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We describe the readout process of the state of a Josephson flux qubit via solitons in Josephson transmission
lines �JTLs� as they are in use in the standard rapid single flux quantum technology. We consider the situation
where the information about the state of the qubit is stored in the time delay of the soliton. We analyze
dissipative underdamped JTLs, take into account their jitter, and provide estimates of the measuring time and
efficiency of the measurement for relevant experimental parameters.
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I. INTRODUCTION

The past few years have brought substantial break-
throughs in experiments with Josephson qubits, with further
progress depending to a large extent on our ability to control
the circuits with high precision and, at the same time, avoid
decoherence. One of the promising ideas combines Joseph-
son flux qubits with the well-developed classical rapid single
flux quantum �RSFQ� technology.1–3 RSFQ elements should
allow for more reliable on-chip control and measurements
than what can be achieved with control pulses sent over long
coaxial cables. However, they have the drawback of being
dissipative and thus noisy. The effect of this noise needs to
be investigated, and ways need to be found to minimize it.

In this paper, we consider one of the possible elements of
a RSFQ circuit, namely, a Josephson transmission line �JTL�.
The JTL supports propagating signals in the form of Joseph-
son solitons �phase slips�, also called fluxons. As suggested
by Averin et al.,1 ballistic fluxons in the JTL can be used to
read out the state of a superconducting flux qubit in a setup
as shown in Fig. 1. In the proposed schemes, the information
about the state of a qubit is contained either in the fluxon
transmission probability �transmission detection mode� or
propagation time �delay time detection mode�. Under certain
ideal conditions, the measurement time is equal to the back-
action dephasing time, which implies that the JTL can oper-
ate as an ideal detector. In this paper, we investigate the
efficiency that can be achieved in the delay time detection
mode. For that purpose, we evaluate the delay time in three
different setups illustrated in Fig. 2: �a� when the qubit is
kept away from the symmetry point all the time, �b� when
the qubit is initially prepared at the symmetry point, but the
approaching soliton pushes the qubit far from the symmetry
point, and �c� when the qubit is near the symmetry point all
the time. We analyze the relation between the delay time and
the dissipation as well as the probability of errors introduced
by the measurement. Finally, we compare the delay time
with the characteristic time uncertainty due to jitter �thermal
fluctuations� in the JTL, and we determine how many soli-
tons are needed for a reliable measurement.

For a flux qubit operated far from the symmetry point, the
eigenstates are persistent current states. The persistent cur-

rent in the qubit loop induces an external magnetic flux in the
JTL, which provides a scattering potential for the fluxon and
is responsible for the time delay of the fluxon propagation.
The sign of the magnetic flux and the value of the delay time
depend on the state of the qubit, which allows measuring its
quantum state.

For a qubit prepared in one of the energy eigenstates at
the symmetry point, the expectation value of the current in
the loop vanishes. However, for strong qubit-JTL coupling,
the fluxon shifts the working point of the qubit away from
the symmetry point, and then again the qubit produces a
magnetic flux in the JTL. The delay time is approximately
the same as if the qubit were in a persistent current state
corresponding to the induced shift.

For weak qubit-JTL coupling, a fluxon shifts the working
point of the qubit only slightly around the symmetry point.
For this case, we demonstrate that the qubit introduces an
effective inductance to the JTL with sign depending on the
qubit eigenstate. The local change of the inductance of the
JTL again serves as a scattering potential for the fluxons,
leading to a delay in the fluxon propagation time. This prop-
erty can, in principle, be used for a measurement of the qubit
at the symmetry point even for weak qubit-JTL coupling.

For a realistic assessment of the feasibility for the pro-
posed measurement schemes, we need to consider the major
sources of errors. One of them is thermal noise in the JTL, as

FIG. 1. Setup for the readout of the persistent current qubit
based on the delay time of a soliton in the Josephson transmission
line �JTL�.
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a result of which fluxons experience fluctuations in their ve-
locity, which lead to an uncertainty �jitter� in the propagation
time. In order to distinguish different eigenstates of the qubit,
the induced delay time should exceed this time jitter. Another
source of errors are nonadiabatic transitions of the qubit
caused by the moving fluxons. This back-action effect of the
JTL on the qubit needs to be taken into account if the qubit is
measured at the symmetry point. Still another source of er-
rors are intrinsic relaxation processes of the qubit due to
noise not related to the JTL. The relaxation destroys the state
of the qubit to be measured and should be much slower than
the measurement time. Finally, in order to be detectable, the
delay times should exceed the time resolution of the RSFQ
detector used for delay time measurement.

Our calculations show that for suitable JTL parameters the
induced delay times well exceed the time resolution of the
RSFQ detector. For strong qubit-JTL coupling, the qubit
measurement by a single fluxon at the symmetry point, as
well as far from it, can be performed with an accuracy of
70%–90% for experimentally accessible parameters. For
high velocities of the fluxon, the measurement efficiency is
mostly limited by the jitter and, if the qubit is at the symme-
try point, by Landau-Zener transitions. For low velocities,
the intrinsic relaxation of the qubit may be important. To
improve the accuracy, one has to use many fluxons for the
measurement. If one optimizes the fluxon velocity and num-
ber, the qubit can be measured with accuracy reaching 99%
far from the symmetry point and above 90% at the symmetry
point for strong qubit-JTL coupling. The measurement time
remains approximately 4 ns for both cases. For weak qubit-
JTL couping, the qubit prepared at the symmetry point stays
there during the whole measurement. In this case, the mea-
surement of the qubit is not feasible for standard JTL param-
eters.

II. MODEL

We focus on the readout of a persistent current qubit4,5 via
its coupling to solitons in a JTL in a setup shown in Fig. 1.
The qubit consists of a superconducting loop with three Jo-
sephson junctions and is inductively coupled to the JTL. The
Hamiltonian of the total system is

H = Hqb + HJTL + HI, �1�

where Hqb describes the qubit, HJTL the JTL, and HI the
qubit-JTL coupling.

