions, at the same time as
every oxygen ion is surrounded by only two copper ions, one
can find that the corresponding Coulomb attraction energy

difference for two configurations is of order 20VC
Cu+O−

. This
difference in the Coulomb interaction energies can provide
the stability of the Cu3+O2− configuration campared to other
configurations, i.e., a possibility for the doped holes to move
within the copper sublattice. This picture corresponds quali-
tatively to the t-J-model case. However, it was usually as-
sumed that the free-carrier dispersion relation in this model
corresponds to the NN hopping, which does not allow one to
obtain the experimental spectra with the maximum at k
= �±� /2 , ±� /2�.

A simple phenomenological Hamiltonian that corresponds
to charge carriers that move within fixed sublattices was pro-
posed in order to describe superconductivity in some cu-
prates at low carrier densities in Ref. 16. In this paper, the
effective attraction between the doped electrons on different
sublattices was assumed to be equal to the antiferromagnetic
coupling J between nearest site spins. In fact, the carrier
doping in the antiferromagnet leads to breakdown of the an-
tiferromagnetic coupling J between nearest site spins. This
results in increase of the energy of the system. This energy
increase is minimal when two empty sites are nearest neigh-
bors, because the minimal number of the antiferromagnetic
spin-spin �exchange� interaction bonds is broken in this case.
This phenomenological attraction was introduced for the first
time by Trugman in Ref. 18 �see also recent papers19–21�. As
it was shown in Ref. 22, the order parameter, which corre-
sponds to the pairs produced by such an interaction, has a
d-wave symmetry.

Below, the doping dependence of the d-wave supercon-
ducting gap in the model at different values of coupling and
T=0 is studied. In addition, we analyze the temperature-
doping phase diagram of the model by taking into account
fluctuations of the phase of the order parameter according to
the Emery-Kiveson scenario.23 We identify the temperature
region between the mean-field critical temperature Tc

MF, at
which the modulus of the superconducting order parameter is
created, and the Berezinskii-Kosterlitz-Thouless �BKT� criti-
cal temperature TBKT, below which the order parameter
phases are algebraically correlated, as the lower part of the
pseudogap phase with a critical temperature T0, which is a
few times larger than Tc �see, for example, Refs. 6, 24, and
25�. It is shown that the width of this temperature region
between Tc

MF�T0 and TBKT�Tc strongly depends on the car-

rier concentration. We make a qualitative comparison of the
results with experimental results on some HTSCs.

II. MODEL

The Hamiltonian of noninteracting doped d-hole carriers
in HTSCs can be approximated by

Hd = �d�
n

�
�n

dn�n

† dn�n
−

1

2 �
n,m

�
�n,�m

tnm	�n
�m�dn�n

† dm�m
,

�1�

where dn�n

† �dn�n
� is the creation �annihilation� operator of the

electron on site n with spin �n, �d is the electron on-site
energy, tnm is the hopping parameter, and 	�n 
�m� is the
spin-spin correlation function calculated in the ion system of
coordinates �see Ref. 16�. This Hamiltonian can be trans-
formed to the following form in terms of the Hubbard opera-
tors in the laboratory system of spin coordinates:

Hd = Hcoh + Hint
�1� + Hint

�2�, �2�

where

Hcoh = ��d − ���
n

Xn
2,2

−
1

2 �
n,m

tnm cos
QAFM�n − m�

2
Xn

2,1/2Xm
1/2,2 �3�

is a part of the Hamiltonian which describes motion of free
holes in an antiferromagnetically ordered medium, QAFMa
= �±� , ±��, a is the lattice constant of a square lattice, and

Hint
�1� = −

1

2 �
n,m

tnm sin
QAFM�n − m�

2
�Xn

2,1/2Xm
1/2,2Sm

−

− Xn
2,1/2Xm

1/2,2Sn
+� �4�

and

Hint
�2� = −

1

2 �
n,m

tnm cos
QAFM�n − m�

2
Xn

2,1/2Xm
1/2,2Sn

+Sm
− �5�

describe noncoherent inter-ion hole transitions with one and
two spin excitations, correspondingly. Sn

