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We present a microscopic approach to the calculations of thermal conductivity in unconventional supercon-
ductors for a wide range of temperatures and magnetic fields. Our work employs the nonequilibrium Keldysh
formulation of the quasiclassical theory. We solve the transport equations using a variation of the Brandt-
Pesch-Tewordt method that accounts for the quasiparticle scattering on vortices. We focus on the dependence
of the thermal conductivity on the direction of the field with the respect to the nodes of the order parameter,
and discuss it in the context of experiments aiming to determine the shape of the gap from such anisotropy
measurements. We consider quasi-two-dimensional Fermi surfaces with vertical line nodes and use our analysis
to establish the location of gap nodes in heavy-fermion CeCoIn5 and the organic superconductor
�-�BEDT-TTF�2Cu�NCS�2.
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I. INTRODUCTION

In the preceding paper,1 hereafter referred to as paper I,
we developed a theoretical approach to the vortex state in
unconventional superconductors that allowed us to obtain a
closed form solution for the equilibrium Green’s function,
and therefore efficiently compute the density of states and
the specific heat for an arbitrary orientation of the magnetic
field. In this work, we extend our approach to the calculation
of transport properties, develop the formalism for computing
the electronic thermal conductivity, and compare our results
with experiment.

The rationale for both calculations is to provide theoreti-
cal guidance and support to continued attempts to establish
the measurements of the anisotropy of the specific heat and
thermal conductivity under rotated field as a leading tool in
determining the structure of the energy gap in unconven-
tional superconductors. While a number of techniques test
the symmetry of the gap via the surface measurements, the
corresponding bulk probes are few. The semiclassical treat-
ment of the quasiparticle energy in the vortex state incorpo-
rated the Doppler shift due to local value of superfluid ve-
locity associated with the circulating supercurrents. This
approach predicted that, at low fields, the density of field-
induced states at the Fermi surface oscillates as a function of
the field direction and has a minimum when the applied field
is aligned with the nodal direction, ���p� � =0; hence the sug-
gestion to use the measurements of the low-temperature spe-
cific heat to determine the position of nodes.2,3 The experi-
ments are quite challenging, and, for now, have been carried
out in few materials.4–7

Variations in the density of states also influence transport
properties, and the measurements of the electronic thermal
conductivity under a rotated field have been used more ex-
tensively to study unconventional superconductors and infer
the gap structure.8–15 Experimentally, for a fixed direction of
the heat current and rotated field, the dominant twofold an-
isotropy is that between the transport normal to and parallel
to the vortices; a much smaller signal is attributed to the
existence of the nodes �see Ref. 15 for a recent review�.
Theoretical analysis of the thermal conductivity is also much

more challenging. There are conceptual difficulties with ex-
tending the “local” semiclassical approach to calculations of
the response functions, especially for clean systems where
the mean free path exceeds the typical length scale for the
variations of the superfluid velocity, the intervortex distance.
Even in moderately dirty systems, where the use of the semi-
classical method is justified, it yields, at best, a local value of
the thermal conductivity, which varies from point to point;
consequently the averaging procedure to obtain the experi-
mentally measured value is far from obvious. Naive averag-
ing completely misses the twofold anisotropy,16 and there-
fore is not trustworthy. The semiclassical approach does not
naturally include the scattering on the vortices, and attempts
to introduce it phenomenologically17,18 are promising, but
have not yet led to a consistent description. Moreover, the
experiments on all but high-Tc and some organic supercon-
ductors are done at fields that are a significant fraction of the
upper critical field Hc2, where the accuracy of the semiclas-
sical approximation may be called into question. Conse-
quently, we argued that a more microscopic approach is
needed.

We use a quasiclassical version of the Brandt-Pesch-
Tewordt �BPT� approximation,19,20 where the normal elec-
tron part of the matrix Green’s function is replaced by its
spatial average over a unit cell of the vortex lattice. Remark-
ably, this approximation allows for the closed form solution
for the Green’s function that we found in Refs. 1 and 21, and
used, with a fully self-consistent treatment of the order pa-
rameter and impurity scattering, to determine the behavior of
the specific heat across the T-H phase diagram. Below we
review these results and develop a linear response theory for
thermal transport. Implementation of the approximation in
the framework of transport-like quasiclassical �Eilenberger�
equations22,23 ensures that we account for the difference be-
tween single-particle and transport lifetimes in scattering off
vortices: the characteristic intervortex distance is large com-
pared to lattice spacing, and the scattering on the vortices
corresponds to small momentum transfer, and hence forward
scattering is important. This allows us to treat the twofold
anisotropy �transport normal and parallel to the vortices� on
equal footing with the effect of the nodes, and to develop a
consistent picture of the behavior of the thermal conductivity
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and the specific heat under the same assumptions.
As in paper I, we consider a quasi-two-dimensional Fermi

surface to focus on the comparison with the data on heavy-
fermion CeCoIn5. In that materials the specific heat data
were interpreted as supporting the dxy gap symmetry;6 how-
ever, as pointed out in our Letter21 and the preceding paper,
the anisotropic part of the specific heat changes sign at mod-
erate fields and temperatures, with maxima, rather than
minima, for the field aligned with the nodes. At low T and H,
in the region of validity of the semiclassical method, our
results agree with those of calculations utilizing the Doppler
shift approach, with minima for the field along the nodes.
Consequently, in light of these observations, we reinterpreted
the results of Ref. 6 as possibly supporting the dx2−y2 gap
symmetry. Similar gap structure was inferred by Izawa et al.
using phenomenological interpretation of the thermal con-
ductivity measurements.11 We provide a detailed analysis of
the thermal conductivity here.

In the following section we briefly review the approach
and the main results of the preceding paper, such as the
closed form expressions for the Green’s functions necessary
for computing the linear response to the gradient of tempera-
ture. Section III gives the derivation of the thermal conduc-
tivity using Keldysh formulation for the nonequilibrium
theory of superconductivity, with some details relegated to
the Appendix. As in paper I, we find that the simple example
of a two-dimensional �2D� d-wave superconductor with a
cylindrical Fermi surface provides a semianalytically acces-
sible path toward understanding some of the crucial features
of our results, and consider it in Sec. IV. Section V is devoted
to calculations for a more realistic quasicylindrical Fermi
surface �Fig. 1�, and at the end of it we discuss the results,
and compare them with the data on CeCoIn5 and organic
�-�BEDT�-TTF.

Our Secs. IV–VI are intended for those readers who are
interested only in the overall physical picture and the behav-
ior of the measured properties; the figures in Sec. V show the
main differences between the self-consistent and non-self-
consistent calculations. Finally, our conclusions provide a
side-by-side comparison of the specific heat discussed in pa-

per I and the thermal conductivity results, and outline impli-
cations for future experiments.

II. QUASICLASSICAL APPROACH AND THE
EQUILIBRIUM GREEN’S FUNCTION

A. Basic equations and formulation

We follow Ref. 1 in considering the quasiclassical �inte-
grated over the quasiparticle band energy� Green’s function
in a singlet superconductor in magnetic field.22–27 In the spin
and particle-hole �Nambu� space, the matrix propagator de-
pends on the direction at the Fermi surface �FS� p̂ and the
center of mass coordinate R, and is

ĝ�R,p̂;�� = � g i�2f

i�2f� − g
� . �1�

We write the quasiclassical equation for the real energy �,
and retarded, advanced, and Keldysh propagators, which en-
ables us to carry out nonequilibrium calculations �see the
Appendix below and Refs. 24, 28, and 29�. The retarded �R�
and advanced �A� functions ĝ= ĝR,A satisfy �we take the con-
vention e�0�

��� +
e

c
v f�p̂�A�R���̂3 − �̂�R,p̂� − �̂imp�R;��, ĝ�R,p̂;���

+ iv f�p̂� · �Rĝ�R,p̂;�� = 0, �2�

together with the normalization condition

ĝR,A�R,p̂;�m�2 = − �21̂. �3�

Here v f�p̂� is the Fermi velocity at a point p̂ on the FS. The
vector potential A�R� describes the applied magnetic field,
and the self-energy �̂imp �different for the retarded and the
advanced components� is due to impurity scattering. The
mean-field singlet order parameter

�̂ = � 0 i�2�

i�2�* 0
� �4�

is self-consistently determined using the Keldysh functions
fK,

��R,p̂� =� d�

4�i
	V�p̂,p̂��fK�R,p̂�;��
FS. �5�

In Eq. �5� we used a shorthand notation

	•
FS =� dp̂FSnf�p̂� • , �6�

where nf�p̂�=Nf�p̂� /N f, with Nf�p̂� the density of states
�DOS� at a point p̂ on the Fermi surface in the normal state,
and N f =�dp̂FSNf�p̂� the net density of states.