On the basis of the two lowest persistent current states,
�0�, �1�, corresponding to currents ±Ip circulating in the qubit
loop in opposite directions, the qubit Hamiltonian can be
expressed in terms of Pauli matrices,5

Hqb = −
�0

2
�z −

�

2
�x. �2�

The tunneling amplitude �, leading to transitions between
both states, is fixed by the experimental setup. The energy
bias �0 between the two persistent current states depends on
the deviation of the external magnetic flux � in the loop
from the symmetry point,

�0 = 2Ip�� − �0/2� , �3�

where �0 is the magnetic flux quantum.
In the absence of dissipation, the Hamiltonian of the dis-

crete JTL, shown in Fig. 3, in vanishing external magnetic
field can be expressed in terms of the charges qn and the
phase differences �n of the nth Josephson junctions

HJTL = �
n=1

N � qn
2

2C
+ EJ�1 − cos �n� + ��0

2�
�2 ��n+1 − �n�2

2L

−
�Ie

2e
�n	 . �4�

Here, N is the total number of junctions in the JTL, which
are assumed to be equal, C is the capacitance, and EJ
=�Ic /2e is the Josephson energy of the junction, with Ic
being the junction critical current. The inductance of each
cell of the JTL is denoted by L, and Ie is the bias current
supplied externally to each junction.

The dimensions of the qubit are much smaller than the
length a of a unit cell of the JTL. Therefore, one can assume
that the qubit is inductively connected only to one cell of the
JTL denoted by label m. The corresponding mutual induc-
tance is M =k
LqbL, where Lqb is the inductance of the qubit

FIG. 2. �Color online� Energy diagram of the qubit energy levels
as a function of the external magnetic flux in the qubit loop. The
considered measurement schemes are shown as follows: �a� The
qubit is kept away from the symmetry point, �b� the qubit is initially
prepared at the symmetry point, but the approaching soliton pushes
the qubit far from the symmetry point, and �c� the qubit remains
near the symmetry point all the time. Here dots denote the working
points of the qubit with no solitons in the JTL, the lines show
adiabatic shifts of the working points due to magnetic flux induced
in the qubit loop by a passing soliton, � and �0 are the tunneling
amplitude and energy bias between the two persistent current states
of the qubit, and g is the qubit-JTL coupling strength.

FIG. 3. Two elementary cells of the discrete JTL.
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loop and k is the coefficient of coupling. Thus the Hamil-
tonian of the qubit-JTL interaction in the linear-response re-
gime is given by

HI = �zMIpIL = −
g

2
�z��m − �m+1� , �5�

where IL is the electrical current in the inductance of the mth
JTL cell and g=2IpM�0 / �2�L� is the effective qubit-JTL
coupling strength.

The classical dynamics of the uniform, discrete, dissipa-
tive JTL is governed by Kirchhoff circuit equations,6 which
lead to a system of N discrete sine-Gordon equations

�̈n

	p
2 +

�̇n

	c
+ sin �n =

Ie

Ic
+

1

L
��n−1

e − �n
e�

−
�0

2�LIc
��n−1 − 2�n + �n+1� . �6�

Here, 	p= �2eIc /�C�1/2 is the plasma frequency of the junc-
tion, 	c=2eIc /�GN is the junction characteristic frequency,
with GN being the normal conductance of the junction deter-
mining the dissipation in the system, and �n

e is the external
magnetic flux in the nth cell induced by the qubit.

For low inductances, LIc
�0, and weak external mag-
netic fields, �n

e 
�0, the phases �n of the neighboring junc-
tions are close to each other, and we can rewrite Eq. �6� in
dimensionless differential form,

�̈ − �xx + sin � = je − ��̇ + fqb��,x� . �7�

Here, the time t and continuous space variable x are mea-
sured in units of the inverse plasma frequency 	p

−1 and the
Josephson penetration depth �J=a��0 / �2�LIc��1/2, respec-
tively, and the phase difference ��x� is a function of x. Fur-
thermore, �=	p /	c is the dimensionless dissipation strength
and fqb�� ,x� is the perturbation induced by the qubit.

In the following sections, we will show that far from the
symmetry point, �0�, the perturbation created by the mag-
netic flux due to the qubit can be expressed as

f flux
qb ��,x� = ± 2��MIp/�0����x� , �8�

where the different signs, �, correspond to the two persistent
current states �0� and �1� of the qubit, respectively, and ���x�
is a derivative of the delta function.

For a qubit remaining at the symmetry point, �0=0, g

�, we obtain an inductive-type interaction, and the pertur-
bation is given by

f ind
qb ��,x� = ±

4Ip
2M2/�

L�J/a

�

�x
���x��x� . �9�

Here, the different signs, �, correspond to the energy eigen-
states of the qubit at the symmetry point, �± �= �1/
2�
���0�± �1��.

In the limit �= je= fqb=0, the exact soliton solution of Eq.
�7� has the form

�0�x,t� = 4 tan−1exp�±
x − ut − x0

�1 − u2�1/2	� , �10�

where the positive �negative� sign corresponds to a fluxon
�antifluxon�, x0 is the initial position of the soliton, and u its
velocity, which can take values between −1 and 1. To ana-
lyze the fluxon dynamics in the JTL following from Eq. �7�
in the general case, we make use of the collective coordinate
perturbation theory developed by McLaughlin and Scott.7 It
is based on the assumption that je, ��̇, fqb�� ,x�
1, which
allows writing the fluxon solution in the form

�0�x,t;u,X� = 4 tan−1�exp� x − X�t�
�1 − u2�t��1/2�	 . �11�

Here, u�t� and X�t� can be regarded as the time-dependent
fluxon velocity and the coordinate of its center, respectively.
For simplicity, we consider here the case where only one
fluxon is present in the system.

