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We investigate superconductivity in a two-orbital Hubbard model on a square lattice by applying fluctuation
exchange approximation. In the present model, the symmetry of the two orbitals are assumed to be that of an
s orbital. Then, we find that an s-wave spin-triplet orbital-antisymmetric state and a p-wave spin-singlet
orbital-antisymmetric state appear when Hund’s rule coupling is large. These states are prohibited in a single-
orbital model within states with even frequency dependence, but allowed for multiorbital systems. We also
discuss pairing symmetry in other models which are equivalent to the two-orbital Hubbard model except for
symmetry of orbitals. Finally, we show that pairing states with a finite total momentum, even without a
magnetic field, are possible in a system with two Fermi surfaces.
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I. INTRODUCTION

It has been recognized that orbital degree of freedom
plays important roles in the determination of physical prop-
erties, such as colossal magnetoresistance and complex or-
dered phases of manganites,1,2 and exotic magnetism in
f-electron systems.2,3 From experimental and theoretical
studies of such systems, it is revealed that magnetism in
multiorbital systems has a rich variety. In recent years, ef-
fects of orbital degree of freedom on superconductivity have
also been discussed theoretically for several materials,4–11

and it has been found that orbital degree of freedom is im-
portant, e.g., for the determination of pairing symmetry in a
system. In particular, orbital degree of freedom probably
plays a role in triplet superconductivity of Sr2RuO4,12,13 in
which Fermi surfaces are composed of t2g orbitals.

To understand the effects of orbital degree of freedom on
superconductivity, it is still important to gain a definite
knowledge on those in a relatively simple model such as a
Hubbard model for two orbitals with the same dispersion,
although, at present, it is difficult to find direct relevance of
such a simple model to actual materials. For such a purpose,
superconductivity in two-orbital Hubbard models has been
studied by a mean-field theory14 and by a dynamical mean-
field theory.15,16 These studies have revealed that an s-wave
spin-triplet state, which satisfies the Pauli principle by com-
posing an orbital state of a pair antisymmetrically, is a can-
didate for a ground state. This fact is in sharp contrast to a
single-orbital model in which pairing states with even parity
in the wave-number space, such as an s-wave state, should
be spin-singlet ones due to the Pauli principle within states
with even frequency dependence. Note that odd-frequency
states are hard to be realized in ordinary cases. In addition, in
a two-orbital system, it is also possible to realize odd-parity
spin-singlet states. Thus, the variety of pairing states in a
two-orbital model is larger.

However, in the above studies, the possibility of super-
conductivity other than the s-wave state is not considered. In
particular, within the standard dynamical mean-field theory,
i.e., in infinite spatial dimensions, we cannot deal with spa-
tial dependence of a pairing state. Thus it is desirable to
study superconductivity in a multiorbital model on a finite-

dimensional lattice and determine the most plausible candi-
dates for pairing symmetry of superconductivity.

In this paper, we investigate possible superconducting
states of a two-orbital Hubbard model on a square lattice by
applying fluctuation exchange �FLEX� approximation. The
FLEX approximation has been extended to multiorbital
models.6,7,9–11 We classify superconducting states by spin
states, orbital states, and representations of tetragonal sym-
metry. We also discuss pairing symmetry in other models
which are equivalent to the two-orbital Hubbard model. In
particular, we find that pairing states with a finite total mo-
mentum like the Fulde-Ferrell-Larkin-Ovchinnikov �FFLO�
state,17,18 even without a magnetic field, are possible in a
system with two Fermi surfaces.

The organization of this paper is as follows. In Sec. II, we
introduce the two-orbital Hubbard model. In Sec. III, we
explain the FLEX approximation and categorize pairing
symmetry of the model. In Sec. IV, we show results obtained
with the FLEX approximation. In Sec. V, we discuss pairing
symmetry in other models which are equivalent to the two-
orbital Hubbard model except for orbital symmetry. We sum-
marize the paper in Sec. VI.