Throughout our work we use separable pairing interac-
tions,

V�p̂,p̂�� = VsY�p̂�Y�p̂�� , �7�

where Y�p̂� is the normalized basis function for the angular
momentum representation, 	Y�p̂�2
FS=1. Hence the order pa-
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FIG. 1. �Color online� The model considered in this paper. Cal-
culation of the thermal conductivity is done for a quasicylindrical
Fermi surface, when the heat current or temperature gradient and
�rotated� magnetic field are in the ab plane. The order parameter is
assumed to have a d-wave symmetry.

A. B. VORONTSOV AND I. VEKHTER PHYSICAL REVIEW B 75, 224502 �2007�

224502-2



rameter is ��R , p̂�=��R�Y�p̂�. For example, for a 2D dx2−y2

gap we take Y�p̂�=�2�p̂x
2− p̂y

2�.
We include the impurity scattering via the self-consistent

t-matrix approximation, with the self-energy

�̂imp�R;�� = � D + � i�2�imp

i�2�� imp D − �
� = nimpt̂�R;�� . �8�

Here nimp is the impurity concentration, and, if u is the iso-
tropic single-impurity potential, the t matrix is defined via

t̂�R;�� = u1̂ + uN f	ĝ�R,p̂;��
FSt̂�R;�� . �9�

The component labeled D1̂ drops out of the equations for the
retarded and the advanced Green’s functions since the unit
matrix commutes with the Green’s function in Eq. �2�. This
term, however, appears in the Keldysh part, and affects the
transport properties30,31 �see also the Appendix�. Below we
parametrize the scattering by the “bare” scattering rate 	
=nimp/�N f and the phase shift 
0 of the impurity scattering,
tan 
0=�uN f.

B. Equilibrium Green’s function

In paper I we solved the quasiclassical equations in the
vortex state. We took the superconducting order parameter in
the form ��R , p̂�=��R�Y�p̂�, where

��R� = 

n

�n	R�n
 , �10a�

	R�n
 = 

ky

Cky

�n�e
iky�Sfy

�4 Sf�
2

�̃n�x,ky� . �10b�

We showed that for 
ky
�Cky

�n��2=1 the coefficients Cky

�n� deter-
mine the shape of the lattice, while �n is the amplitude of the
order parameter in the nth Landau level channel. The expan-
sion of ��R� is in the Landau level function of the renormal-
ized coordinates,

�̃n�x,ky� = �n� x − �2�Sfky

��Sf
� . �11�

The anisotropy factor Sf for the field applied at an angle 
H
to the z axis is

Sf =�cos2 
H +
v0�

2

v0�
2 sin2 
H, �12�

where v0�
2 =2	Y2�p̂�v�i

2 �pz�
FS and v0�
2 =2	Y2�p̂�v�

2�pz�
FS;
here v� is the projection of the Fermi velocity on the z axis,
and v�i with i=x ,y is the projection on the axes in the plane
normal to z.

Following the BPT procedure we replaced the diagonal
part of the Green’s function, g, with its spatial average, and
introduced the ladder operators for the Landau levels, which
allowed us to solve for the anomalous �Gorkov� functions in
terms of g,

f�R,p̂;�� = 

m

fm�p̂,��	R�m
 , �13a�

fm�p̂,�� = ig

n

�− ṽ−�p̂��m−nDm,n��, �p̂���̃n�p̂;�� .

�13b�

Here

ṽ±�p̂� =
ṽ f�p̂�x ± iṽ f�p̂�y

�ṽ f
��

, �14�

with

ṽ f�p̂�x = v f�p̂�x/�Sf, ṽ f�p̂�y = v f�p̂�y
�Sf , �15�

and

�ṽ f
��p̂�� = �ṽ f�p̂�x

2 + ṽ f�p̂�y
2. �16�

The coefficients of the expansion are given by

Dm,n��, �p̂�� = ��
2�

�ṽ f
�� 


j=0

min�m,n�

�− 1�n1Dm,n
n1,n2�2�̃�

�ṽ f
��
� , �17�

with n1�j�= j+ ��m−n�− �m−n�� /2, n2�j�= j+ ��m−n�+ �m
−n�� /2 in each term and

Dm,n
n1,n2�z� = �− i

�2
�n1+n2 �n!�m!

�n − n1�!n1!n2!
W�n1+n2��z� , �18�

where W�n��z� is the nth derivative of the function W�z�
=exp�−z2�erfc�−iz�.

We then use the normalization condition

g2 − f� f = − �2 �19�

in the spatially averaged form, with f1f2 the spatial average
of the product, to find the equilibrium Green’s function,

g = − i�/�1 + P , �20a�

P = − i��
2

w2

n



m

�̃� n�̃m 

k,l�0

� �ṽ+�l�− ṽ−�k

l!k!
	n�a†kal�m


��− i
�2

�k+l

W�k+l+1���2�̃

w
� , �20b�

where w= �ṽ f
� � /�2�, and the prime over the k, l sum denotes

the restriction that the matrix element 	n�a†kal�m

=�n!m! / �n−k�!�m− l�! is nonzero only for k�n, l�m, and
k− l=n−m. This expression reduces to the form of g ob-
tained previously if we truncate the order parameter expan-
sion at the lowest Landau level,20,26,32–34

g =
− i�

�1 − i���2�/�ṽ f
���2W��2�̃�/�ṽ f

����̃0�̃� 0

. �21�

This latter form is useful for semianalytical calculations.

III. HEAT CONDUCTIVITY

A. Linear response and thermal conductivity

We now proceed to derivation and analysis of expression
for the thermal conductivity in the linear response theory. We
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first derive the general formula for the heat conductivity ten-
sor, based on the closed form solution for the quasiclassical
retarded and advanced propagators found above, and using
the nonequilibrium Keldysh approach. The Keldysh part of
the full quasiclassical Green’s function carries information
about both the spectrum and the distribution of quasiparti-
cles, and the heat current is defined as energy transfer by
quasiparticles24,29

jh�R� = 2Nf � dp̂ nf�p̂�v f�p̂��
−�

+� d�

4�i
�gK�p̂,R;�� , �22�

where gK is the diagonal component of the Keldysh propa-
gator.

In equilibrium jh=0 as expected, and in linear response
we define the heat conductivity tensor �̂ via jh=−�̂�T. We
linearize the equations to find the first-order corrections to
the retarded, advanced, and Keldysh propagators, 
ĝR,A,K,
with respect to �T. This implicitly assumes that the inhomo-
geneity due to the temperature gradient is much smaller and
occurs on much longer scales than the inhomogeneity due to
vortices, impurities, etc., which is the case experimentally.
The details of the derivation of � are presented in the Ap-
pendix and here we give only the final expression,

�ij

T
=

Nf

2
� d�

T

�2

T2 cosh2��/2T� � dpFSnf�p̂�v f ,i�p̂�v f ,j�p̂�

�
− iG2

G1G4 − G2G3
�−

1

�
Im gR� , �23a�

where we defined

G1 = − Da +
1

2�gR − gA�

��− �fR + fA���̃� R − �̃� A� + �f�
R + f�

A���̃R − �̃A�� , �23b�

G2 = − �a +
1

2�gR − gA�

���fR − fA���̃� R − �̃� A� + �f�
R − f�

A���̃R − �̃A�� , �23c�

G3 = − �a +
1

2�gR − gA�

���fR + fA���̃� R + �̃� A� + �f�
R + f�

A���̃R + �̃A�� , �23d�

G4 = − Da +
1

2�gR − gA�

��− �fR − fA���̃� R + �̃� A� + �f�
R − f�

A���̃R + �̃A�� , �23e�

and used the following notations: Da���=DR���−DA���,
�a���=�R���−�A���, and �̃R,A�R , p̂ ;��=��R , p̂�
+�imp

R,A�R ;��. In both Born and unitarity scattering limits
Da=0, which simplifies this result.29,30

We can rewrite Eq. �23a� as

�ij�T,H�
T

= �
−�

+� d�

2T

�2

T2 cosh−2 �

2T

�� dpFSv f ,iv f ,jN�T,H;p̂,���H�T,H;p̂,�� . �24�

Here N�T ,H ; p̂ ,��=Nfnf�p̂��−Im gR /�� is the angle-
dependent DOS, and �H=−iG2 / �G1G4−G2G3� has the mean-
ing of the transport lifetime due to both impurity and vortex
scattering. In the normal state �H=�n=1/2� ��=	 sin2 
0�
and −Im gR /�=1. Notice that the transport and the single-
particle lifetimes are different.