Without coupling to the qubit, fqb=0, the stationary ve-
locity of a fluxon can be derived from the power balance
equation7 and is given by

u0 = �1 + � 4�

�je
�2	−1/2

. �12�

When the qubit is coupled to the JTL, for arbitrary form of
the perturbation fqb�� ,x�, the variation parameters X�t� and
u�t� obey the differential equations7

du

dt
=

1

4
�je�1 − u2�3/2 − �u�1 − u2�

−
1

4
�1 − u2��

−�

�

fqb��0����sech �dx , �13�

dX

dt
= u −

1

4
u�1 − u2�1/2�

−�

�

fqb��0����� sech �dx ,

�14�

where �= �x−X�t�� / �1−u2�1/2. In the following section, Eqs.
�13� and �14� will be solved for both forms of the qubit
perturbation fqb given in Eq. �8� or �9�.

III. DELAY TIMES

A. Qubit far from the symmetry point

We first consider the situation where the qubit is prepared
far from the symmetry point, �0�. In this case, the eigen-
states of the qubit are the persistent current states, �0� and �1�.
For each of them, a magnetic flux ±MIp penetrates the cell of
the JTL, which is inductively coupled to the qubit. If the size
of the qubit is much less than the Josephson penetration
depth �J, the external magnetic flux in the JTL can be written
as

�e�x� = ± MIp��x� , �15�

where ��x� is the step function and we assumed the qubit to
be located at x=0. The corresponding perturbation term in
the equation of motion �7� can be written as
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f flux
qb ��,x� = ± �1

q���x� , �16�

where �1
q=2�MIp /�0 is the dimensionless qubit-JTL cou-

pling. A thorough experimental and theoretical study of the
fluxon dynamics described by the sine-Gordon equation with
delta-function terms was performed in Refs. 10 and 11 for
long annular Josephson junctions. The effect of discreteness
of the JTL on fluxon propagation was studied in Refs. 12 and
13. The propagation of the charge soliton in one-dimensional
array of serially coupled Josephson junction was studied in
Ref. 14.

The dimensionless coupling �1
q depends linearly on the

mutual inductance M, which for typical experimental condi-
tions is much lower than 1. Increasing the coupling coeffi-
cient k between the qubit loop and the JTL cell enhances the
influence of the qubit on the fluxon dynamics in the JTL but,
at the same time, increases the back action of the fluxon on
the qubit. In particular, the fluxon induces a magnetic flux in
the qubit loop, which shifts the working point of the qubit.
The persistent current qubit is only well defined when the
external flux in the qubit loop is close to the symmetry point
�0 /2. For larger values of the external magnetic flux, the
form of qubit-JTL perturbation �16� is not valid and a more
elaborate model should be used. Moreover, large deviations
of the working point can lead to nonadiabatic transitions to
higher levels, which also makes the two-level model invalid.
In the following, we require max�MIpIL���max /2, where
�max is the maximum value of the energy bias between two
persistent current states for which our system can still be
regarded as the persistent current qubit. This condition trans-
lates to the following limitation for the dimensionless cou-
pling:

�1
q �

�max

�0
2a/��2L�J�

, �17�

and for the coupling coefficient k=M /
LLqb,

k �
�

2
� �max�J

Ip�0a
�� L

Lqb
�1/2

. �18�

The right-hand side of Eq. �17� is the ratio between the qubit
energy splitting and the magnetic energy of a fluxon
�0

2a / ��2L�J�. It demonstrates that the efficiency of the mea-
surement is low if the magnetic energy of a soliton is much
higher than the qubit energy, because one needs to decrease
the coupling coefficient k according to Eq. �18�.

The magnetic energy of a soliton in the JTL can be re-
duced by decreasing the critical current Ic of the junctions.
We evaluate the delay times for two specific values of the
critical current, Ic=0.6 �A and Ic=2 �A. Given these val-
ues, the cell inductance L has to be chosen appropriately to
yield suitable values of the Josephson penetration depth �J.
This length should be large to minimize effects of the dis-
creteness of the JTL, �J�2a. On the other hand, it is useful
to have �J as small as possible to decrease the magnetic
energy of a fluxon and to keep the number of Josephson
junctions in the JTL within practical limits. Based on these
considerations,1 we choose �J=2a. The parameters of the
qubit and JTL for the standard multilayer fabrication process
with the lowest commercially available critical current den-
sity Jc=30 A/cm2, which were used in the calculations, are
listed in Table I.

At low critical currents of the junction, high cell induc-
tances are needed in order to reach the required Josephson
penetration depth. For standard multilayer JTL, the specific
inductance per unit length can be estimated as �=�0�d
+2�� /b, where �0 is the permeability of vacuum, d is the
distance from the superconducting strip to the ground plate,
� is the superconducting penetration depth, and b is the
width of the superconducting strip. For realistic parameters
d�500 nm and ��100 nm, one needs b�1 �m to have the
value of the specific inductance per unit length of the order
of �0.7 pH/�m. The JTL can also be designed in such a
way that the superconducting strip is located over the ground
plane only partially. In this case, the inductance per unit
length is approximately three times larger than the induc-
tance over the ground plane in a typical configuration. The
corresponding lengths of the elementary cells for the given
specific inductance of 0.7 pH/�m are of the order of
�100 �m, which can be realized in the experiment. The
removal of the ground plane under the inductances simulta-
neously reduces the parasitic capacitance to negligible val-
ues.

From Eqs. �13�–�16�, we obtain

du

dt
=

1

4
�je�1 − u2�3/2 − �u�1 − u2�

±
1

4
�1 − u2�1/2�1

q sech2 �0 sh �0, �19�

dX

dt
= u ±

1

4
u�1

q�cosh �0 − �0 sh �0�sech2 �0, �20�

where �0=X / �1−u2�1/2.

TABLE I. Parameters of the JTL and the persistent current qubit. For both variants of the JTL we take 	p /2�=24 GHz, critical current
density Jc=30 A/cm2, and junction specific capacitance c=42 fF/�m2. The diameter of the junction is denoted by d.