+ and Sm
− are spin

creation and annihilation operators. It is important that ex-
pressions �2�–�5� are written in terms of the Hubbard opera-
tors, which directly take into account the antiferromagnetic
ordering in the system. The ion spin projections in both mag-
netic sublattices are equal to 1/2 in the ground state of the
crystal �we use local systems of coordinates for each sublat-
tice�. The spin conservation is also taken into account, which
results in the fact that the electrons can move only on the
magnetic sublattice on which they were born �for details, see
Ref. 16�.

As it was mentioned in the Introduction, a simple effec-
tive attraction between the doped holes on different sublat-
tices can be introduced.18 The carrier doping in the antifer-
romagnet leads to an increasing of the energy of the system,
since it breaks the antiferromagnetic coupling J between the
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nearest site spins. The energy increase is minimal when two
doped particles occupy the nearest-neighbor sites, since the
minimal number of the antiferromagnetic spin-spin bonds is
broken in this case. Therefore, the doping leads to an effec-
tive attraction between carriers on different sublattices:

Hattr = − J �
n,�=a,b

Xn
2,2Xn+�

2,2 . �6�

The total Hamiltonian of the system is H=Hd+Hattr. For
simplicity, we neglect Eqs. �4� and �5�, which do not contrib-
ute significantly to the increase of the superconducting criti-
cal temperature. The first term corresponds to a BCS-like
interaction, which is small at low carrier densities, or Fermi
momenta of doped holes kF. It is proportional to the energy
of the spin waves �AFM�kF�, which is much smaller than the
exchange energy J. Equation �5�, which corresponds to the
two-magnon attraction, also does not contribute significantly
to the increase of the critical temperature in the d-wave pair-
ing channel.16,17,26

Therefore, a simplified version of the Hamiltonian of a
doped antiferromagnet can be written as

H = ��d − ���
n

Xn
2,2 −

1

2 �
n,m

tnm cos
QAFM�n − m�

2
Xn

2,1/2Xm
1/2,2

− J �
n,�=a,b

Xn
2,2Xn+�

2,2 . �7�

In the case of an antiferromagnet on a square lattice, the
free particle energy spectrum, which corresponds to the first
two terms in Eq. �7�, is

��k� = �d − 4t2 cos kx cos ky − 2t3�cos 2kx + cos 2ky� − � ,

�8�

where � is the chemical potential, and t2 and t3 are the NNN
and next NNN hopping parameters, correspondingly. We use
the units in which the lattice constant is equal to one: a=1.
In order to have ��k�=0 at k=0, one can choose �d=4t2

+4t3. The chemical potential is connected with the free �or
doped� particle number in the system by the following rela-
tion:

� = �
n

	Xn
2,2� , �9�

where the sum goes over two sublattices. The Hamiltonian
�Eq. �7�� has a simpler structure, compared to the t-J-model
Hamiltonian, yet it can describe some of the main physical
properties of underdoped cuprates.

III. ZERO-TEMPERATURE PROPERTIES

To study the superconducting properties of the system de-
scribed by the Hamiltonian �Eq. �7��, it is convenient to in-
troduce generalized Nambu-Hubbard hole operators:

	n�t� = �Xn
2,1/2�t�

Xn
1/2,2�t�

, 	n
†�t� = „Xn

1/2,2�t�,Xn
2,1/2�t�… , �10�

where n are lattice sites and t is time. In this case, the time-

ordered Green function Ĝnm�t , t��=−i	T�	n�t�	m
† �t���� is

Ĝnm�t,t�� = − i�	TXn
2,1/2�t�Xm

1/2,2�t���
	TXn

1/2,2�t�Xm
1/2,2�t���

	TXn
2,1/2�t�Xm

2,1/2�t���
	TXn

1/2,2�t�Xm
2,1/2�t���

 .