II. HAMILTONIAN

To investigate superconductivity in a multiorbital system,
we consider a two-orbital Hubbard model given by

H = �
k,�,�

�k�ck��
† ck�� + U�

i,�
ni�↑ni�↓ + U��

i

ni1ni2

+ J �
i,�,��

ci1�
† ci2��

† ci1��ci2� + J� �
i,����

ci�↑
† ci�↓

† ci��↓ci��↑,

�1�

where ci�� is the annihilation operator of the electron at site i
with orbital � �=1 or 2� and spin � ��↑ or ↓�, ck�� is the
Fourier transform of it, ni��=ci��

† ci��, and ni�=��ni��. The
coupling constants U, U�, J, and J� denote the intraorbital
Coulomb, interorbital Coulomb, exchange, and pair-hopping
interactions, respectively. In the following, we use the rela-
tion U=U�+J+J�, which is satisfied in several orbital-
degenerate models such as a model for p orbitals, a model
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for eg orbitals, and a model for t2g orbitals.19 We also use the
relation J=J�, which holds if we can choose wave functions
of orbitals real.19

Concerning the kinetic energy �k�, we consider only a
nearest-neighbor hopping integral t for both orbitals for sim-
plicity, and the kinetic energy is given by �k1=�k2=�k
=2t�cos kx+cos ky�. Here, we have set the lattice constant
unity. We note that we assume that the symmetry of orbitals
is an s-orbital one, i.e., an orbital state does not change by a
symmetry operation of a lattice, such as inversion. This as-
sumption is crucial in determining the pairing symmetry of
superconductivity.

Here, we note that the model Hamiltonian �1� can also
describe a system with different orbital symmetries with a
special condition. For example, a model for doubly degener-
ate px and py orbitals with the Slater-Koster integrals
�pp��= �pp��= t is given by Eq. �1� with �k1=�k2=�k. An-
other model for s orbitals described by Eq. �1� with
�k1=−�k2=�k is equivalent to the model with �k1=�k2=�k if
we change the phases of the wave functions for �=2 orbitals
by exp�iQ ·ri� at each site i, where Q= �� ,��. We also dis-
cuss pairing symmetry in such equivalent models in Sec. V.

III. FORMULATION

In this section, we derive equations for response func-
tions, classify symmetry of superconductivity, and derive a
gap equation for the anomalous self-energy for each symme-
try.

A. Green’s function

First, we derive equations for the Green’s function in the
normal phase. In general, the Green’s function is defined by

G�1�1;�2�2
�k,�� = − �T�ck�1�1

���ck�2�2

† � , �2�

and the anomalous Green’s functions are defined by

F�1�1;�2�2
�k,�� = − �T�ck�1�1

���c−k�2�2
� , �3�

F�1�1;�2�2

† �k,�� = − �T�c−k�1�1

† ���ck�2�2

† � , �4�

where T� denotes the time-ordered product and �¯� denotes
the thermal average. The Heisenberg representation for an
operator O is defined by

O��� = e��H−�Ntot�Oe−��H−�Ntot�, �5�

where Ntot=�i,�ni� is the total number operator of electrons
and � is the chemical potential. It is convenient to use the
Fourier transformation with respect to imaginary time given
by

O�i�n� = �
0

�

d�ei�n�O��� , �6�

where �=1/T with a temperature T and �n= �2n+1��T is the
Matsubara frequency for fermions with an integer n. Here,
we have set the Boltzmann constant unity. Then, the Dyson-
Gorkov equations are given by

G��;�����k� = ��������G
�0��k�

+ �
��,��

�G�0��k�	��;�����k�G����;�����k�

+ G�0��k�
��;�����k�F����;����
† �k�� , �7�

F��;�����k� = �
��,��

�G�0��k�	��;�����k�F����;�����k�

− G�0��k�
��;�����k�G����;�����− k�� , �8�

where 	��;�����k� is the self-energy and 
��;�����k� is the
anomalous self-energy. Here, we have used the abbreviation
k= �k , i�n�. The noninteracting Green’s function is given by

G�0��k,i�n� = �i�n − �k + ��−1. �9�

In the normal state, the Green’s function and self-energy
do not depend on spin and orbital states, i.e., G��;�����k�
=��������G�k� and 	��;�����k�=��������	�k�, and then the
Dyson-Gorkov equation is given by

G�k� = G�0��k� + G�0��k�	�k�G�k� . �10�

The self-energy is given by

	�k� =
T

N
�

q

V�q�G�k − q� , �11�

where

V�q� = V11;11
normal�q� + V12;12

normal�q� , �12�

in the FLEX approximation. Here, N is the number of lattice
sites and q= �q , i�m�, where �m=2m�T is the Matsubara fre-
quency for bosons with an integer m. The matrix Vnormal�q� is
given by

Vnormal�q� =
3

2
�Us�s�q�Us − Us��0��q�Us/2 + Us�

+
1

2
�Uc�c�q�Uc − Uc��0��q�Uc/2 − Uc� .