Parameters of JTLa Qubit-JTL coupling, k Parameters of persistent current qubitb

Ic ��A� d ��m� �J �a� L �pH� C �fF� g� g
� � /2� �GHz� �max /2� �GHz� Lqb �pH� Ip �nA�

0.6 1.6 2 137 84 0.96 0.05 5.5 55 5 300

2 2.9 2 41 297 0.53 0.025

aReferences 1 and 8.
bReference 9.
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In the ballistic regime, je=0 and �=0, we can integrate
Eqs. �19� and �20� analytically15 for the qubit prepared in the
eigenstates �0�,

X = ± �1 − u2�1/2 arcch� 4

�1
q�
1 − u2

1 − u0
2 − 1�	 . �21�

The solution for the state �1� is obtained by replacing �1
q with

−�1
q.
To proceed, we first consider the situation where the soli-

ton is able to pass the potential and, therefore, we can always
introduce the delay time caused by the perturbation due to
the qubit as

td = �t�0� − t�1�� = 2�t�0� − t0� =
2

u0
�

−�

� �u0 − u�X�
u�X�

�dX .

�22�

Here, t�0� and t�1� are the propagation times corresponding to
the two persistent current states of the qubit, and t0 is the
value without qubit interaction. The factor 2 in Eq. �22� re-
flects the fact that the perturbation f flux

qb has the same magni-
tude but different signs for the two persistent current states.
When the velocity is only slightly perturbed by the qubit,
�1= �1−u0

2��1
q / �4u0

2�
1, we find

u��0� = u0�1 − �1 sech �0� + o��1
2� . �23�

The delay time �22� can then be evaluated as

td =
2�1

u0
2 �

−�

�

�1 sech� X

�1 − u0
2�1/2	dX �

��1
q

2u0
3 , �24�

where the last part of the equation describes the “nonrelativ-
istic case� u0
1.

From Eq. �21�, we see that for �1
q /4� �1−u0

2�−1/2−1 the
soliton does not have enough kinetic energy to pass the po-
tential barrier induced by the qubit in the state �0�. After

approaching the qubit, the soliton will be reflected by the
barrier. Due to the combination of dissipation and driving,
the soliton will oscillate and eventually stop at the “pinning
point,” where u=0 and Ẋ=0. The pinning of a fluxon can
also be used for the transmission detection mode of measure-
ment, but will not be analyzed here further.

The results of a numerical evaluation of the delay times
for the JTL with dissipation are presented in Fig. 4. As ex-
pected, the analytical formula �24� gives a good estimate
even for intermediate values of the soliton velocity up
u0

1, where up is the minimal possible velocity for which a
fluxon is still able to pass the potential barrier created by the
qubit.

Another observation is that for a fixed value of the soliton
velocity u0 the delay time decreases with increasing strength
of the dissipation �. This property is displayed by Fig. 5,
which shows the velocity as a function of the soliton center
coordinate X for different values of �. One can see that with
increasing dissipation, the fluxon velocity deviates from the
dissipationless solution �13� and �14�. The initial decline of
the fluxon velocity becomes less effective and is also par-
tially compensated by the following acceleration of the
fluxon. The compensation is more complete the higher the
dissipation, which leads to zero delay times in the limit of
strong dissipation. This behavior is typical for the particle
driven in viscous media and can be understood from power
balance considerations. Let us consider the case when the
qubit induces a positive potential barrier for a fluxon. When
a fluxon is moving with stationary velocity far from the qu-
bit, its energy gain and losses are equal. Approaching the
potential barrier, the velocity of a fluxon decreases, which
leads to a reduction in energy losses due to dissipation. How-
ever, the gain of energy due to driving stays on the same
level. As a result, the fluxon receives an excess amount of
energy, which later leads to an increase of the fluxon velocity
above the initial value. Thus, we can use the dissipationless
solution as an approximation for evaluating the delay times

FIG. 4. �Color online� Delay time of a soliton induced by the qubit as a function of initial soliton velocity u0 when the qubit is far from
the symmetry point, �0�. The velocity and time are measured in units of �J	p and 	p

−1, respectively. Four curves are obtained numerically
from Eqs. �13� and �14� for different values of the dissipation strength � �shown in the legend box�. The solid line shows the analytical
solution �24�. The parameters of the JTL and the persistent current qubit are listed in Table I. The inset shows the dependence of the delay
time on the dissipation strength � for the initial soliton velocity u0=0.2.
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of a fluxon only if ���1
q. For ���1

q, the delay times de-
grade rapidly with increasing �. We expect that the delay
times can be reliably detected only if ���1

q. This establishes
another limitation to the parameters of the JTL for the case of
very weak qubit-JTL coupling.

B. Qubit at the symmetry point: Strong coupling

Here, we consider the situation when the qubit is initially
prepared at the symmetry point but shifted far from it by the
moving fluxon. In what follows, we will show that this re-
gime is approximately equivalent to the one when the qubit
is kept far from the symmetry point all the time, and we can
use the previous results for the delay time. Indeed, for typical
parameters of the JTL and inductive coupling of the order of
1, we have g�, which proves that even if the qubit is
initially prepared at the symmetry point, �0=0, it is shifted
far from it by the flux induced in the qubit loop by the
moving fluxon. At the symmetry point, the persistent current
in the qubit loop is zero, and the qubit induces no magnetic
flux in the JTL cell, IL�t�=0. As soon as the approaching
fluxon shifts the qubit from the symmetry point, 2MIpIL�t�
��, the persistent current is no longer zero. The maximum
value of the persistent current Ip is reached once the qubit is
pushed far from the symmetry point, 2IpMIL�t��. When
the fluxon moves away, the qubit returns to the symmetry
point with zero persistent current in its loop. These consid-
erations, of course, are valid only if the qubit was prepared in
an energy eigenstate and if the shift by the fluxon occurs
adiabatically. The qubit affects the fluxon dynamics only dur-
ing the period of time ��J /u0, when the fluxon is moving
close to the qubit. Most of this time, the qubit is already
shifted far from the symmetry point and induces the pertur-
bation to the fluxon motion according to Eq. �8�. The fast
switching of the persistent current from zero to Ip and back
in the initial and final stages of the qubit-JTL magnetic flux
exchange yields only a small contribution to the overall de-
lay time experienced by the fluxon. Therefore, we can use

the calculated delay times shown in Fig. 4 even if the qubit is
initially prepared at the symmetry point for g�. However,
we need to evaluate the probability of nonadiabatic transi-
tions of the qubit to another eigenstate, which creates an
additional source of error for the measurement. These results
will be presented in Sec. IV.