�11�

The Green function �Eq. �11�� satisfies the following
equation of motion:

i
�

�t
Ĝnm�t,t�� = ��t − t���nmÎ + 	T�	n�t�,H�	m

† �t��� ,

�12�

where, as it was mentioned above, H is defined by Eq. �7�,
and

Î = �	Xn
1/2,1/2�t� + Xn

2,2�t��
0

0

	Xn
1/2,1/2 + Xn

2,2�
 . �13�

This equality can be derived by using the commutation rela-
tions for the Hubbard operators.

In the generalized mean-field theory approximation, the
last term in Eq. �12� can be linearized in the following way
�see, for example Ref. 27�:

	T�	n,H�	m
† ��
� � �

l
ÊnlĜlm�
� , �14�

where

Ênm = 	��	n,H�,	m
† �� �15�

is the energy matrix. The nonlinear �dynamical� corrections
to the self-energy in Eq. �14� can be taken into account.12 We
assume that the generalized mean-field approximation �Eq.
�14�� is good enough in the case of low carrier densities,
when the free quasiparticle excitations can be described by
the fields represented by the Hubbard operators �Eq. �10��.

The expression for the energy matrix �Eq. �15�� can be
found by solving the Heisenberg equations of motion for the
X operators. In terms of the energy matrix �Eq. �15��, the
Green function can be written as

Ĝnm�
� =
Î


�nm − Ênm

. �16�

To find the explicit expression for the Green function �Eq.
�16��, let us write down the equations of motion for the Hub-
bard operators:

i�
�

�t
Xn

1/2,2�t� = ��d − ��Xn
1/2,2

−
1

2�
l

tnl cos
QAFM�n − l�

2
�Xn

1/2,1/2

+ Xn
2,2�Xl

1/2,2 − 2J�
�

Xn+�
2,2 Xn

1/2,2, �17�
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i�
�

�t
Xn

2,1/2�t� = − ��d − ��Xn
2,1/2

+
1

2�
l

tln cos
QAFM�l − n�

2
Xl

2,1/2�Xn
1/2,1/2

+ Xn
2,2� + 2J�

�

Xn
2,1/2Xn+�

2,2 . �18�

Substitution of the expressions on the right-hand side in
Eqs. �17� and �18� instead of the commutators �i�X /�t
= �X ,H�� into Eq. �15� and evaluation of the anticommutators
give the following expression for the energy matrix:

Ênm = �Ẽnm

�̃nm

− �̃nm

− Ẽnm

 , �19�

where

Ẽnm = − �nm��d − ��	Xn
1/2,1/2 + Xn

2,2�

+
1

2
�nm�

l
tln cos

QAFM�l − n�
2

	Xl
2,1/2Xn

1/2,2�

+ 2�nm�
l

Jnl	Xn
1/2,1/2Xl

2,2�

+
1

2
tmn cos

QAFM�m − n�
2

	Xm
1/2,1/2�Xn

1/2,1/2 + Xn
2,2�� ,

�20�

�̃nm = −
1

2
�nm�

l
tln cos

QAFM�l − n�
2

	Xl
2,1/2Xn

2,1/2�

− 2Jnm	Xn
2,1/2Xm

2,1/2� �21�

are the renormalized energy and the superconducting gap
matrices. In Eqs. �20� and �21�, we have introduced the fol-
lowing NN attraction matrix operator: Jnm=J�n,m+�. Despite
their complicated formal structure, it is possible to show that
the terms in Eqs. �20� and �21� have a very simple physical
interpretation. In particular, the second and third terms in Eq.
�20�, which are proportional to �, lead to a renormalization
of the chemical potential �→��=�+��. The average
	Xm

1/2,1/2�Xn
1/2,1/2+Xn

2,2�� multiplied by the hopping operator
tmn in the last term of Eq. �20� leads to a renormalization of
the quasiparticle bandwidth in the limit of low doping. How-
ever, one can set 	Xm

1/2,1/2�Xn
1/2,1/2+Xn

2,2���1 in this limit,
since in the limit of low carrier concentrations, Xn

1/2,1/2

+Xn
2,2�1, and the renormalization of the quasiparticle band

is not strong. Therefore, the energy function Ẽnm defined in
Eq. �20� can be approximated by the free-energy spectra ex-
pression �Eq. �8�� multiplied by −1 in the momentum space.
It is also assumed that the chemical potential in Eq. �8� is
renormalized.