Several limiting cases are useful for developing a qualita-
tive understanding of the physical picture. In the Born or
unitary limit DR=DA=0. If we truncate the expansion of the
vortex state at the lowest Landau level function, n=0, and
neglect the off-diagonal impurity self-energy �imp=0, we ob-
tain from Eqs. �13�–�20�

gR =
− i�

�1 − i���2�/�ṽ f
���2W��2�̃�/�ṽ f

�����0Y�p̂��2
, �25�

�� fR = igR2���

�ṽ f
��

W�2�̃�

�ṽ f
��
���0Y�p̂��2. �26�

In this approximation �̃R= �̃A=� and thus G1=0, so for
the thermal transport lifetime we find

1

2�H
= − Im �R + ��

2�

�ṽ f
��

Im�gRW�2�̃�/�ṽ f
����

Im gR ��0Y�2, �27�

which agrees with results in Ref. 33. We, however, aim to
include the higher components of the order parameter expan-
sion for a fully self-consistent calculation and for compari-
son with experiment.

B. General properties of the thermal conductivity tensor

As in paper I we focus on a tetragonal system with a
Fermi surface open along the z axis, and the magnetic field
applied in the xy plane, at angle �0 to the x axis. We consider
both dx2−y2 and dxy order parameters, and model their varia-
tion around the Fermi surface by Y���=�2 cos 2� and
Y���=�2 sin 2�, respectively, where � is the angle between
the projection of the Fermi momentum on the basal plane
and the x axis. As before, we will consider both a cylindrical
�no energy dispersion along z� and a quasicylindrical �tight-
binding dispersion along z� Fermi surfaces. The following
considerations are valid irrespective of the Fermi surface
shape.

Experimentally, the in-plane �interplane� heat conductiv-
ity is measured by driving the heat current along a high-
symmetry crystalline direction, such as �100� or �110�
��001��. The longitudinal and/or transverse thermal gradient
are defined and measured with respect to the direction of the
heat current. This creates two physically distinct cases for the
in-plane transport: the heat flow in the experiment is along
either a node or antinode; see Fig. 2. If our task is, for ex-
ample, to determine the shape of the gap from the measured
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thermal conductivity along the x axis, we cannot a priori
assume whether the heat current is along a node or a gap
maximum.

From the theoretical perspective, the knowledge of the
full thermal conductivity tensor, Eq. �23a�, allows us to de-
termine the heat transport along an arbitrary direction. The
two cases dx2−y2 and dxy �see Fig. 2� transform into one an-
other by rotation of the heat current: the thermal conductivity
measured for the heat current in the �100� direction for the
dxy gap is equal to the thermal conductivity for the dx2−y2

order parameter with the heat current in the �110� direction.
Therefore we focus on the dx2−y2, and compute all the com-
ponents �ij in the plane; the thermal conductivity for the dxy
case is computed using these results. In a tetragonal system
in the absence of the field, the off-diagonal elements �xy
=�yx=0, and the diagonal elements are equal, �xx=�yy, so
that the conductivity is isotropic. Applying a magnetic field
in the plane changes the situation dramatically. First, for the
field applied at an angle �0 relative to the �100� direction,
�xx��yy; it is easy to see �and we show it formally below�
that �yy��0�=�xx�� /2+�0� since for these components the
angle between the field and the heat current is the same.

Second, the in-plane field breaks the tetragonal symmetry,
and therefore �xy��0��0 for a general orientation of the
field. We emphasize that this occurs even when the Lorenz
force is neglected. The nonvanishing �xy arises because of
the difference between the transport along the vortex and
normal to it; when the field �and the vortices� are at an arbi-
trary angle to the direction of the heat current, a transverse
temperature gradient appears similar to the Hall conductivity
in a material with the electric field applied at an arbitrary
angle to inequivalent principal axes. The transverse heat con-
ductivity is of the same order or magnitude as the anisotropy
between transport parallel and normal to the vortices, and
hence much greater than the typical contribution proportional
to the cyclotron frequency, �c=eH /mc���2 /Ef��H /Hc2�.
Therefore the Hall angle is moderately large �see below�.

To make the argument more rigorous consider the general
form of the heat conductivity tensor as a function of the field

orientation Ĥ. We write Eq. �23a� in the form

�ij��0� = 	v f ,i�p̂�v f ,j�p̂�K„�p̂ f · Ĥ�2, ���p̂��2;T,H…
FS. �28�

Here the kernel K(�p̂ f ·Ĥ�2 , ���p̂� � ;T ,H) is determined by
the equilibrium Green’s functions, and, at a given point p̂ f at
the Fermi surface, depends on the angle between the Fermi

velocity and the field, �p̂ f ·Ĥ� and the gap amplitude for that
direction, ���p̂��, as well as on T and H. Since the kernel
does not change if the direction of the field is reversed, we

explicitly write it as dependent on �p̂ f ·Ĥ�2.
Let us start by considering a dx2−y2 gap. The inversion of

the field in the xy plane corresponds to the change �0→�0
+�. We can simultaneously change the variables in Eq. �28�
according to �p̂x , p̂y�→ �−p̂x ,−p̂y�, which leaves the kernel
invariant, and find

�ij��0 + �� = �ij��0� �29�

for i , j= �x ,y�; at the same time �iz��0+��=−�iz��0�, and
�zz��0+��=�zz��0�. Similarly, reflection of the field in the
xz plane, �0→−�0, together with reflection p̂y→−p̂y again
does not change the kernel, and leads to

�xx�− �0� = �xx��0� ,

�yy�− �0� = �yy��0� ,

�xy�− �0� = − �xy��0� . �30�

Finally, if we rotate the field and the coordinate system, �0
→�0+� /2 ��p̂x , p̂y�→ �p̂y ,−p̂x��, we find

�xx��0 + �/2� = �yy��0� ,

�yy��0 + �/2� = �xx��0� ,

�xy��0 + �/2� = − �xy��0� . �31�

We carry out Fourier expansion based on these symme-
tries. From Eqs. �29�–�31� we find for the dx2−y2 gap

�xx��0� = �0 + �2 cos 2�0 + �4 cos 4�0 + ¯ ,

�yy��0� = �0 − �2 cos 2�0 + �4 cos 4�0 + ¯ ,

�xy��0� = �̃2 sin 2�0 + �̃6 sin 6�0 + ¯ . �32�

The cos 2�0 term in the longitudinal conductivity describes
the anisotropy between the transport along and normal to the
vortices. Furthermore, if the superconducting gap is isotropic
�or absent�, and hence the only dependence of the kernel K
on the field orientation is via the term �p̂ f ·Ĥ�2, it immedi-
ately follows that for our cylindrically symmetric Fermi sur-
face �xx+�yy is independent of the field orientation �0,
which requires �4=0. For an anisotropic Fermi surface there
may be an angular modulation of the thermal conductivity,
but it would occur already in the normal state. Therefore the
cos 4�0 component that appears only in the superconducting
state is predominantly due to the gap anisotropy. Such a de-
composition in the analysis of the experimentally measured
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FIG. 2. �Color online� Two distinct experimentally relevant set-
ups for the thermal conductivity. Left panel: dx2−y2 gap symmetry;
right panel: dxy gap symmetry. Response of the dxy superconductor
to the thermal gradient along the �100� �x� direction with the field at
an angle �0� to this axis is equivalent to the response of a dx2−y2

system to the thermal gradient along the �110� �x�� direction and the
field at the angle �0=��+� /4 to the x axis. Note that the experi-
ment is done with the heat current jh along �100�, while the calcu-
lations are for the thermal gradient along this direction �see text for
details�.
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thermal conductivity was used in Refs. 11, 13, and 15 to
infer the gap structure of heavy-fermion and organic quasi-
two-dimensional materials; and in the following section we
compare our results with their analysis.

The origin of the sin 2�0 directional dependence of the
transverse thermal conductivity is also transparent. In the
presence of the field, the principal axes of the thermal con-
ductivity tensor are along and normal to H. Consequently,
when the heat current is along one of those axes, no trans-
verse signal is generated, irrespective of the nodal structure.
This is precisely the result found in high-Tc superconductors
by Ocaña and Esquinazi,35,36 who observed a nearly perfectly
sinusoidal thermal Hall response.