C. Qubit at the symmetry point: Weak coupling

In this section, we consider the situation where the qubit
is prepared initially at the symmetry point �0=0 and remains
nearby during the measurement. This requires that the cou-
pling between qubit and JTL is weak and g
� to ensure that
a soliton does not shift the qubit from the symmetry point
significantly. As a consequence, the expectation value of the
flux in the energy eigenstates of the qubit is close to zero. If
the coupling term �5� varies slowly, we can treat the sum
Hqb+HI in an adiabatic approximation and diagonalize it to
obtain

Hqb + HI = �z

�2/4 + M2Ip

2IL
2�t�

�
�

2
�z +

Lef fIL
2�t�

2
�z = Hqb

adiab + HI
adiab, �25�

where Lef f =2Ip
2M2 /�. The approximation is valid if P
1,

where P is the probability of Landau-Zener transition be-
tween energy eigenstates due to time dependence of IL�t�,
which is calculated in the next section.

The interaction term HI
adiab indicates that the qubit-JTL

interaction in the adiabatic approximation is equivalent to the
change of the inductance of the JTL cell, which is coupled to
the qubit by the additional value of Lef f whose sign depends
on the energy eigenstate of the qubit. This property can be
used for the readout of the qubit when it is always kept at the
symmetry point �=�0 /2.

The qubit-JTL interaction HI
adiab leads to the following

perturbation term in the sine-Gordon equation �7�:

f ind
qb ��,x� = ± �2

q �

�x
���x��x� , �26�

where �2
q=Lef fa / �L�J� is the corresponding dimensionless

qubit-JTL coupling and � correspond to the eigenstates
�± �= �1/
2���0�± �1��.

The Hamiltonian �25� is valid only for g
�, which es-
tablishes the condition for the maximum possible dimension-
less coupling,

�2
q 


�/2

�0
2a/��2L� j�

, �27�

and coupling coefficient,

k 

�

2
� ��J

Ip�0a
�� L

Lqb
�1/2

. �28�

In order to keep the qubit at the symmetry point for the
chosen parameters of the qubit and the JTL �shown in

FIG. 5. �Color online� Fluxon velocity as function of its center
coordinate for different values of the dissipation strength � �shown
in the legend box�.
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Table I�, the coupling coefficient should satisfy k
0.096 for
Ic=0.6 �A and k
0.053 for Ic=2.0 �A. For the calculation,
we take k=0.05 and k=0.025, which leads to �2

q=3�10−4

and �2
q=8�10−5, respectively.

From Eqs. �13�, �14�, and �26�, we obtain

du

dt
=

1

4
�je�1 − u2�3/2 − �u�1 − u2� ±

�2
q

2
sech2 �0 tanh �0,

�29�

dX

dt
= u ±

�2
q

2

u sech2 �0

�1 − u2�1/2 �1 − �0 tanh �0� . �30�

For �= je=0, in the nonrelativistic limit u
1, one can evalu-
ate for the qubit in the eigenstate ���

u2 = u0
2 −

�2
q

2
sech2 X �31�

and

u � u0�1 − �2 sech2 X� + o��2
2� , �32�

where �2=�2
q / �4u0

2�. The pinning of the fluxon occurs if u0
2

��2
q /2. We can calculate the delay time according to Eq.

�22� as

td =
2�2

u0
�

−�

�

sech2 XdX =
�2

q

u0
3 . �33�

The results of the numerical evaluation of the delay times in
this regime are shown in Fig. 6. For the same values of the
fluxon speed, the delay times are smaller as compared to Fig.
4. However, since the pinning of a soliton occurs at slower

velocities, we can, in principle, achieve larger values of the
delay times.

IV. BACK ACTION OF A FLUXON ON THE QUBIT

The back action of a fluxon on the qubit produces several
effects including dephasing of the qubit in the measurement
basis16 and a shift of the working point of the qubit. Dephas-
ing, i.e., the decay of the off-diagonal elements of the density
matrix of the qubit in the measurement basis, does not affect
the measurement outcomes studied here17 and is not consid-
ered further.

In contrast, the shift of the working point of the qubit can
potentially “destroy” the qubit and, furthermore, induce
nonadiabatic transitions between the qubit states. Both pro-
cesses create errors in the measurement and should be taken
into account. By restricting the qubit-JTL coupling according
to Eq. �18� or �28�, we ensure that the system remains a
persistent current qubit during the whole time of the mea-
surement. In this section, we derive the probability of nona-
diabatic transition between eigenstates of the qubit due to a
passing fluxon. It should be noted that nonadiabatic transi-
tions are a potential problem only if the qubit is initially
prepared at the symmetry point. Far from the symmetry
point, the Hamiltonian of the qubit �2� and the interaction
Hamiltonian �5� approximately commute and nonadiabatic
transitions are negligible.

In order to study nonadiabatic transitions, we assume that
the qubit is initially prepared in the excited state ��� at the
symmetry point �0=0, where its unperturbed dynamics is
described by the Hamiltonian Hqb=−�� /2��x. For a fluxon
passing the qubit, the time-dependent qubit-JTL coupling can
be written according to Eqs. �5� and �10� as

FIG. 6. �Color online� Delay time of a soliton induced by the qubit as function of the initial soliton velocity u0 when the qubit remains
at the symmetry point �0=0. The velocity and time are measured in units of �J	p and 	p

−1, respectively. Four curves are numerical solutions
of Eqs. �13� and �14� for different values of the dissipation strength � �shown in the legend box�. The solid curve shows the analytical
solution �33�. The parameters of the JTL and persistent current qubit are given in Table I. The coupling coefficient between the qubit loop
and the cell of the JTL is k=0.05, which leads to the dimensionless coupling �1

q=3�10−4 in the sine-Gordon equation. The value of the
coupling coefficient is reduced in order to keep the qubit at the symmetry working point all the time.
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HI = MIpIL�t��z = −
MIp�0

�L��J/a�
1 − u0
2

sech� u0t


1 − u0
2��z.