�13�

The matrix elements of Us and Uc are given by

U11;11
s = U22;22

s = U11;11
c = U22;22

c = U , �14�

U11;22
s = U22;11

s = J , �15�

U11;22
c = U22;11

c = 2U� − J , �16�

U12;12
s = U21;21

s = U�, �17�

U12;12
c = U21;21

c = − U� + 2J , �18�

U12;21
s = U21;12

s = U12;21
c = U21;12

c = J�, �19�

and zero for the other elements of these matrices. The matri-
ces for susceptibilities �s�q� for the spin part and �c�q� for
the charge part are given by
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�s�q� = ��0��q��1 − Us��0��q��−1, �20�

�c�q� = ��0��q��1 + Uc��0��q��−1, �21�

where

��0��q� = −
T

N
�

k

G�k + q�G�k� . �22�

We solve Eqs. �10�–�13� and �20�–�22� self-consistently.

B. Response functions

By using obtained �s�q� and �c�q�, we can calculate re-
sponse functions. The response function corresponding to an
operator Oi

A is given by

�A�q,i�m� = �
i
�

0

�

d�e−iq·ri+i�m��T�Oi
A���Oo

A� , �23�

where o denotes the origin. An operator Oi
A in the second-

quantized form is given by

Oi
A = �

�,��,�,��

ci��
† O��;����

A ci����. �24�

The matrix elements O��;����
A are given by

O��;����
charge = ��������, �25�

O��;����
�

= �����̂���
 , �26�

O��;����
�

= �̂���
 ����, �27�

O��;����
���

= �̂���


�̂���
� , �28�

for charge, spin, orbital, and spin-orbital coupled operators,
respectively, where �̂ is the Pauli matrix for  �=x, y, or z�
component. Due to the rotational symmetry in the spin space,
the relations ��x

�q�=��y
�q�=��z

�q� and ���x
�q�=���y

�q�
=���z

�q� hold. In addition, the present model has rotational

symmetry in the �z−�x plane, and the relations ��x
�q�

=��z
�q� and ��x�z

�q�=��z�z
�q� also hold. We note that there is

additional symmetry for J=0. For J=0, the model is invari-
ant under the transformation ci2↓→−ci2↓, which transforms

Oi
�y

to Oi
�y�z

. In addition, for J=0, the orbital space also has
the full rotational symmetry and is equivalent to the spin
space, and thus all the above response functions are the same
except for �charge�q�.

The response functions in the FLEX approximation are
given by

�charge�q� = 4��11;11
c �q� + �11;22

c �q�� , �29�

��z
�q� = 4��11;11

s �q� + �11;22
s �q�� , �30�

��x
�q� = 4��12;12

c �q� + �12;21
c �q�� , �31�

��y
�q� = 4��12;12

c �q� − �12;21
c �q�� , �32�

��z
�q� = 4��11;11

c �q� − �11;22
c �q�� , �33�

��x�z
�q� = 4��12;12

s �q� + �12;21
s �q�� , �34�

��y�z
�q� = 4��12;12

s �q� − �12;21
s �q�� , �35�

��z�z
�q� = 4��11;11

s �q� − �11;22
s �q�� , �36�

where we have used trivial relations such as �11;11
c �q�

=�22;22
c �q�. Within the FLEX approximation, we can show

the relation ��y
�q�=��y�z

�q� even for J�0, while it does not
hold in general.

C. Gap equation

Now, we derive a gap equation for superconductivity.
First, we categorize the anomalous self-energy by symmetry.
The anomalous self-energy for a spin-singlet state is given
by


���
singlet�k� =

1

2
�
�↑;��↓�k� − 
�↓;��↑�k�� . �37�

The anomalous self-energy for a spin-triplet state is given by


���
triplet�k� =

1

2
�
�↑;��↓�k� + 
�↓;��↑�k�� . �38�

Due to the rotational symmetry in the spin space, the spin-
triplet states with 
���

triplet�k�, with 
�↑;��↑�k�, and with

�↓;��↓�k� are degenerate. We can categorize superconducting
states further by orbital symmetry. For an orbital-parallel-
antisymmetric state �orbital-�x state�, the anomalous self-
energy is defined by


x
��k� = −

i

2 �
�,��,��

����
y

�����
x 
���

� �k� = −
1

2
�
11

� �k� − 
22
� �k�� .