The expression for the gap function �Eq. �21�� can be also
simplified. In fact, as it was shown in Ref. 22, attraction �6�
favors a superconducting pairing with the d-wave symmetry
of the order parameter. Therefore, we assume that the stron-
gest pairing in the system takes place in the d-wave channel

and neglect the first term in Eq. �21�, which does not con-
tribute to the pairing in this channel. In this case, the gap
function in the momentum representation can be approxi-
mated in the following way:

��k� = − 2�
q

J�k − q�	X−q
2,1/2Xq

2,1/2� , �22�

where we introduced a NN attraction kernel, J�k�
=2J�cos�kx−qx�+cos�ky −qy��. Thus, the Green function �Eq.
�16�� has the following form in the momentum space:

G�
,k� =
1


 + ��k�z + i��k�y
, �23�

where ̂y and ̂z are the Pauli matrices and we assumed that
in the limit of low carrier densities, the normalization matrix

is approximately equal to the unit matrix Î� 1̂.
To find the unknown gap function ��k� and the renormal-

ized chemical potential ��, one can write down and solve the
system of equations for these functions using the fluctuation-
dissipation theorem:

	AB� =
1

�
�

−�

�

d

IGAB�
�

e�
−��/T + 1
. �24�

The zero-temperature equations, which connect ��k� and
� with the parameters t2, t3, J, and �, follow from Eqs. �9�
and �22�:

��k� = 2�
q

J�k − q�
��q�

��2�q� + �2�q�
, �25�

� = �
k
�1 +

��k�
��2�k� + �2�k�� . �26�

Since we consider the case when the pairing in the system
takes place in the d-wave channel, we set ��k�=�d�d�k�,
where �d�k�= �cos kx−cos ky�, in Eqs. �25� and �26�. In this
case, in order to satisfy Eqs. �25� and �26�, one must extract
the d-wave piece from the interaction kernel and approxi-
mate it by the function J�k−q�→2J�d�k��d�q�. In this ap-
proximation, Eq. �25� for the superconducting order param-
eter acquires a rather simple form,

1 = 4J�
q

�d
2�q�

1

��2�q� + �d
2�d

2�q�
. �27�

The solution of the set of Eqs. �26� and �27� at different
values of interaction and hopping t2 is presented in Fig. 1. As
it follows from this figure, the gap is not very sensitive to the
values of the NNN hopping parameter, but it strongly de-
pends on the interaction potential. Superconductivity is sup-
pressed when the carrier density is smaller than some critical
value. This value also increases when the effective attractive
interaction J decreases. This situation is, in principle, similar
to the case with attracting electrons, when there is no anti-
ferromagnetic background for the carrier motion �see, for
example, Refs. 31 and 32�.
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IV. TEMPERATURE–CARRIER DENSITY PHASE
DIAGRAM

In this section, we study the finite-temperature properties
of the model. It is known that there are two critical tempera-
tures in the two-dimensional superconducting systems: the
mean-field critical temperature Tc

MF, below which the uncor-
related pairs start to form, and the Berezinskii-Kosterlitz-
Thouless critical temperature TBKT�Tc

MF, below which the
phases of the pair wave functions become algebraically or-
dered �for over-review, see, for example, Ref. 28�. Since
such an order is the only possible order in our system, as it
was stated above, we have to set TBKT=Tc. As it was men-
tioned in the Introduction, we use this scenario in order to
describe the low-temperature part of the pseudogap phase in
some of the HTSCs. It was established experimentally that
some of the cuprates demonstrate a strong Nernst effect
below a temperature T0, which is a few orders higher than
Tc, and which can be naturally identified with Tc