�34�

Here, we neglected the action of the qubit on the fluxon. The
transition probability from the excited state ��� to the ground
state ��� induced by one passing fluxon is then given by20

P = MIp�2��−2� sin A

A
�

−�

�

IL�t�eit�/�dt�2

, �35�

where A=MIp�2��−2�−�
� IL�t�dt. After inserting Eq. �34�, we

obtain

P = sin2� IpM�0

L��J/a�u0�	p
�sech2��
1 − u0

2�

2u0	p
� . �36�

We will use this result to evaluate the measurement effi-
ciency in Sec. VII.

V. SOLITON JITTER

In order to be detected, the delay time should exceed the
time fluctuations induced by thermal noise in the JTL. We
can account for thermal noise by adding a stochastic term
��x , t� to the sine-Gordon equation �7�,

�̈ − �xx + sin � = je − ��t − ��x,t� . �37�

The noise is assumed to be white with autocorrelation func-
tion

���x,t���x�,t��� = 16��kBT/E0���x − x����t − t�� . �38�

Here, E0=8��Jc�J /2e� is the rest energy of a soliton, and the
coefficient 16��kBT /E0� is fixed by the fluctuation-
dissipation theorem.19 The noise spectral density for the
fluxon velocity is given by18,19

S�u�	� =
2�kBT

E0

�1 − u0
2�5/2

�2 + 	2 , �39�

where �u�t�=u�t�−u0. Starting from the initial condition that
at t=0 the velocity of the fluxon is controlled and equal to u0,
we find the velocity autocorrelation function to be given by

��u�t1��u�t2�� =
kBT

E0
�1 − u0

2�5/2�e−��t1−t2� − e−��t1+t2�� .

�40�

The uncertainty in the velocity of the fluxon leads to an
uncertainty of its coordinate �X�t�=�0

t �u�t��dt� and propa-
gation time �t=�X /u0. The time jitter of the fluxon, defined
as the standard deviation of the propagation time �t
����t2��1/2, is then given by

�t = �2kBT

�2E0
�1/2 �1 − u0

2�5/4

u0
�t� + e−�t − 1 −

1

2
�1 − e−�t�2	1/2

.

�41�

Limiting cases of Eq. �41� are �t� t1/2 in the diffusive regime
�t1 and �t� t3/2 in the ballistic regime �t
1. The time

jitter �41� leads to further errors in the measurement proce-
dure, which will be analyzed in Sec. VII.

VI. RSFQ DELAY DETECTOR

Before turning to a quantitative analysis of the measure-
ment errors, we describe in this section a RSFQ delay detec-
tor that is needed to measure the time between two single
flux quantum �SFQ� pulses propagating through a JTL. We
first evaluate the time resolution of a single RSFQ decision
gate and the time resolution of the improved detector based
on a time vernier. Based on realistic parameters, we estimate
the hardware complexity of the detector and discuss possible
designs of the circuit presently developed experimentally.21

The operation of any RSFQ gate is based on the time
resolution between SFQ pulses. The gates produce binary
output depending on the relative time between either clock
and data pulses or between two input data pulses. The sim-
plest RSFQ gate that can be used as a decision circuit is the
asynchronous OR or confluence buffer shown in Fig. 7. The
figure also illustrates the operation of the confluence buffer
as a time detector. A single SFQ pulse on either input pro-
duces a SFQ pulse on output. Therefore, for delayed input
pulses, two output SFQ pulses are produced. In case of si-
multaneous arrival, the input pulses compensate each other,
resulting in a SFQ pulse on output. Such behavior of the
RSFQ confluence buffer is well known and has been experi-
mentally verified many times, see, for example, Ref. 22.

FIG. 7. �Color online� �a� Schematic of RSFQ confluence buffer
and �b� the probability of double switching of output junction J3.
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In general, the time resolution of any RSFQ gate is deter-
mined by the resolution of the balanced comparator formed
by two junctions connected in series. In the confluence
buffer, balanced comparators are formed by junctions J1, J3
or J2, J3. The probability of junction switching in the com-
parator obeys a normal distribution with �c�0.13tSFQ, where
tSFQ is the width of the SFQ pulse.23,24 In time units normal-
ized to 1/	p, the width of the SFQ pulse is approximately

tSFQ � 6
1


�c

, �42�

where 
�c=	c /	p is the McCumber-Stewart parameter. The
corresponding normalized one-sigma jitter of a single deci-
sion gate with �c=2 is

�c = 0.13tSFQ � 0.78
1


�c

� 0.55. �43�

For a measurement error of 10−2, the time resolution of a
single RSFQ gate, tr

g, is given by 4�c and equal to tr
g=2.2.

This time resolution does not depend on the temperature
since the measurement involves symmetric stochastic pro-
cesses of the switching of two balanced junctions.25

As is shown in Sec. III, the delay time between SFQ
pulses that needs to be detected is in the range of td
=0.1–5 depending on the actual dissipation in long JTLs and
the accuracy in fixing the initial fluxon velocity. In order to
improve the time resolution of the RSFQ delay time detector,
a vernier with N decision gates can be used,26,27 the block
diagram of which is shown in Fig. 8. After the JTLs, both
pulses propagate through the chain of splitters and arrive at a
chain of N decision gates with inputs delayed in time by td.
The operation principle of the time vernier is the same as that
of a multibit analog-to-digital converter, where each bit com-
pares the signal with a slightly shifted threshold. In accor-
dance with the standard theory for analog-to-digital convert-
ers, the resolution improves as the square root of the number
of bits.28

The time resolution of the vernier is tr
v= tr

g /N1/2 and the
relative time difference between stages of the vernier is ts
= tr

g /N. The error of time measurements depends on the ratio

between the time difference, ts, and the jitter accumulated in
the pulse paths, �v= �2Nv�1/2�J,

Perr =
1

2
erfc� ts

�v
� . �44�

Here, Nv is number of Josephson junctions in each pulse path
and �J is a jitter per Josephson junction. The factor of 2
comes from the fact that there are two chains of splitters
involved. The number of Josephson junctions in the splitter
chain grows like Nv=N log N. The single junction jitter at
4.2 K is about �J=0.015tSFQ �Ref. 23� and scales as the
square root of temperature and the square root of the number
of shunt resistors of the junction.