�39�

For an orbital-parallel-symmetric state �orbital-�y state�, the
anomalous self-energy is defined by


y
��k� = −

i

2 �
�,��,��

����
y

�����
y 
���

� �k� = −
i

2
�
11

� �k� + 
22
� �k�� .

�40�

For an orbital-antiparallel-symmetric state �orbital-�z state�,
the anomalous self-energy is defined by


z
��k� = −

i

2 �
�,��,��

����
y

�����
z 
���

� �k� =
1

2
�
12

� �k� + 
21
� �k�� .

�41�

For an orbital-antiparallel-antisymmetric state �orbital-�0

state�, the anomalous self-energy is defined by
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0
��k� = −

i

2 �
�,��,��

����
y �����
���

� �k� =
1

2
�
12

� �k� − 
21
� �k�� .

�42�

An orbital-� state with =x, y, or z is a state with a d vector
for the orbital space parallel to the  axis, while an orbital-�0

state is an orbital-singlet state. The anomalous self-energy
has the following symmetry:


��;�����− k� = − 
����;���k� . �43�

Then the following relations are obtained:



singlet�− k� = 


singlet�k� , �44�



triplet�− k� = − 


triplet�k� , �45�


0
singlet�− k� = − 
0

singlet�k� , �46�


0
triplet�− k� = 
0

triplet�k� , �47�

where =x, y, or z.
The linearized gap equation for the anomalous self-energy

is expressed as

���,�, ̃�
̃
��k� =

T

N
�
k�

Ṽ
��k − k��F̃

��k�� ,

=−
T

N
�
k�

Ṽ
��k − k��	G�k��	2
̃

��k�� , �48�

with ��� ,� , ̃�=1, where � denotes a representation of te-
tragonal symmetry C4� which 
̃

��k� obeys, ̃=x, y, z, or 0,
and F̃

��k� is defined in the same way as 
̃
��k�. Thus, the

superconducting transition temperature is given by the tem-
perature where an eigenvalue ��� ,� , ̃� of Eq. �48� becomes
unity. The effective pairing interactions Ṽ

��q� are written as

Vx
��q� = V11;11

� �q� − V12;21
� �q� , �49�

Vy
��q� = V11;11

� �q� + V12;21
� �q� , �50�

Vz
��q� = V11;22

� �q� + V12;12
� �q� , �51�

V0
��q� = V11;22

� �q� − V12;12
� �q� , �52�

where

Vsinglet�q� =
3

2

Us�s�q�Us +

Us

2
� −

1

2

Uc�c�q�Uc −

Uc

2
� ,

�53�

Vtriplet�q� = −
1

2

Us�s�q�Us +

Us

2
� −

1

2

Uc�c�q�Uc −

Uc

2
� .

�54�

Due to the rotational symmetry of the model in the �z

−�x plane, the orbital-�z state and the orbital-�x state are de-

generate. In addition, for J=0, the orbital space has full ro-
tational symmetry, and orbital-�x, -�y, and -�z states are de-
generate; that is, they are orbital-triplet states. Moreover, in
this case, the spin space and the orbital space are equivalent,
and thus, a spin-singlet orbital-triplet state and a spin-triplet
orbital-singlet state are degenerate. Note also that, by chang-
ing phases of wave functions, we can show that a spin-
singlet orbital-singlet state and a spin-triplet orbital-triplet
state are degenerate for J=0.

Before presenting calculated results, here we briefly dis-
cuss possible candidates for pairing symmetry of supercon-
ductivity. For s-wave pairing, a spin-triplet state is favorable
since a solution 
̃

��k� does not have to change its sign in the
k space for a spin-triplet state due to the sign in Eq. �54�
when fluctuations �s�q� and/or �c�q� are large. In single-
orbital models, such an s-wave spin-triplet state is odd in
frequency, which hardly appears in ordinary cases. However,
in the present model, an s-wave spin-triplet state with even-
frequency dependence is allowed for an orbital-�0 state �see
Eq. �47��. For a p-wave state, a spin-triplet state is unfavor-
able, since 
̃

��k� should change its sign in the k space for a
p-wave state. Thus, a spin-singlet state is favorable for
p-wave pairing, which is allowed in the present model for an
orbital-�0 state with even-frequency dependence �see Eq.
�46��. For a dx2−y2 state, a spin-singlet state is favorable be-
cause of similar logic for p-wave pairing, while such a state
is an orbital-�x, -�y, or -�z state.