We are now in the position to consider the differences
between the dx2−y2 and dxy gaps. The longitudinal and trans-
verse conductivities for the dxy order parameter are identical
to the components of the thermal conductivity tensor for the
dx2−y2 case in the coordinates �x� ,y�� rotated by �=� /4 with
respect to �x ,y� �see Fig. 2�,

�̂� = �̂dxy
= ��x�x� �x�y�

�x�y� �y�y�
� . �33�

Moreover, the field applied at an angle �0� to the x� axis
makes angle �0=��+� /4 with the x axis, so that �̂���0��
=R̂����̂��0�+� /4�R̂−1���, with the rotation matrix

R̂ = � cos � sin �

− sin � cos �
� . �34�

This leads to

�x�x���0�� = �0 + �̃2 cos 2�0� − �4 cos 4�0� + ¯ ,

�y�y���0�� = �0 − �̃2 cos 2�0� − �4 cos 4�0� + ¯ ,

�x�y���0�� = − �2 sin 2�0� + ¯ . �35�

Importantly, this result implies that the fourfold term in the
longitudinal thermal conductivity depends only on the orien-
tation of the field with respect to the nodes of the gap. In-
deed, let us restore the dependence on the angle �0 measured
to the gap maximum; then

�x�x���0� = �0 + �̃2 sin 2�0 + �4 cos 4�0 + ¯ , �36�

�x�y���0� = �2 cos 2�0 + ¯ . �37�

The last term in the longitudinal thermal conductivity for the
dxy order is identical to that for the dx2−y2 gap. In other words,
independently of the gap symmetry, the fourfold term in the
longitudinal thermal conductivity simply depends on the
angle between the direction of the in-plane field, and the
antinodal direction of the gap. Consequently, in the following
sections we will focus both on the overall features of the
thermal transport and specifically on that term.

C. Calculated vs measured thermal conductivity

We will see below that the field-induced anisotropy in the
transport along and normal to the vortices leads to the large

thermal Hall angle, �xy /�xx�0.1. In this case it is important
to keep in mind that theoretical calculations are done under
assumptions different from the typical steady-state experi-
mental setup. The thermal conductivity tensor is defined via
jh,i=−�ij� jT, where jh is the heat current. The experiments
are done by driving the thermal current along a given ��100��
axis, while thermally insulating the sample in the transverse
direction. The experiment measures the thermal gradients es-
tablished under the conditions jh,x= jh and jh,y =0. Conse-
quently, the measured longitudinal, �l, and transverse, �t,
thermal conductivities are

�l = �xx −
�xy

2

�yy
, �38�

�t =
�yT

�xT
�l � �xy

�xx

�yy
. �39�

The presence of the off-diagonal terms does not substantially
modify the absolute value of the longitudinal or transverse
conductivity since �xy

2 / ��yy�xx��0.01 at most, and therefore
�l��xx and �t��xy.

Note, however, that our principal interest is in the fourfold
nodal term �4, which is itself only a fraction of the longitu-
dinal thermal conductivity. Assuming �0��2 ,�4, we find

�l
�4� � �4 +

�̃2
2

2�0
. �40�

In some region of the phase diagram, where �2��4, the two
terms may be comparable. Our results indicate this range to
be rather small. We find that the magnitude of the fourfold
term is slightly changed by accounting for the difference
between the computed and the measured quantities; however,
the main features remain unmodified. Hence in the following
we discuss the overall features of the thermal conductivity
profiles, and only briefly return to the difference between the
computed and measured anisotropies in the Conclusions.

IV. CYLINDRICAL FERMI SURFACE

Once again we begin by considering the anisotropy of the
longitudinal heat conductivity �xx��0� for a cylindrical Fermi
surface, v f = �v f cos � ,v f sin � ,0� for 0���2� and −� /c
�kz�� /c, where c is the c-axis lattice spacing. As de-
scribed in paper I, this FS does not allow for the self-
consistent calculation of the order parameter in the vortex
state for the in-plane field. As before, we restrict ourselves to
the lowest-order Landau wave function for the order param-
eter, take ��T ,H�=��T ,0��1−H /Hc2�1/2, and use the corre-
sponding results for the thermal conductivity, Eqs. �25�–�27�.
We choose Hc2

ab to be direction independent, and carry out the
self-consistent calculation in temperature and impurity scat-
tering according to Eqs. �25� and �27�. The impurity self-
energy is determined in the unitarity limit with the normal-
state mean free path �n /�0=70, where �0 is the coherence
length. This toy model lends itself easily to numerical and, in
some limits, semianalytical work, and therefore allows inves-
tigation of the salient features of the behavior of �xx. We
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show below that this model gives qualitatively correct results
for quasi-two-dimensional systems. In the self-consistent cal-
culation there is a node-antinode anisotropy in the upper
critical field at low T, and the comparison �given below�
between the cylindrical and corrugated Fermi surfaces eluci-
dates the role of this anisotropy for the behavior of the ther-
mal conductivity.

In general, to determine �xx we need to self-consistently
determine the DOS and the single-particle lifetime as in the
calculation of the specific heat, and then determine the trans-
port time and the thermal conductivity. For the lowest Lan-
dau approximation these are given by Eqs. �25�–�27�. At fi-
nite energies this procedure can only be carried out
numerically, as shown below. First we make some analytical
estimates at low temperatures, T=0, and therefore set �=0.
We consider a dx2−y2 gap and focus on three values of the
thermal conductivity: along the field, �xx��0=0° �, normal to
the field, �xx��0=90° �, and for the field along the node,
�xx��0=45° �.

Define the mean free path �=v f�0, where �2�0�−1=
−Im �R��=0� is the single-particle lifetime, which depends
on the net density of states, and hence is sensitive to the
direction of the field, �0, via the self-consistent T-matrix
equation. The argument of the W function and its derivatives
in Eqs. �25�–�27� is then z= i� /��, where ��=��sin��
−�0��, and depends on the position � on the Fermi surface.
Since we work in the regime �=v f�0��, we can set z=0 for
most values of �, except for the directions nearly parallel to
the field, ��−�0��� /� and ��−�0−���� /�. Let us denote
the contribution from this narrow range as �1, and the con-
tribution from the angles outside of this range as �2, so that
�xx=�1+�2.

We now estimate each contribution. For ��−�0��� /� we
use the expansion for large argument, W�z�� i / ���z� and
W��z��−i / ���z2� to estimate the contribution to the thermal
conductivity as

�1��0�
TNfv f

2 �
4�2

3
�0��0��

�0−�/�

�0+�/� cos2 � d�

�1 + ���0�2�3/2 �41�

�
4�2

3
�0��0�

a1��0�
�1 + ���0�2�3/2 , �42�

where a1�0° �=2� /�, a1�45° �=� /�, and a1�90° �=2�3 /3�3.
Over the remainder of the Fermi surface we set z=0 and

use W�0�=1,W��0�=2i /�� to find for T→0

�2��0�
TNfv f

2 =
2�2

3
�0��0��� d�

2�

cos2 �

�1 + 
2�cos22��/sin2�� − �0�

�
1

1 + ��cos22��/�sin�� − �0��
, �43�


2 = 8���/v f�2, �44�

� =
4����2�

v f
=

��

2

�

�

2. �45�

Here the prime denotes that we are integrating over the entire
Fermi surface excluding the regions close to the field direc-
tion considered above. Notice that ��
2, and therefore the
behavior of the thermal conductivity is controlled to much
greater extent by the transport lifetime than by the density of
states. The transport lifetime is peaked along the nodal direc-
tions.

These observations enable some analytical progress start-
ing from high fields H�Hc2. In that case 
2���1, and we
approximate the density of states by its normal-state value
Nf. Consequently, �0=�n, where �n is the normal-state scat-
tering rate, which has no dependence on the direction of the
magnetic field. Defining �n=�2Nfv f

2�nT /3, we find that an-
gular variation of the thermal conductivity is approximately
given by

�xx��0�
�n

= �� d�

2�

2 cos2 �

1 + ��cos22��/�sin�� − �0��
, �46�

We assume here that ��� /�, which is satisfied nearly ev-
erywhere up to Hc2 for clean systems. Now consider the
behavior of the thermal conductivity for different directions
of the field just below the upper critical field. For small � we
find the conductivity along the field, �xx�0° ���n�1
+ �4/��� ln ��, while the conductivity normal to the field is
�xx�90° ���n�1−28� /15��. Finally, for the field along a
node, �xx�45° ���n�1−16� /3��. Therefore, in the immedi-
ate vicinity of the transition at low temperature we expect
�xx�90° ���xx�45° ���xx�0° �, or a nearly twofold profile of
the thermal conductivity.

At lower fields and T=0, we enter the regime 
2�1��,
where we can still approximate the density of states by the
normal-state value, but the thermal transport is restricted by
sharp peaks in the lifetime for nodal quasiparticles �see Eq.
�46��. Linearizing the gap around the nodal points and car-
rying out the integration, we find �xx�0° ���xx�90° �
��n / �21/4�1/2�, and �xx�45° ���n / �2�1/2�. Consequently, in
this regime we find �xx�90° ���xx�0° ���xx�45° �, suggest-
ing a weak minimum for the field along the node. Remark-
ably, at low T the conductivity normal to the vortex is always
higher than that parallel to the field, but the amplitude of this
anisotropy, and the relative position of the value of the ther-
mal conductivity for the field applied along a node both
change between ��1 and ��1.