Typical operating bath temperatures for the qubit experi-
ments are about 30 mK. For process with operating fre-
quency below 5 GHz and using cooling fins for thermaliza-
tion of the hot electrons in the normal metal shunts, the
effective noise temperature of the RSFQ gates can be re-
duced down to 80 mK for a 30 A/cm2 process and to 30 mK
for a 10 A/cm2 process.29 The temperature range between 30
and 80 mK corresponds to one-sigma jitter of �J
=0.0012–0.0004 for a single Josephson junction with �c
=2.

For measurement errors of 10−2, the time resolution of the
RSFQ time vernier is given by 4�v that results in the relation
for the optimum number of stages

4�c

N
= 4
2N log N�J. �45�

Equation �45� gives N=40 and corresponding tr
v=0.33 for

30 mK �10 A/cm2 process� and N=20 and corresponding
tr
v=0.5 for 80 mK �30 A/cm2 process�.

VII. MEASUREMENT ERRORS

In an experimental implementation, the length LJTL of the
JTL is finite. For LJTL�J, the delay time of a fluxon in-
duced by the qubit is that of the infinite JTL shown in Figs.
4 and 6. The time jitter of a fluxon at the end of the JTL is
given by Eq. �41� with t=LJTL /u0. Due to the jitter, the
propagation time of a soliton will be scattered around the
average values t�0� and t�1� corresponding to the different en-
ergy eigenstates of the qubit �0� and �1� if the qubit is far
from the symmetry point. �A similar analysis holds for dis-
tinguishing the states ��� and ��� if the qubit is at the sym-
metry point.� We can introduce the corresponding distribu-
tion functions P�0��t� and P�1��t� for the propagation time of a
soliton, which have maxima at t�0� and t�1�, separated by the
delay time td and whose standard deviations are equal to the
jitter �t. The overlap of the two distribution functions P�0��t�
and P�1��t�, shown in Fig. 9, characterizes the potential to
distinguish the two eigenstates of the qubit. For a normal
distribution, the area of the overlap and the associated error
of the measurement are erfc�td / �2
2�t�� and
�1/2�erfc�td / �2
2�t��, respectively. For the experimentally
relevant case of large separation of the distribution functions,
td�t, the error can be approximated by �
2�t / td�exp
��−td

2 /8�t2�. The ratio of the delay time to the jitter, which

FIG. 8. �Color online� Block diagram of a RSFQ time
vernier.
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determines the error of measurement due to thermal fluctua-
tions, can be estimated for a JTL with low dissipation, �

�1,2

q , according to the expressions �24�, �33�, and �41� as

td

�t
�

��q

2u0
3/2� E0�

2kBTLJTL
�1/2

. �46�

This result suggests that in order to decrease the effect of
thermal noise it is favorable to use slower fluxons. On the
other hand, to avoid pinning by the qubit, we cannot choose
the speed of the fluxons to be too small. According to Eq.
�12�, the stationary velocity of a fluxon is approximately pro-
portional to the ratio je /� for u0
1. For relevant dissipation
strengths ��0.001, the external currents Ie supplied to each
junction are in the range of 0.1–2 nA. These small values of
the bias current can be experimentally applied by using rf
superconducting quantum interference devices �SQUIDs�
with high inductances electrically connected to each junc-
tion. The current in the rf SQUIDs is determined by an in-
ductively coupled flux line which is easily realizable in the
experiment.

For further improvement of the signal-to-noise ratio, one
can use n fluxons, sending them to the JTL one after another.
After n fluxon passings, the sum of the delay times and sepa-
ration of the peaks of the distribution functions will scale
linearly as ntd, but the jitter will increase only as 
n�t, and
the resulting measurement error decreases according to
�1/2�erfc�
ntd / �2
2�t��.

The qubit also experiences other sources of noise during
the measurement which are not related to the JTL. Their
effect can be described by two characteristic time scales: the
relaxation time T1 and the decoherence time T2. Decoher-
ence, i.e., the decay of the off-diagonal elements of the den-
sity matrix of the qubit, has no effect on the measurement

outcome and is not relevant in our case. The relaxation
changes the probability distribution described by the diago-
nal elements of the density matrix and, thus, affects the mea-
surement. For a qubit initially prepared in the excited state,
after n fluxon passings, the probability to find the qubit in the
ground state is 1−exp�−nLJTL / �u0T1��. We take this prob-
ability as the approximate �upper bound� measure of the pos-
sible error of measurement due to relaxation of the qubit.

Finally, if we measure the qubit at the symmetry point,
there is an additional error associated with Landau-Zener
transitions between the qubit eigenstates. Following consid-
erations similar to the previous paragraph, we define the
measure of the error due to Landau-Zener transitions as 1
−exp�−nP�, where the probability P is given by Eq. �36�.