IV. RESULTS

In this section, we show results for a 64�64 lattice. In the
calculation, we use 2048 Matsubara frequencies. In this
study, we fix the value of the intraorbital Coulomb interac-
tion U=6t and vary J �=J��. Then the interorbital Coulomb
interaction is given by U�=U−2J. In the following, we dis-
cuss superconducting states with even-frequency dependence
only, since we find that eigenvalues ��� ,� , ̃� for odd-
frequency states are small.

Figure 1 shows static susceptibilities �A�q�=�A�q , i�m

=0� for J=0, t, and 2t at T=0.005t and the electron number
n= �Ntot� /N=1 per site. Among the susceptibilities, the spin

susceptibility ��z
�q� is strongly enhanced by increasing J;

that is, such magnetic fluctuations are enhanced by the
Hund’s rule coupling. On the other hand, ��

�q� and ���z
�q�,

which include orbital fluctuations, are suppressed by the
Hund’s rule coupling. The charge susceptibility �charge�q� is
enhanced a little by the Hund’s rule coupling, but it is still
small. Thus, among various fluctuations, the spin fluctuations
for a large J are important in the present model.

In Fig. 2�a�, we show n dependence of ��z
�qmax� for J

=0, t, and 2t at T=0.005t, where qmax is defined as the wave
vector at which ��z

�q� becomes the largest. For comparison,

we also show ��z
�qmax� for the noninteracting system. The

spin susceptibility is enhanced by the Coulomb interaction
and is further increased by the Hund’s rule coupling as is
already shown in Fig. 1 for n=1. However, qmax does not
depend so much on the Coulomb interaction and the Hund’s
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rule coupling as shown in Fig. 2�b�. This fact indicates that
the characteristic wave vector within the FLEX approxima-
tion is almost determined by the property of the noninteract-
ing system, i.e., the Fermi-surface structure. As shown in
Fig. 2�b�, the characteristic wave vector is qmax��� ,��
around n=2 and becomes qmax��� ,0� by decreasing n to
n�0.8. Thus, it may be expected that a superconducting
state with dx2−y2 symmetry appears for a large n and a
p-wave superconducting state appears for a small n. We also
expect an occurrence of an s-wave state if the enhanced spin
fluctuations in a large part of the q space are available.

Concerning the orbital state, only the orbital-�0 states are
possible for the s-wave spin-triplet and p-wave spin-singlet
states as is discussed in the previous section. For dx2−y2-wave

spin-singlet pairing, there are three possible orbital states; �x,
�y, and �z. By increasing the Hund’s rule coupling, spin fluc-
tuations become dominant, and superconductivity is mainly
determined by �11;11

s �q� or �11;22
s �q� �see Eq. �30��. For J= t

and 2t, from the calculated results shown in Fig. 1,
��y�z

�q����x�z
�q� and ��y�z

�q����z�z
�q�, we obtain

�11;11
s �q� − �12;21

s �q� � �11;11
s �q� + �12;21

s �q� , �55�

�11;22
s �q� + �12;12

s �q� � �11;11
s �q� + �12;21

s �q� , �56�

respectively. Thus, from Eqs. �49�–�51�, we expect that an
orbital-�y state is the most favorable state among the
dx2−y2-wave spin-singlet states. However, the difference
among V

singlet�q� �=x, y, and z� would be small, since only

�11;11
s �q� and �11;22

s �q� are large and ��z
�q����z�z

�q��0
means �11;11

s �q���11;22
s �q�.

Figure 3 shows q dependence of the effective pairing in-
teractions Ṽ

��q�=Ṽ
��q , i�m=0� at zero frequency for J=0, t,

and 2t at T=0.005t and n=1. The magnitude of the effective
interactions are increased by the Hund’s rule coupling. As is
discussed above, Vy

singlet�q� is slightly larger than Vz
singlet�q�

and Vx
singlet�q�. For J=0, V0

triplet�q� is repulsive for s-wave
pairing, but becomes attractive for J=2t. For J=0, all the
susceptibilities are the same except for the charge one, and
we obtain

�11;22
s �q� − �12;12

s �q� = − �12;12
s �q� = − ��x

�q�/4 � 0.