This analysis is supported by the numerical results. We
show results only for the longitudinal thermal conductivity,
dx2−y2 gap, and the heat current along the antinodal direction.
The complete heat conductivity tensor is given and discussed
below for the corrugated Fermi surface, with self-consistent
calculations; The results for both FSs are very similar.

The phase diagram of Fig. 3 shows regions with different
anisotropy of the heat conductivity. The changes along the
vertical axis, T=0, as a function of the field are in agreement
with our estimates above: at H�0.85Hc2 we find �xx�90° �
��xx�45° ���xx�0° �, while below that field �xx�90° �
��xx�0° ���xx�45° �. Note that for H /Hc2=0.85 we have

2�1 and therefore already ��1. The variation of the ther-
mal conductivity with the direction of the applied field with
respect to the x axis �angle �0� is shown in Fig. 4 for the
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points in the T-H plane marked by circles and squares in Fig.
3. Evolution of �xx with temperature at low fields �circles� is
considerable: a minimum for the nodal direction, �0=45°, at
low T quickly evolves into a maximum, and at T /Tc�0.4 the
conductivity is largely twofold with no clear signature of the
nodal structure of the gap. The change of the anisotropy with
the field at moderate T is more gradual �squares�, and a pro-
nounced peak at �0=45°, for the field along the nodes, per-
sists to moderately high fields, providing a clear signature of
the nodal structure.

The anisotropy between thermal transport normal to and
parallel to the vortices is reversed at moderate temperatures
�solid blue line in Fig. 3�: at low temperature �xx�0�

��xx�90� �in the notation of Eq. �32� this means �2�0�,
while at high T we find �xx�0���xx�90� �or �2�0�. This
evolution is in agreement with that for a conventional super-
conductor, found by Maki.37 Note also that the fourfold term
��4 in Eq. �32� is most pronounced at intermediate to low T
and H.

V. QUASICYLINDRICAL FERMI SURFACE

A. Main results

To solve the quasiclassical equations self-consistently for
the order parameter, we need a model that allows for the
c-axis superconducting currents when the field is applied in
the a-b plane. Hence we analyze a corrugated quasi-2D
Fermi surface given by

pf
2 = px

2 + py
2 − �r2pf

2�cos�2spz/r
2pf� ,

so that the quasiparticle velocity has a nonvanishing z com-
ponent, This Fermi surface, with s=r=0.5, was considered in
I for the analysis of the specific heat, and we take the same
values of parameters to directly compare the anisotropy of
the heat capacity with that of thermal conductivity. Note that
for this choice the DOS anisotropy in the normal state is
nf�p̂�=1, and the normal-state conductivity anisotropy is
�zz

N /�xx
N =s2=0.25. For this anisotropy the vortex lattice is still

Abrikosov-like.
For the self-consistent calculation of the order parameter

and Hc2, we limit ourselves to three Landau level compo-
nents in Eq. �10a�, �0 ,�2 ,�4, which is sufficient for the
convergence of the calculation to high precision. As in I, we
take impurity scattering in the unitarity limit with the
strength in the normal state 	 /2�Tc=0.007 �suppression of
the transition temperature to Tc /Tc0�0.95, and the mean
free path �n /�0�70�. We showed in paper I that this choice
gives the following values of the critical fields at T=0:
Hc2

antinode�1.45B0, Hc2
node�1.27B0 and Hc2

c �0.57B0, where
B0=�0 /2��0

2 and �0=hc /2�e�. For the in-plane anisotropy
we have then �Hc2

antinode−Hc2
node� /Hc2

antinode�15%, and the ratio
between the c-axis and antinodal directions is Hc2

c /Hc2
antinode

=0.4, similar to that observed in CeCoIn5 experimentally.
We start by showing the temperature and field dependence

of the heat conductivity tensor for the dx2−y2 gap. The heat
current and the field are along the x axis, along the gap
maximum, as schematically shown in Fig. 3. The longitudi-
nal thermal conductivity is seen in Fig. 5 to rapidly decrease
below Tc�H� �left panel�, as the gap opens in the single-
particle spectrum. Notice, however, that the lines plotted for
different fields intersect, implying that the field dependence
of �xx is nonmonotonic, as shown in the right panel. �xx�H�
increases with field at the lowest T and H. In this regime the
low-energy quasiparticles are located near the gap nodes,
where the order parameter vanishes, Y��n�=0, and the trans-
port lifetime Eq. �27� is limited only by the impurity scatter-
ing −Im �R. Hence in the competition between the increased
number of heat-carrying quasiparticles due to field and scat-
tering on the vortices, the density of states wins, and the
conductivity increases with field. In contrast, at higher T, the
unpaired quasiparticles are already induced by temperature

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T / Tc

0

0.2

0.4

0.6

0.8

1
H

/H
c2

H
c2

(T)

[90,
0,
45]

[0,90,45]

[90,0,45]

[90, 45, 0]

[45,
90,
0]

[45,
0,
90] [0, 45, 90]

H

∇T

φ0

FIG. 3. �Color online� T-H diagram of the longitudinal heat
conductivity anisotropy �xx��0�. The thermal gradient is along the x
axis �maximal gap�. Regions of different anisotropy are marked as
��0

a ,�0
b ,�0

c�, which denotes �xx��0
a���xx��0

b���xx��0
c�. For points

marked by circles and squares the profiles of the angle-dependent
�xx��0� are shown in Fig. 4.

0 45 90
φ0

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(κ
xx

/T
)

/(
κ xx

/T
) N

0 45 90
φ0

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.34

0.18

0.12

0.08

0.043

0.16

0.13

0.051

0.40
0.30
0.25
0.20
0.175
0.125
0.085
0.05
0.01

T/T
c

= 0.364
0.273
0.227
0.182
0.136
0.090
0.045

H/H
c2

=

0.13

T/Tc=0.25H/Hc2=0.136

0.116

FIG. 4. �Color online� Left panel: evolution of the heat conduc-
tivity with temperature for H /Hc2�0.14. Right panel: heat conduc-
tivity as a function of the field angle for different fields at T /Tc
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them. Corresponding temperatures and fields are shown in each
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away from the nodes, and turning on the field leads to in-
creased scattering; hence the decrease in the thermal conduc-
tivity. The evolution of �xx with T and H is nearly identical to
that found for the field normal to the layers in a vortex-state
model with a single Landau level,33 and is in agreement with
experimental results.15

Figure 6 shows the temperature �left panel� and field
�right panel� dependence of the transverse heat conductivity.
As we emphasized above, for a general orientation of the
field, the dominant contribution to the transverse heat con-
ductivity is not caused by bending of the quasiparticle trajec-
tories in the applied field due to the Lorenz force, but is due
instead to the anisotropic scattering of quasiparticles by the
vortices. If the thermal gradient is not along one of these two
“transport axes,” along the vortices and perpendicular to the
vortices, transverse current arises. On the other hand, if the
thermal gradient is along or normal to the field direction,
�xy =0 by symmetry, as is clear from Eq. �30�. Hence we
show the transverse conductivity for �0=45° which corre-
sponds to H �node.

The transverse conductivity is allowed to change sign, as
it only reflects the difference between the thermal conduc-
tivities parallel and perpendicular to H, which themselves
depend on the temperature and field. The temperature depen-
dence shows a large peak at intermediate T for all H and
tends to zero as the normal state is approached. The field

dependence is more interesting. At low temperature, �xy is
negative and monotonically decreasing up to the critical
field, and rapidly goes to zero at Hc2. At higher temperature
�xy is positive, and has a peak at low fields. The temperature
at which the peak first appears seems correlated with that
where the downturn in �xx�H� is first seen, and the field value
at the peak position moves in step with the minimum of
�xx�H� in Fig. 5 �right�. It is therefore likely that this feature
is a signature of the increased scattering due to magnetic
field. This is supported by correlations between the peak and
significant ��90° �−��0° �, which stems from magnetic scat-
tering.

To make the connection to experiment, in Fig. 7 we show
the temperature scans of the longitudinal heat conductivity as
a function of the field direction for low and moderate fields
�left and middle panels, respectively�, and a field scan at
T /Tc=0.25 �right panel�. The evolution with temperature at
low field is similar to that found for the cylindrical FS �see
Fig. 4�. The low-temperature region is dominated by the evo-
lution of the fourfold term, while, as temperature increases,
the twofold component becomes more prominent. The field
scan strongly resembles the analogous result for the cylindri-
cal FS: note the appearance of a pronounced peak for the
nodal direction ��0=45° � with increasing field. This shape
of �xx��0� strongly resembles the experimentally found an-
isotropy in CeCoIn5 as shown in Ref. 11. This speaks in
favor of the dx2−y2 gap symmetry in this material, and we will
provide a detailed analysis at the end of this section.