MF. In fact,
experimental data suggest that the physical properties of the
system in the region of temperature Tc�T�T0 are defined
by the phase fluctuations of the order parameter �see Refs.
6,24,25 and references therein�. It is necessary to stress that the
temperature T0 is much lower than the upper pseudogap tem-

perature T*, which is caused by nonsuperconducting effects.6

Moreover, as it follows from experiments, these two tem-
peratures have different doping dependencies. Namely, T*

grows and T0 decreases with doping decreasing. As it will be
shown below, our results for the doping dependence of Tc

MF

are in a qualitative agreement with experimental results for
the temperature T0. It is out of the scope of the present paper
to describe the temperature region T0�T�Tc

* of the phase
diagram of cuprate superconductors. In this region, the
physical properties of the system are defined by nonsuper-
conducting effects. In particular, some of the researchers be-
lieve that the system behavior in this region is dominated by
the spin singlet formation.6 Below, we study the phase dia-
gram of the present model at temperatures T�Tc

MF.

A. Mean-field critical temperature

To find the doping dependence of the critical temperature
Tc

MF in the d-wave pairing channel, one needs to solve the
finite-temperature version of the set of Eqs. �25� and �26�.
These equations follow from Eqs. �9�, �22�, and �24�:

1 = 4J�
q

�d
2�q�tanh���2�q� + �d

2�d
2�q�

2T
� 1

��2�q� + �d
2�d

2�q�
,

�28�

� = �
k
�1 + tanh���2�q� + �d

2�d
2�q�

2T
� ��k�

��2�k� + �d
2�d

2�k�
� .

�29�

The system of equations for Tc
MF and �� can be obtained

from Eqs. �28� and �29� by setting the amplitude of the order
parameter equal to zero: �d=0. The solution of the system of
these equations shows that the doping dependence of the
mean-field critical temperature �Figs. 2–6� has qualitatively
the same form as the zero-temperature gap �Fig. 1�.

It is important that superconductivity is suppressed at low
carrier densities in the d-wave pairing channel at some val-
ues of the hopping parameters. To understand this qualita-
tively, one can notice that at low doping, the function �d

2�q�
in the equation for the mean-field critical temperature �Eq.
�28�� can be approximated as �q�q2 cos�2�q� /2
�m*�F cos�2�qF

� /2, where �F is the Fermi energy and m* is
an effective quasiparticle mass, which is directly connected
with t2 and t3 �see Sec. IV B�. In this case, Eq. �28� has the
form of a standard BSC equation for the critical temperature
in the s-wave pairing channel with a renormalized coupling
J→Jm*2�F

2 /4. Therefore, the mean-field critical temperature
is an exponentially small function of the square of the carrier
density �2��F

2 in this case.
In Figs. 2–6, we present the doping dependence of the

mean-field critical temperature at different values of t2, t3,
and J. As it follows from these figures, the critical value of
the doping, below which superconductivity is suppressed,
grows with decreasing J. Also, it grows with increasing t2 at
fixed t3 and with increasing t3 at fixed t2.

FIG. 1. The gap parameter �d as a function of the carrier density
at t3=1 and different values of t2 and J. Here and in Figs. 2�b�, 5�b�,
and 6�b�, we do not present results in the case when the gap or the
critical temperature is very small for some values of the model
parameters, since it was difficult to get an accurate numerical solu-
tion in these cases.
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B. Critical temperature

In order to study the BKT transition in the system, it is
necessary to consider the superconducting order parameter
transfer phase fluctuations. The phase of the order parameter
�nm can be introduced in analogy with the fermion case,
when the fermion operator can be presented as a product
of a neutral fermion operator �� ,n� and its phase
exp�i�� ,n� /2� �see, for example, Ref. 28�. In our case:

Xn
2,1/2 = �Xn

1/2,2�† = ��,n�exp�i��,n�/2� .