�57�

From the inequalities �charge�q����z
�q� and 0���x

�q�
=4�12;12

c �q�, we obtain �11;22
c �q��0��12;12

c �q�; that is,

�11;22
c �q� − �12;12

c �q� � 0, �58�

for J=0. Thus, V0
triplet�q� is repulsive for J=0 �see Eqs. �52�

and �54��. For J=2t, �11;22
s �q� is large and the spin-triplet

orbital-�0 pairing interaction becomes attractive.
Among all the possible superconducting states, we find

that only three states, the s-wave �A1g symmetry� spin-triplet
orbital-�0 state, the p-wave �Eu symmetry� spin-singlet
orbital-�0 state, and the dx2−y2-wave �B1g symmetry� spin-
singlet orbital-�y state have the largest eigenvalues of the gap
equation Eq. �48� with ��� ,� , ̃��0.5 for some parameter

FIG. 1. q dependence of the susceptibilities for J=0, t, and 2t at
T=0.005t, n=1, and U=6t.

FIG. 2. �a� Spin susceptibilities ��z
�q� at q=qmax and �b� qmax

for J=0, t, and 2t as functions of n at T=0.005t and U=6t. The thin
solid lines represent those for U=0.

FIG. 3. q dependence of the effective pairing interactions Ṽ
��q�

for J=0, t, and 2t at T=0.005t, n=1, and U=6t.
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sets we have used. Figures 4�a�–4�c� show n dependence of
eigenvalues for these states and ��z

�qmax� at T=0.005t for
J=0, t, and 2t, respectively. The eigenvalues are enhanced by
the Hund’s rule coupling as well as the spin susceptibility. In
particular, for J=2t, ��A1g , triplet ,0� and ��Eu , singlet ,0� be-
come larger than unity; that is, superconducting transitions
occur for these symmetry with transition temperatures higher
than 0.005t. The p-wave superconductivity appears around
n=0.9, where the characteristic wave vector is qmax��� ,0�
�see Fig. 2�b��. For the s-wave state, n dependence of
��A1g , triplet ,0� is rather moderate, since the s-wave pairing
utilizes fluctuations in a larger part of the q space and it is
relatively insensitive to qmax. By increasing n, the magnitude
of fluctuations are enhanced and ��A1g , triplet ,0� becomes
large. As shown in Fig. 4�c�, ��A1g , triplet ,0� is still large for
small n, and the s-wave state may be realized in a wider n
region if we lower the temperature. The eigenvalue
��B1g , singlet ,y� for the dx2−y2-wave state also becomes large
by increasing n, however, the spin susceptibility is enhanced
more rapidly. Here, we define a magnetic transition tempera-
ture where ��z

�qmax� becomes 50/ t. Then, the dx2−y2-wave
state does not appear within the calculated parameter region,
but it may appear by lowering temperature and/or by adjust-
ing parameter J.

Figure 5�a� shows the highest transition temperatures
among all the possible superconducting and antiferromag-

netic ones as functions of n for J=0, t, and 2t. Figure 5�b�
shows the highest transition temperatures for J=2t around
n=1. The antiferromagnetic phase extends by increasing the
Hund’s rule coupling. For J=0 and t, we cannot find any
superconducting phase within T�0.005t. For J=2t around
n=0.9 where qmax��� ,0�, the p-wave spin-singlet orbital-�0

state appears. The superconducting transition temperature for
the p-wave state probably decreases rapidly at n�0.8 as is
expected from n dependence of ��Eu , singlet ,0� shown in
Fig. 4�c�, while we cannot obtain reliable estimation of tran-
sition temperatures with low values at present because of
computational limitations, in particular, a lattice-size limita-
tion. For J=2t around n�1.1 where the antiferromagnetic
transition temperature tends to zero, the s-wave spin-triplet
orbital-�0 state appears. As is expected from n dependence of
��A1g , triplet ,0� shown in Fig. 4�c�, the superconducting
transition temperature for the s-wave state depends slightly
on n. The s-wave state may appear also at n�0.8 with low
transition temperatures, as is expected from the behavior of
��A1g , triplet ,0� and ��Eu , singlet ,0�.

We have determined the highest transition temperatures
among all the possible superconducting and antiferromag-
netic ones. To discuss competition and coexistence of pos-
sible states, we have to compare thermodynamic potentials in
ordered states, and it is one of future tasks.

V. PAIRING SYMMETRY IN OTHER EQUIVALENT
MODELS

In this section, we discuss pairing symmetry in other
models which are described by Eq. �1�. So far, we have as-
sumed that the orbitals have s-orbital symmetry �s-orbital

FIG. 4. Eigenvalues ��A1g , triplet ,0�, ��B1g , singlet ,y�, and
��Eu , singlet ,0�, and the spin susceptibilities ��z

�qmax� as functions
of n for �a� J=0, �b� J= t, and �c� J=2t at T=0.005t and U=6t.