The efficiency of the qubit measurement by a single
fluxon is given in Table II. The qubit can be measured at the
symmetry point and far from it, with accuracy of approxi-
mately 90% for Ic=0.6 �A and 75% for Ic=2 �A. One can
improve the accuracy by using many fluxons. Figures 10 and
11 show the error of the measurement for the qubit initially
prepared far from and at the symmetry point, respectively.
The total errors of the measurements are shown on the right
contour plots as a function of the number of fluxon passings
and of the initial velocity of the fluxons. They are estimated
as 1−exp�−erfc�
ntd /2
2�t�−nLJTL / �u0T1�� for Fig. 10 and
1−exp�−erfc�
ntd /2
2�t�−nLJTL / �u0T1�−nP� for Fig. 11.
The different contributions to the total error are also plotted
separately as a function of the fluxon velocity �left plots� and
number of fluxon passings �insets of left plots�. The nonadia-
batic transitions are suppressed if the qubit is prepared far
from the symmetry point; hence there is no curve related to
Landau-Zener transitions in Fig. 10. One can see that for
high fluxon velocities, the measurement quality is limited by
the jitter and the Landau-Zener transition probability �if the
qubit is at the symmetry point�. For low velocities, the mea-
surement time increases and the relaxation of the qubit be-
comes important. Under optimum conditions, the qubit can
be measured with probability of error below 1%, far from
symmetry point, and below 7% at the symmetry point, with a

TABLE II. Error of measurement by a single fluxon for LJTL

=25�J, T=20 mK, u0=0.2, and �=0.001. The time of measurement
is 0.8 ns.

Variant 1 Variant 2 Variant 3

Ic ��A� 0.6 2 0.6

k 0.93 0.53 0.05

td �ps� 30 8.2 0.3

�t �ps� 10 5.7 10

Errors of measurement �in %�
Jitter 7 24 50

Relaxation 0.08 0.08 0.08

LZ transitions, �0=0 2 2 6.8

Total error, �0� 7 24

Total error, �0=0 9 26 55

FIG. 9. Sketch of the distribution functions which describe the
propagation time of a soliton. The two functions P�0��t� and P�1��t�
are peaked around the average values of the propagation times t�0�,�1�
corresponding to the different eigenstates of the qubit �0� and �1�.
The standard deviation and peak separation are given by 
n�t and
ntd, respectively. The overlap of the distribution functions indicates
the regime where the measurement yields an error.
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measurement time of approximately 4 ns.
Figure 12 shows the measurement error for LJTL=25�J,

T=20 mK, �=0.001, and k=0.05. The qubit stays at the
symmetry point during the complete measurement. The cou-
pling coefficient is chosen small to prevent a shift of the
qubit from the symmetry point by the passing soliton. Thus,
the influence of the qubit on the soliton is also weak, which
affects the sensitivity of the measurement. From Fig. 12 it
becomes clear that in order to achieve better measurements,

we need low soliton velocity and a large number of fluxon
passings. As a result, the time of measurement which is re-
quired to extract the information about the qubit quantum
state is comparable to the relaxation time of the qubit. This
makes it impossible to efficiently measure a qubit in this
regime for the chosen parameters of the JTL. A reduction of
the critical current of the Josephson junctions may allow
decreasing the magnetic energy of the solitons and conse-
quently increase the coupling coefficient. In this case, the

FIG. 10. �Color online� Differ-
ent contributions to the measure-
ment error for Lr=25�J, T
=20 mK, and �=0.001. The upper
plots correspond to Ic=0.6 �A
and k=0.96, while the lower plots
correspond to Ic=2 �A and k
=0.53. The qubit is initially pre-
pared far from the symmetry
point. See text for detailed
explanations.

FIG. 11. �Color online� Differ-
ent contributions to the measure-
ment error for LJTL=25�J, T
=20 mK, and �=0.001. The upper
plots correspond to Ic=0.6 �A
and k=0.96, while the lower plots
correspond to Ic=2 �A and k
=0.53. The qubit is initially pre-
pared at the symmetry point but is
shifted far from it by a moving
soliton. See text for detailed
explanations.
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accuracy of the measurement will improve while the qubit
will remain at the symmetry point all the time.

VIII. SUMMARY

In summary, we have analyzed the measurement process
of a quantum state of a flux qubit by solitons propagating in
an underdamped JTL. The coupling between the qubit and
the JTL is inductive. We focused on the regime in which the
information about the measured state is stored in the delay
time of JTL solitons passing by �scattering from� the qubit. If
the qubit is in an energy eigenstate far from the symmetry
point, its persistent current induces an external magnetic flux
in the JTL, which serves as a scattering potential for the JTL
solitons. Two eigenstates induce different �opposite� scatter-
ing potentials, thus producing different delay times. A similar
measurement mechanism works when the qubit is prepared

at the symmetry point but, due to strong coupling, each pass-
ing soliton pushes the qubit far from the symmetry point.

We have demonstrated that the delay times are longer for
lower magnetic energies and velocities of the fluxons and
weaker dissipation in the JTL. Since the Josephson penetra-
tion depth is fixed by the design requirement ��2a, the only
possibility to reduce the magnetic energy of the soliton is to
decrease the Josephson junction critical currents Ic. For low
critical currents Ic=0.6 �A and Ic=2.0 �A, the delay times
are in the range td=0.5–100 ps, which can be reliably de-
tected by the RSFQ delay detector. The major sources of the
measurement errors are the propagation time uncertainty of a
fluxon due to thermal noise in the JTL and the intrinsic qubit
relaxation. Nonadiabatic transitions between the energy
eigenstate induced by fluxons can cause an additional error if
the qubit is measured at the symmetry point. For a JTL con-
sisting of 50 elementary cells, with dissipation strength �
=0.001, temperature T=20 mK, fluxon velocity u0=0.2, and
coupling coefficient k�1, the measurement errors of the qu-
bit by a single fluxon are 9% and 26% for Ic=0.6 �A and
Ic=2.0 �A, respectively. In order to increase the signal-to-
noise ratio, one can use many fluxons, which results in the
improved accuracy of measurement exceeding 99% for the
qubit far from the symmetry point and 90% at the symmetry
point.

For weak qubit-JTL coupling, k
0.01, a qubit prepared
at the symmetry point stays there all the time and induces no
magnetic field in the JTL. In this case, the measurement can
be based on the fluxon scattered by the potential associated
with the change of the effective inductance of that JTL cell
which is coupled to the qubit loop. We found that a further
reduction of the critical current of the Josephson junction is
required for an efficient measurement in this regime.
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