For the same relative orientation of the gap and the heat
current, we show a typical profile of the transverse thermal
conductivity �xy in Fig. 8. For �0=0° and 90° this compo-
nent vanishes identically �see the discussion above�. Over a
wide range of T and H parameter ranges this component
shows essentially sin 2�0-like behavior �Eq. �32�� that agrees
with experimental findings in high-Tc materials.35,36 We em-
phasize that this modulation is completely unrelated to the
nodal structure of the gap; moreover, only the deviation from
the pure sinusoidal profile, seen in several curves in Fig. 8,
carries information about the gap structure.
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To complete the description of the thermal conductivity,
we present in Fig. 9 the longitudinal thermal conductivity
�xx��0� for dxy symmetry of the order parameter �when the
temperature gradient is along a nodal direction�, and com-
pare it with the results for the dx2−y2 gap in Fig. 7. The tem-
perature scans for field H /Hc2=0.065 in Fig. 7 �left panel�
and Fig. 9 �left� demonstrate that at high temperatures the
same twofold symmetry holds for both gap symmetries. At
low T the fourfold feature disappears slightly faster for the
dxy gap, and, at the lowest T, clearly has the opposite sign for
the two gaps; this is in agreement with Eqs. �32� and �37�.
Comparison of the field scans for T /Tc=0.25, Fig. 7 �right�
and Fig. 9 �right�, shows a rather dramatic difference be-
tween the profile of the thermal conductivity under the ro-
tated field for the two cases. A local maximum for the field at
�0=45° to the heat current is clearly resolved for the dx2−y2

gap. For the same field direction either a minimum or no
feature is seen for the dxy symmetry. Recall that at this tem-
perature, T�Tc, the thermally excited quasiparticles are still
located near the nodes of the gap, at �n. Their scattering on
the vortices depends on the component of the Fermi velocity
normal to the field, and therefore on the sine of the angle
between the nodal and the field directions. Hence the stron-
gest variation in the scattering occurs as the field sweeps
through the nodal direction, when ��n−�0��1. For the dx2−y2

gap, with nodes at �n=45° +n90° to the direction of the heat
current, this leads to a noticeable feature in the profile of the
thermal conductivity for �0��n. For the dxy order param-
eter, with �n=n90°, the rotated field sweeps through the
nodes at the same time, as it is either parallel or normal to
the heat current, �0�0°,90°. In that case the twofold trans-
port anisotropy due to vortices masks the nodal signatures,
and the signal is largely twofold. Only in restricted regions
of the phase diagram, when the dominant twofold anisotropy
is nearly absent �intermediate fields in the right panel of Fig.
9�, does the existence of the nodes affect the profile of �xx.
This difference between the behavior of �xx��0� for the two
types of gap strongly suggests to us that the experimental
results for CeCoIn5 effectively rule out the dxy symmetry for
this compound.

In Fig. 10 we summarize the results in the form of a phase
diagram. The most noticeable differences from the cylindri-
cal Fermi surface Fig. 3 occur near the upper critical field
due to the Hc2 anisotropy, absent in the non-self-consistent
calculation. Away from the critical field, in the low-to-
moderate T ,H corner, however, the anisotropy shows very
similar features for the cylindrical and the corrugated FSs,
although the detailed positions of the separation lines, indi-
cating the change in the shape of the thermal conductivity
profile, are different. We believe that the location of these
lines is determined by the symmetry and the shape of the
Fermi surface, and other microscopic details of the material.
Recall that the coupling between different Landau level com-
ponents of the order parameter is generated by the action of
the differential operator v f�p� ·�, which explicitly depends
on the symmetries of the Fermi velocity. On the other hand,
based on the similarities between the phase diagram com-
puted with the lowest Landau level, Fig. 3, and that for three
components, Fig. 10, we conclude that the salient features
and changes in the anisotropy as a function of temperature
and field are captured here.

It is also clear from the phase diagrams in Fig. 10 and the
anisotropy profiles in Figs. 7 and 9 that there is no simple
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relation between general shape and evolution of �ij��0� for
the two symmetries of the gap, dx2−y2 and dxy. On the other
hand, as we noted earlier, the coefficient �4 in the Fourier
decomposition analogous to Eq. �32� and suggested in Ref.
15, �xx��0�=�0+�2 cos 2�0+�4 cos 4�0, depends only on
the orientation of the field with respect to the nodes. In Fig.
11 we plot the fourfold coefficient �4 for the values of T and
H shown in Fig. 7 for the dx2−y2 gap. The fourfold anisotropy
changes sign at intermediate temperatures for both small and
moderate fields, see left two panels of Fig. 11. The coeffi-
cient �4 is small near Tc, where only the twofold pattern that
reflects the difference between transport parallel and normal
to the applied field is detectable. The second sign change in
the low-field range, left panel of Fig. 11, occurs at low tem-
perature, close to the limit of validity of the BPT
approximation.1 However, it is this feature that is connected
in the phase diagram to the reversal shown in the middle
panel for higher fields �see Fig. 12�, which suggests that it is
not an artifact of the approach, but a real effect. For the field
scan at T /Tc=0.25 �right panels of Figs. 7 and 11� �4 is
always negative, so that the minima in the fourfold compo-
nent mark the antinodal directions, while the maxima occur
for H along the nodes. There is a sharp increase in the mag-
nitude of this coefficient as we approach the critical field due
to the in-plane Hc2 anisotropy.

B. Comparison with experiment: CeCoIn5

and �-„BEDT-TTF…2Cu„NCS…2

We close this section with a detailed comparison of our
results with the experimental data. One of the main motiva-

tions for this work was the measurement of the thermal con-
ductivity in a heavy fermion CeCoIn5.11 Another example of
a quasi-2D superconductor where the anisotropy was mea-
sured is �-�BEDT-TTF�2Cu�NCS�2.13

In CeCoIn5 the heat current is driven along the �100� crys-
tal direction. The observed profile of the heat conductivity at
T /Tc=0.25 is in good agreement with that shown in Fig. 7
�dx2−y2� for comparable temperature �T�0.2Tc�, including
the peak for the field at 45° to the heat current. The profile
differs significantly from that expected for a dxy gap as
shown in Fig. 9. We find that the behavior of the experimen-
tally determined fourfold term amplitude, �4, agrees with
Fig. 11 �right�: it vanishes as H→0 and saturates at H
�0.2Hc2. The overall amplitude of this component is smaller
in our computation than that observed experimentally by ap-
proximately a factor of 3: however, since this magnitude is
determined by the shape of the Fermi surface, we do not
expect the model calculation to be quantitatively correct. Our
results at moderate temperatures are consistent with the ex-
perimental temperature scan T= �0.15–0.9�Tc at H�0.1Hc2.
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At T�Tc our results suggest an inversion of the �4 term
which was not observed. However, in this region CeCoIn5
still has strong inelastic scattering �resulting in a peak of the
thermal conductivity at T�0.75Tc� which was not included
in the calculation. Experimentally, extraction of the small �4
amplitude on the background of the dominant twofold term
has greater relative errors. Moreover, since in this range �0
��2��4, the difference between the calculated and the
measured heat conductivity described in Sec. III C may also
contribute to the discrepancy. Finally, since the upper critical
field in CeCoIn5 is paramagnetically limited, we cannot
make a reliable connection of our results with experiment at
low temperatures and high fields; in contrast, Zeeman split-
ting does not affect the low to intermediate T-H behavior.
Therefore reliable comparison can be made only in the re-
gion away from the critical field, where a maximum in the
fourfold component points to the node, strongly implying
dx2−y2 symmetry in agreement with Ref. 11. Note that, ac-
cording to our analysis, generally the line of inversion of the
fourfold term in Fig. 12 is distinct from the line separating
the increasing and decreasing ��H ,T� at low fields, which
was used to decide whether the minima or the maxima of the
oscillations indicate the nodes in Ref. 11.

In the quasi-2D organic superconductor
�-�BEDT-TTF�2Cu�NCS�2 the available data are in the low-
T ,H region only.13 The heat current is driven along the �110�
axis. Extensive analysis of the experimental data is required
to separate the electronic contribution �which is small due
low carrier density�, from the phonon heat transport. If, how-
ever, we concentrate our attention only on the behavior of the
fourfold electronic term, the observed anisotropy fits well
into the phase diagram for the dxy gap, Fig. 10. In the region
H�0.07Hc2, T= �0.04–0.07�Tc, the fourfold term �4 cos 4�0

has a maximum for �0=0° �along �110�� for T�0.04Tc, and
essentially disappears at T�0.07Tc. In our mapping to the
phase diagram, in the experimental regime the field along the
node produces minima in the conductivity, and we concur
with Ref. 13 that the nodal direction is �100�, which suggests
the dxy symmetry.