FIG. 5. �a� Transition temperatures for U=6t. Solid circles, tri-
angles, and squares denote antiferromagnetic transition tempera-
tures for J=0, t, and 2t, respectively. Open circles and triangles
denote superconducting transition temperatures for the s-wave
�A1g� spin-triplet orbital-�0 state and for the p-wave �Eu� spin-
singlet orbital-�0 state, respectively, for J=2t. �b� Transition tem-
peratures around n=1 for J=2t.
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model�, but we can also consider models with different or-
bital symmetry with the same Hamiltonian Eq. �1�.

The model for doubly degenerate px and py orbitals with
�pp��= �pp��= t �p-orbital model� is given by Eq. �1�, but
the symmetry of the wave functions of orbitals is different
from that in the s-orbital model. For example, by the sym-
metry operation x→−x, the sign of the wave function for the
px orbital changes, and then, the anomalous self-energy for
orbital-antiparallel �orbital �z and �0� states transforms to that
transformed in the s-orbital model multiplied by �−1� under
this symmetry operation. Thus, the symmetry of the anoma-
lous self-energy in the p-orbital model is different from that
in the s-orbital model. Note that the model with dzx and dyz
orbitals �t2g orbitals� with �dd��= �dd��= t is equivalent to
the p-orbital model including the symmetry of orbitals within
the square lattice. The model with degenerate eg orbitals with
�dd��= �dd��= t �eg-orbital model� is also the same model as
the s-orbital model except for orbital symmetry.

In Table I, we show equivalent pairing symmetry among
s-orbital, p-orbital, and eg-orbital models; e.g., the orbital-�0

state with A2g symmetry �g wave� in the p-orbital model has
the same transition temperature as the orbital-�0 state with
A1g symmetry in the s-orbital model. However, the wave-
number dependence of the anomalous self-energy is the same
among the equivalent states. From the calculated results for
the s-orbital model, we find that the g-wave spin-triplet
orbital-�0 state appears in the p-orbital model, and the
dx2−y2-wave spin-triplet orbital-�0 state appears in the
eg-orbital model. The p-wave spin-singlet orbital-�0 state ap-
pears both in the p-orbital and eg-orbital models.

Here, we discuss another model for s orbitals with two
Fermi surfaces. Under the transformation ci2�→eiQ·rici2�

with Q= �� ,��, or, equivalently, ck2�→ck+Q2�, the disper-
sion in Eq. �1� changes as �k2→�k+Q2=−�k2, while the on-
site terms in Eq. �1� are invariant. Thus, the s-orbital model
changes to the model described by Eq. �1� with the disper-
sion �k1=−�k2=2t�cos kx+cos ky� by this transformation.

In such a two-Fermi-surface system, we expect supercon-
ducting states with the finite total momentum Q like the
FFLO state by the following reason. In ordinary cases, such

a superconducting state with a finite total momentum q is
hard to be realized, since the electron on the Fermi surface
with the wave vector k has to pair with the electron with
−k+q, but it is off the Fermi surface unless k satisfies con-
ditions depending on q and the structure of the Fermi sur-
face. On the other hand, in the model with two Fermi sur-
faces, when the electron with k is on a Fermi surface, the
electron with −k+Q is always on the other Fermi surface as
shown in Fig. 6. Thus, superconducting states with the total
momentum Q is naturally expected in the model with two
Fermi surfaces, where Q connects centers of these Fermi
surfaces.

Indeed, under the transformation ck2�→ck+Q2�, an
anomalous Green’s function for a zero-total-momentum state
changes as

F1�;2���k,�� = − �T�ck1����c−k2���

→F1�;2���k,�;Q� = − �T�ck1����c−k+Q2��� , �59�

where F1�;2���k ,� ;Q� denotes the anomalous Green’s func-
tion for a pairing state with the total momentum Q. On the
other hand, F1�;1���k ,�� and F2�;2���k ,�� change to
F1�;1���k ,�� and F2�;2���k+Q ,��, respectively; i.e., these
anomalous Green’s functions correspond to pairing states

TABLE I. Equivalent pairing symmetry among s-orbital, p-orbital, and eg-orbital models.