In this case, the superconducting order parameter can be pre-
sented as a product of its amplitude and phase:

	Xn
2,1/2Xm

2,1/2� = �n,m+��nm exp�i�nm� . �30�

It can be shown that the phase dependence of the thermo-
dynamic potential of the fermion system with the Green
function �Eq. �23�� and the gap function �Eq. �30�� in the

FIG. 2. The mean-field �a� and the BKT �b� critical temperatures
as functions of the carrier density at t2=1, t3=0, and different val-
ues of J.

FIG. 3. The doping dependence of the mean-field critical tem-
perature Tc

MF at t2=1, t3=0.5, and different values of J.

FIG. 4. The mean-field critical temperature Tc
MF as a function of

the carrier density at t2=1, t3=1, and different values of J.

FIG. 5. The mean-field �a� and the BKT �b� critical temperatures
as functions of doping at zero hopping parameter t2 and different
values of coupling J.
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limit of small fluctuations of the phase of the order parameter
is equal to

���,�� =
J
2
� d2r����2, �31�

where the stiffness in the long-wave limit is

J =
�

4m* −
1

16m*2

1

T
� d2k

�2��2

k2

cosh2����k�2 + �d
2�d

2�k�/2T�
.

�32�

�see, for example, Ref. 29�. In our case, the effective mass of
the free quasiparticles is m*=1/ �4�t2+2t3��.

In analogy with the two-dimensional spin XY model,30 the
equation for the BKT transition critical temperature, below
which the phases of order parameter �the spin orientation in
the XY-model case� become algebraically ordered, has the
following form:

Tc =
�

2
J��d,��,Tc� , �33�

where function J is defined in Eq. �32�.
The doping dependence of the superconducting critical

temperature Tc can be found by solving the system of

Eqs. �28�, �29�, and �33�. The solution of this set of equations
at different values of the interaction shows that the doping
dependence of Tc has qualitatively the same form as the dop-
ing dependence of Tc

MF �Figs. 2, 5, and 6�. It is possible to
study some limiting cases of the solution of Eq. �33� analyti-
cally. In particular, in the limit of rather large carrier densi-
ties, when �d�Tc �Tc is close to Tc

MF�, one can make an
expansion in powers of �d /Tc on the right-hand side of Eq.
�33�. In this case, this equation transforms to

Tc
3 = A�d

2�Tc��3/m*, �34�

where A��3 /128. Since the gap parameter depends on the
critical temperature as �d�T�=�d�0��1− �T /Tc

MF�2�1/�, where
��1, at temperatures close to the mean-field critical tem-
perature ��→2 at T→Tc

MF�,31 the solution of Eq. �34� is

Tc � Tc
MF�1 −

1

2
�m*�Tc

MF�3

A�d
2�0� ��/2 1

�3�/2� . �35�

In other words, the critical temperature approaches the mean-
field critical temperature as the doping increases at large car-
rier densities. It is interesting that Eq. �34� is also valid in the
limit of low carrier concentrations when both critical tem-
peratures are suppressed. Therefore, the second term in Eq.
�32� is important at any carrier concentration in the d-wave
pairing channel, contrary to the s-pairing case, where this
term can be omitted at low values of � which gives Tc��.

It is important that the amplitude of Tc is much smaller
than Tc

MF, and the pseudogap region Tc�T�Tc
MF is rather

large in this case �Figs. 2–6�. This is similar to the phase
diagram of cuprates, where there is a large pseudogap region
above the critical temperature at low carrier densities. It must
be stressed that in the case of higher carrier densities, one
must consider a model with a more complicated effective
interaction compared to Eq. �6�. Also, as it was mentioned
above, in this paper, we take into account only superconduct-
ing order parameter phase fluctuations in order to describe
the pseudogap phase of cuprates. Therefore, we are able to
describe only the lower part of the pseudogap phase with a
critical temperature T0, which we identify with Tc