VI. CONCLUSIONS

In this paper, following our approach in I for the specific
heat, and using the nonequilibrium Keldysh formulation of
the quasiclassical theory, we derived a general expression for
the heat conductivity tensor of a superconductor in magnetic
field. The derivation was based on the closed form solution
for the Green’s function obtained in I, which made use of the
Brandt-Pesch-Tewordt approximation. The utility of this ap-
proach lies in its ability to self-consistently take into account
impurity scattering, the detailed shape of the Fermi surface,
and multiple Landau levels in the order parameter in the
vortex state. Numerical computations based on this approach
are very time efficient. The main advantage of our approach
is that it provides a unified method for calculations of trans-
port and thermodynamics over a large range of temperatures
and fields, well beyond the realm of applicability of the
semiclassical schemes.

In these two papers we applied the developed formalism
to a d-wave superconductor with a quasicylindrical Fermi

surface. We concentrated on the behavior of the specific heat
and thermal conductivity, since they are the most widely
used experimental probes. To make a connection between
theory and experiment, we provided a complete description
of the anisotropy of the thermal conductivity and specific
heat in the T-H phase diagram, starting from the “semiclas-
sical” region at low T ,H and up to the critical field.

Two figures summarize the main results of this work. Fig-
ure 13 recalls the results of paper I, and shows the phase
diagram for anisotropy of the specific heat under rotated
magnetic field, C��0�. The preceding figure, Fig. 12, shows
the anisotropy of the fourfold component �4 of the longitu-
dinal thermal conductivity �xx for the model. One of our
main findings is that both anisotropic signatures change sign,
i.e., invert, in the T-H plane. For the specific heat, the inver-
sion of the anisotropy is due to the effect of the quasiparticle
scattering on vortices on the density of states �see paper I�.
The semiclassical �Doppler shift� picture predicting a mini-
mum of C for the field along a node is valid at low T and H,
where it was designed to work. The effects of the energy
shift, however, are superseded by the redistribution of the
spectral weight due to scattering, which becomes dominant
not only at moderate fields, but also at low fields for finite
energies. Consequently, the anisotropy changes sign at finite
T Fig. 13.

Analysis of the heat conductivity is more involved due to
interdependence of the transport scattering time and the den-
sity of states in the self-consistent treatment. We showed
that, under a rotated field, the fourfold term in Fourier de-
composition of the heat conductivity, �4��0�, exhibits signa-
tures of the nodes, and depends only on the angle between
the field H and the nodal directions, but not on the orienta-
tion of the heat current relative to the nodes. From compari-
son of Figs. 12 and 13, it is clear that the evolution of the
fourfold coefficients in the specific heat and thermal conduc-
tivity, including sign changes, is quite similar across the
phase diagram.
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The exact location of the inversion lines depends on the
microscopic details, such as the Fermi surface shape and the
detailed structure of the order parameter. The relative posi-
tion of these lines, however, is stable with respect to the
moderate changes of the FS curvature along the z axis and
impurity concentration. The developed theory is valid over
most of the phase diagram, except for very low fields in dirty
samples, where the averaging procedure in the Brandt-Pesch-
Tewordt approximation is no longer valid. Thus the qualita-
tive changes in the fourfold term at moderate fields, where
the anisotropy is the most prominent, should be detectable
experimentally �albeit they may prove labor intensive�. One
possible experimental approach to search for the node loca-
tions would be to measure anisotropy at several points in the
phase diagram, in order to map out the evolution of the an-
isotropic contribution.

Finally, by comparing our results with available experi-
mental data of the specific heat and thermal conductivity we
concluded that the order parameter of the heavy-fermion ma-
terial CeCoIn5 �Refs. 6 and 11� has dx2−y2 symmetry, and
reconciled the thermodynamic and transport measurements.
Analysis of the thermal conductivity13 for the organic super-
conductor �-�BEDT-TTF�2Cu�NCS�2 places it most likely
into the dxy family. We believe that our method, which allows
detailed microscopic calculations for specific compounds,
will enable unambiguous interpretation of the anisotropy in
the thermal and transport properties of unconventional super-
conductors, and will lead to maturing of this method as a tool
for determining the nodal directions.
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APPENDIX: DETAILS OF THE HEAT CONDUCTIVITY
DERIVATION

Our approach allows one to obtain an expression for the
thermal conductivity that generalizes previous results to the
case of a vortex state with multi-Landau-level order param-
eter, and arbitrary impurity strength.

The Keldysh diagram technique is formulated for an 8
�8 Green’s function,24 which is traditionally split into three
4�4 parts, retarded �R�, advanced �A�, and Keldysh �K�: ĝX,
X= �R ,A ,K�,

ǧ = �ĝR ĝK

0 ĝA � , �A1�

ĝX�p̂,R;�� = � gX + gX� �fX + fX��i�2

i�2�f�
X + f�

X�� g�
X + g�

X�* � . �A2�

For stationary problems these functions obey the normaliza-
tion conditions

ĝR,AĝR,A = − �21̂, ĝRĝK + ĝKĝA = 0. �A3�

We do not need to solve equations for all the functions as
they are related through symmetries,24

gR�p̂;�� = gA�p̂;��*, gR�p̂;�� = gA�p̂;��*,

gR�p̂;�� = g�
A�− p̂;− ��, gR�p̂;�� = g�

A�− p̂;− �� ,

gK�p̂;�� = g�
K�− p̂;− ��, gK�p̂;�� = g�

K�− p̂;− �� ,

�A4�

fR�p̂;�� = f�
A�p̂;��*, fR�p̂;�� = f�

A�p̂;��*,

fR�p̂;�� = fA�− p̂;− ��, fR�p̂;�� = fA�− p̂;− �� ,

fK�p̂;�� = − f�
K�p̂;��*, fK�p̂;�� = − f�

K�p̂;��*. �A5�

The different functions obey the transport equations

��� − �B��̂3 − �̂R,A, ĝR,A� + iv f � ĝR,A = 0, �A6�

��� − �B��̂3 − �̂R�ĝK − ĝK��� − �B��̂3 − �̂A� − �̂KĝR + ĝA�̂K

+ iv f � ĝK = 0. �A7�

Here

�B = −
e

c
v fA �A8�

is the coupling of quasiparticles to an external magnetic
field. The self-energy is decomposed into the mean-field or-

der parameter and the impurity contributions, �̂X= �̂X+ �̂imp
X .

Self-consistency equations for the singlet order parameter are

�R�p,R� = �A�p,R�

= �
−�

+� d�

4�i
� dp̂�nf�p̂��Vs�p,p��fK�p�,R;�� ,

�A9�

�K�p,R� = 0, �A10�

and for triplet superconductivity the equations are identical,
upon replacing �X by its vector counterpart �X. The Keldysh
part of the self-energy comes in this case from impurities
only. The self-consistent t-matrix approximation for isotropic
impurity scattering gives

�̂imp
X �R;�� = nimpt̂

X�R;�� , �A11�

t̂R,A = u1̂ + uNf	ĝR,A
t̂R,A, �A12�

t̂K = Nft̂
R	ĝK
t̂A, �A13�

where the angular brackets denote the normalized Fermi sur-
face average as in the main text of the paper.

In this appendix we denote functions in thermal equilib-
rium by the subscript “eq,” but in the main text we omit it for
brevity. In local equilibrium,
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ĝeq
K = ĝeq

R �eq − �eqĝeq
A , �̂eq

K = �̂eq
R �eq − �eq�̂eq

A ,

�A14�

�eq = tanh� �

2T�R�� . �A15�

The heat current is

jh�R� = 2Nf � dp fnf�p f��
−�

+� d�

4�i
�v f�p f�gK�p f,R;�� ,

�A16�

where gK�p f ,R ;�� is the diagonal part of ĝK. Using the
Green’s function symmetries one can show that in this for-
mula it is equivalent to gK=1/4 Tr�ĝK�. The factor of 2 re-
flects our definition of Nf for single-spin projection. The ther-
mal conductivity in the linear response is determined from


jh�R� � − �̂ � T = 2Nf � dp fnf�p f�

��
−�

+� d�

4�i
�v f�p f�

1

4
Tr�
gK�p f,R;��� .

�A17�

Our goal is to find the linear �in the temperature gradient
that drives the heat current� correction to the Keldysh
Green’s function, 
gK. The Green’s function varies on the
scale of the magnetic length �or intervortex distance� �, and
on the scale of the superconducting coherence length �0. We
assume that � ,�0�LT, where LT is the length scale for tem-
perature variation. We now write the gradient term as a sum
of the gradients due to inhomogeneity and due to the exter-
nally imposed slow temperature variation,

� = �x + �T
�

�T
, �A18�

with the last term much smaller than the first.
The solution in local equilibrium is obtained from

�ĥeq
R,A, ĝeq

R,A� + iv f�xĝeq
R,A = 0,

ĥeq
R,A = �� − �B��̂3 − �̂eq

R,A. �A19�

We note that the following analysis can be easily adjusted if

we add an external potential to ĥeq
R,A. For now we continue

without it and write down linearized equations for the
Green’s functions near equilibrium, ĝX= ĝeq

X +
ĝX, with driv-
ing term due to v f�T�v f �T�T,

�ĥeq
R,A,
ĝR,A� + �− 
�̂R,A, ĝeq

R,A� + iv f�x�
ĝR,A� + iv f�Tĝeq
R,A = 0,

�A20�

ĥeq
R 
ĝK − 
ĝKĥeq

A − 
�̂Rĝeq
K + ĝeq

K 
�̂A − 
�̂Kĝeq
A + ĝeq

R 
�̂K

− �̂eq
K 
ĝA + 
ĝR�̂eq

K + iv f�x�
ĝK� + iv f�Tĝeq
K = 0.