Orbital �x s orbital A1g A2g B1g B2g Eu

p orbital B1g B2g A1g A2g Eu

eg orbital A1g A2g B1g B2g Eu

Orbital �y s orbital A1g A2g B1g B2g Eu

p orbital A1g A2g B1g B2g Eu

eg orbital A1g A2g B1g B2g Eu

Orbital �z s orbital A1g A2g B1g B2g Eu

p orbital B2g B1g A2g A1g Eu

eg orbital B1g B2g A1g A2g Eu

Orbital �0 s orbital A1g A2g B1g B2g Eu

p orbital A2g A1g B2g B1g Eu

eg orbital B1g B2g A1g A2g Eu

FIG. 6. Fermi surfaces �solid curves� for the dispersion
�k1=−�k2=2t�cos kx+cos ky� for n=1. A pair carrying the total mo-
mentum Q is composed of electrons denoted by closed circles on
the different Fermi surfaces.
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with zero total momentum. Thus, by this transformation, the
orbital-antiparallel superconducting states �orbital-�z and -�0

states� change to those with the finite total momentum Q,
while the orbital-parallel states �orbital-�x and -�y states� re-
main with zero total momentum. Concerning the suscepti-
bilities, �A�q� transforms to �A�q+Q� for A=�x, �y, �x�, and
�y�, while the other susceptibilities are unchanged. Then,
the antiferromagnetic transition temperatures are unchanged.

Thus, from the calculated results for the s-orbital model,
we obtain s-wave spin-triplet and p-wave spin-singlet states
with the finite total momentum Q, even without a magnetic
field, in the model with two Fermi surfaces which locate
around k= �0,0� and k=Q. At temperatures lower than the
transition temperatures, a superconducting state may coexist
with an antiferromagnetic �spin-density wave� state. A super-
conducting state with the total momentum Q may be stabi-
lized further by coexisting with a spin-density wave with
Q,20,21 and it is an interesting future problem.

Note also that a model for px and py orbitals with
−�pp��= �pp��= t, in which Fermi surfaces locate around k
=Q1= �� ,0� and k=Q2= �0,��, is equivalent to the p-orbital
model with �pp��= �pp��. We can show this equivalence by
applying the transformations ci1�→eiQ1·rici1� and ci2�

→eiQ2·rici2�. Thus, we also obtain superconducting states
with the total momentum Q=Q1+Q2 in the model with
−�pp��= �pp��= t. This conclusion also applies to a model
for tzx and tyz orbitals with �dd��=−�dd��= t.

VI. SUMMARY

We have studied a two-orbital Hubbard model on a square
lattice. In this model, we have considered orbitals with
s-orbital symmetry. In such a multiorbital system, even-
parity spin-triplet states and odd-parity spin-singlet states are
allowed even within states with even-frequency dependence.
Indeed, we have found that the s-wave spin-triplet orbital-
antisymmetric state and the p-wave spin-singlet orbital-
antisymmetric state naturally appear within a fluctuation ex-
change approximation.

Tendencies toward an s-wave spin-triplet state have been
found also in similar two-orbital models on infinite-
dimensional lattices by using a dynamical mean-field
theory.15,16 This fact indicates that tendencies toward s-wave
spin-triplet states are common to two-orbital models irre-
spective of dimensionality.

We have also discussed pairing symmetry in equivalent
models which can be described by the two-orbital Hubbard
model. The equivalent models with orbital symmetry other
than the s-orbital one require special conditions, e.g.,
�pp��= �pp�� for the p-orbital model, and may be unrealis-
tic. However, we believe that these models provide an inter-
esting viewpoint to discuss and determine pairing symmetry
in multiorbital systems. Note also that, in a realistic model
such as a model for p orbitals with �pp��� �pp��, orbital
states of a pair mix, in general, and then, k dependence of the
anomalous self-energy is not that of an irreducible represen-
tation of a system.

Finally, we have discussed models with two Fermi sur-
faces. In such multi-Fermi-surface systems, we naturally ex-
pect a superconducting state with a finite total momentum
like the FFLO state. Indeed, we have shown that the super-
conducting states found in the s-orbital model correspond to
pairing states with a finite total momentum, even without a
magnetic field, in a model with two Fermi surfaces. Although
such a system with multi-Fermi-surfaces with the same
structure is unrealistic, we expect that such exotic states will
be realized also in realistic models with multi-Fermi-surfaces
whose centers locate around different k points with similar,
but not exactly the same, structures.
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