MF. Our
results are in qualitative agreement with experimental results
on some cuprates �see, for example, Fig. 20 in Ref. 24�. As it
was mentioned in Ref. 16, in order to describe experimental
spectra, one needs to choose t2� t3. This condition, together
with the requirement to get superconductivity to develop at
��0.05, can be satisfied if one chooses t2�0.1t3. In order to
make a qualitative comparison with experiments, we use this
condition together with an estimated value of t3�0.1 eV and
the effective coupling J�0.5t3�0.05 eV. The last estima-
tion can be obtained by choosing the coupling of order of the
antiferromagnetic bond energy. This energy has the order of
the antiferromagnetic critical temperature of the undoped cu-
prates, �300–400 K. The results for the gap and for the
critical temperatures for this choice of the parameters are
presented in Figs. 1 and 6, correspondingly. As it follows
from these figures, the model gives correct amplitudes for
the values of the gap parameter ��0.1t3�0.01 eV�, but it
seems to give an underestimated value for Tc ��0.01t3

�0.001 eV� at dopings higher but close to the optimal one

FIG. 6. The mean-field �left� and the BKT �right� critical tem-
peratures as functions of doping in the case of small but nonzero
hopping parameter t2 and different values of coupling J.
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���0.16�. Another important set of experimental data,
which can be compared with our theoretical results, is the
ratio of the 2�d�T=0� /Tc, which was estimated for the opti-
mally doped cuprates to be equal approximately to 5.5.33 Our
numerical calculations show that this ratio is 2 orders of
magnitude larger in the case of realistic parameters given in
Fig. 6 �actually, in our case, the ratio is 4�d�T=0� /Tc, since
the maximal value of the gap is 2�d�T=0��. However, it
must be noted that the model in Eq. �7� was derived for the
underdoped regime, i.e., at doping values smaller than
�0.16. It would be really important to have a trustable set of
experimental data for this ratio in the underdoped case at
different values of doping in order to test the model. Inter-
estingly, we have found that the ratio 4�d�T=0� /Tc

MF

changes from approximately 3.5 to 5 when coupling in-
creases for the parameters given in Fig. 6. This value is of
the order of the experimental result, 5.5 �see also Ref. 31�. In
order to make a quantitative comparison with the experi-
ments at higher values of doping, the model Hamiltonian
�Eq. �7�� must be modified. In particular, one needs to take
into account the NN hopping parameter t1, which can be set
to equal zero in undoped cuprates but which grows with the
doping increasing.16 The doping dependence of t1 is a sepa-
rate complicated problem, which is planned to be studied in
the future.

V. CONCLUSIONS

To conclude, we have studied the superconducting prop-
erties of an effective model introduced in Ref. 16 in order to
describe low carrier density properties of some HTSCs. It

was shown that the d-wave pairing superconductivity in this
model exists when the carrier density is larger than some
critical value. This critical value strongly depends on the
interaction energy, and it is growing with the interaction de-
creasing. The amplitude of the lower �superconducting�
pseudogap temperature Tc

MF�T0 is almost an order of mag-
nitude larger than the value of the critical temperature Tc.
Though this result is in a qualitative agreement with experi-
ments on some cuprates,24 it seems to be overestimated for
other systems. This and some other open issues must be re-
solved. In particular, it is important to understand the origin
of the higher pseudogap temperature T*, which is defined by
nonsuperconducting effects. Currently, we are studying this
problem by taking into account spin fluctuations in the model
at high temperatures. The results will be presented in future
publications. Another important problem is how to general-
ize the results on the case of larger carrier densities, when the
antiferromagnetic sublattice breaks down and it is not
enough to set the attraction to be equal to the antiferromag-
netic bond energy J. The effective antiferromagnetic attrac-
tion decreases in this case. Also, the doping increase is ac-
companied by increase of the number of scattering centers
created by dopants, which also leads to a suppression of
superconductivity �see, for example, Ref. 31�. Another im-
portant problem, which is widely discussed nowadays, is the
possibility of a nonhomogeneous superconductivity in cu-
prates �see, e.g., Ref. 34 and references therein�. It is also
necessary to estimate pairings in other channels with differ-
ent symmetries of the order parameter. These and some other
questions are planned to be studied in the framework of the
model discussed in this paper in the near future.
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