�A21�

We decouple the equations for 
ĝR,A from 
ĝK by introducing

the Eliashberg anomalous propagator28,29 and the self-energy,


ĝK = 
ĝR�eq − �eq
ĝA + 
ĝa, �A22�


�̂K = 
�̂R�eq − �eq
�̂A + 
�̂a. �A23�

The heat current is determined from 
ĝa, which satisfies

ĥeq
R 
ĝa − 
ĝaĥeq

A + iv f�x
ĝa = − iv f�T�eq�ĝeq
R − ĝeq

A � + 
�̂aĝeq
A

− ĝeq
R 
�̂a. �A24�

We need to solve this equation together with the self-
consistency equations on 
�̂X. Normalization requires

ĝeq
R,A
ĝR,A + 
ĝR,Aĝeq

R,A = 0, �A25�

ĝeq
R 
ĝa + 
ĝaĝeq

A = 0. �A26�

Up to this point all the equations are valid for both singlet
and triplet pairing states. Below we focus on the singlet pair-
ing and only briefly comment on the differences between the
singlet and triplet cases. Self-consistency for the retarded and
advanced linear corrections yields the order parameter and

the impurity contributions, 
�̂R,A=
�̂+
�̂imp
R,A, with


� =� d�

4�i
� dp�nf�p��V�p,p��
fK�p�,R;�� ,

�A27�


�̂imp
R,A = nimpNft̂eq

R,A	
ĝR,A
t̂eq
R,A, �A28�

but the anomalous part is due to impurities only,


�̂imp
a = nimpNft̂eq

R 	
ĝa
t̂eq
A �A29�

We see that the equations for the anomalous Green’s function

ĝa and the self-energy 
�̂a are completely decoupled from
those for the retarded and advanced Green’s functions. On
the other hand, the equations for 
ĝR,A depend on the anoma-
lous 
ĝa through the variation 
�. For simple retarded and
advanced Green’s functions �Y =R ,A�,

ĝeq
Y = � geq

Y feq
Y i�2

i�2f�eq
Y − geq

Y � , �A30�

we obtain the impurity t matrix in equilibrium,

t̂eq
Y = �t+ + t− t�i�2

i�2t�� t+ − t−
�

=
1

nimp

	 sin2 
0

1 −
sin2 
0

�2 �	geq
Y 
2 − 	feq

Y 
	f�eq
Y 
 + �2�

��ctg
0 + 	geq
Y 
/� �	feq

Y 
/��i�2

i�2�	f�eq
Y 
/�� ctg
0 − 	geq

Y 
/�
� . �A31�

Here we solved �A12� using the BPT approximation. Note
that for the triplet case the off-diagonal parts 	feq
 vanish due
to inversion symmetry, p̂→−p̂.

For the singlet case we assume 
�̂a=0, and validate this
assumption at the end of the calculation. We show that the
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linear correction 
ĝa, a product of a function even, under p̂
→−p̂ reflection, and term v f�p̂��T odd in momentum, so that
its average over the FS vanishes.

We only need to solve the equation for the anomalous part
of the Green’s function, since neither the retarded nor the
advanced part has a unit-diagonal term. Hence Tr�ĝR,A�=0,
and they do not contribute to the heat current. Now
Tr�
ĝK�=Tr�
ĝa�, and we find

ĥeq
R 
ĝa − 
ĝaĥeq

A + iv f�x
ĝa = − iv f�T�eq�ĝeq
R − ĝeq

A � ,

�A32�

where the matrix

ĥeq
R,A = �� − �eq

R,A − �B��̂3 − Deq
R,A1̂ − �̃

ˆ
eq
R,A

= �̃R,A�̂3 − Deq
R,A1̂ − �̃

ˆ
eq
R,A �A33�

depends only on the equilibrium self-energies ��̃eq
R,A=�eq for

a triplet�

�̃R,A = � − �eq
R,A − �B, �A34�

Deq
R,A = nimpt+

R,A, �A35�

�eq
R,A = nimpt−

R,A, �A36�

�̃eq
R,A = �eq + nimpt�

R,A. �A37�

We parametrize the anomalous propagator as


ĝa = �ga + g�a fai�2

i�2f�
a ga − g�a � , �A38�

and find the equations for the diagonal components, ga and
g�a from �A32�,

− gaDa + g�a��̃R − �̃A� +
1

2
fa��̃� eq

R − �̃� eq
A � +

1

2
f�

a��̃eq
R − �̃eq

A �

+ iv f�xg
a = 0, �A39�

− g�aDa + ga��̃R − �̃A� −
1

2
fa��̃� eq

R + �̃� eq
A � +

1

2
f�

a��̃eq
R + �̃eq

A �

+ iv f�xg�a = − iv f�T�eq�geq
R − geq

A � , �A40�

where we defined Da=Deq
R −Deq

A . Expressions for the off-
diagonal terms are obtained from the normalization condition
�A26�,

fa =
1

geq
R − geq

A �− ga�feq
R + feq

A � + g�a�feq
R − feq

A �� , �A41�

f�
a =

1

geq
R − geq

A �ga�f�eq
R + f�eq

A � + g�a�f�eq
R − f�eq

A �� . �A42�

Combining these equations, and using the BPT approxima-
tion �i.e., assuming that ga ,g�a=const and spatially averag-
ing the terms containing f , f�, and ��, we obtain the final
expression for the unit-diagonal part of the anomalous propa-
gator,

ga =
G2

G1G4 − G2G3
�geq

R − geq
A ��iv f � �eq� , �A43�

with the following definitions of coefficients:

G1 = − Da +
1

2�geq
R − geq

A �

��− �feq
R + feq

A ���̃� eq
R − �̃� eq

A � + �f�eq
R + f�eq

A ���̃eq
R − �̃eq

A �� ,

�A44�

G2 = �̃R − �̃A +
1

2�geq
R − geq

A �

���feq
R − feq

A ���̃� eq
R − �̃� eq

A � + �f�eq
R − f�eq

A ���̃eq
R − �̃eq

A �� ,

�A45�

G3 = �̃R − �̃A +
1

2�geq
R − geq

A �

���feq
R + feq

A ���̃� eq
R + �̃� eq

A � + �f�eq
R + f�eq

A ���̃eq
R + �̃eq

A �� ,

�A46�

G4 = − Da +
1

2�geq
R − geq

A �

��− �feq
R − feq

A ���̃� eq
R + �̃� eq

A � + �f�eq
R − f�eq

A ���̃eq
R + �̃eq

A �� .

�A47�

In order to prove that our assumption of 
�̂a=0 is justified,
we note that the coefficients Gi are even under inversion of
p̂. Then the resulting ga and g�a are odd due to additional
factor v f ��eq, and their averages over the Fermi surface
vanish. The same is true for the off-diagonal functions fa and
f�

a in the singlet case. This assumption is not valid for triplet
pairing: even though ga and g�a are odd under inversion of p̂,
we see from Eqs. �A41� and �A42� that fa and f�

a are even
�since the feq’s are odd�, and additional terms due to 
�̂a

appear, making the self-consistent solution of the equations
more difficult. Exceptions to this statement exist for certain
order parameters and for special orientation of the tempera-
ture gradient. For example, when �T is applied in a direction
along which � does not change, we find 	fa
=0. Two obvi-
ous examples are �a� ��pz� and �T is in the xy plane and �b�
��px , py� and �T � z.

The resulting expression for the heat conductivity is

�ij

T
=

Nf

4�
� d�

T
� �2

T2 cosh2��/2T�� � dp fnf�p f�

��v f ,i�p̂�v f ,j�p̂��
G2

G1G4 − G2G3
�geq

R − geq
A � . �A48�

We checked that this expression for a uniform supercon-
ductor agrees with the heat conductivity of Graf et al.29 This
completes the derivation of the heat current. We remind the
readers that in the main text we drop the equilibrium sub-
script “eq” to make the expressions less cluttered.
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