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We develop a fully microscopic theory for the calculations of the angle-dependent properties of unconven-
tional superconductors under a rotated magnetic field. We employ the quasiclassical Eilenberger equations and
use a variation of the Brandt-Pesch-Tewordt �BPT� method to obtain a closed-form solution for the Green’s
function. The equations are solved self-consistently for quasi-two-dimensional dx2−y2�dxy� superconductors with
the field rotated in the basal plane. The solution is used to determine the density of states and the specific heat.
We find that applying the field along the gap nodes may result in minima or maxima in the angle-dependent
specific heat, depending on the location in the T-H plane. This variation is attributed to the scattering of the
quasiparticles on vortices, which depends on both the field and the quasiparticle energy, and is beyond the
reach of the semiclassical approximation. We investigate the anisotropy across the T-H phase diagram and
compare our results with the experiments on heavy fermion CeCoIn5.
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I. INTRODUCTION

In this paper and its companion,1 hereafter referred to as
paper II, we present a general theoretical approach for inves-
tigation of thermal and transport properties of superconduct-
ors in magnetic field and use it to determine the behavior of
the density of states, specific heat, and thermal conductivity
in the vortex state of unconventional superconductors. Our
more specific goal here is to provide a connection between
theory and recent experiments measuring the properties of
such superconductors under a rotating magnetic field, to ex-
plain the existing data, and to guide future experimental
studies. We focus on these experiments as they hold excep-
tional promise for helping in the determination of the struc-
ture of the superconducting energy gap.

We consider unconventional superconductors, for which
in the ordered state, both the gauge symmetry and the spatial
point-group symmetry are broken.2 Then, the gap in the
single-particle spectrum, ���p̂��, is momentum dependent.
We focus on anisotropic pairing states with zeros, or nodes,
of the superconducting gap for some directions on the Fermi
surface �FS�.

The single-particle energy spectrum of a superconductor
is E�p̂�= ±��2�p̂�+ ���p̂��2, where ��p̂� is the band energy in
the normal state with respect to the Fermi level. Conse-
quently, the gap nodes, ���p̂��=0, are the loci of the low-
energy quasiparticles, and the number of quasiparticles ex-
cited by temperature or other perturbations depends on the
topology of the nodal regions. Experimental probes that pre-
dominantly couple to unpaired electrons, for example, the
heat capacity or �for pairing in the singlet channel� magneti-
zation, are commonly used to show the existence of the gap
nodes. The nodal behavior is manifested by Tn power laws,
with the exponent n that depends on the structure of the gap.2

Locating the nodes on the Fermi surface is a harder task.
Since usually only the phase of the gap, but not the gap
amplitude ���p̂��, breaks the point-group symmetry, transport
coefficients in the superconducting state retain the symmetry
of the normal metal above Tc. The phase of the order param-

eter can be tested by surface measurements, but experimental
determination of the nodal directions in the bulk requires
breaking of an additional symmetry. One possible approach
is to apply a magnetic field H and rotate it with respect to the
crystal lattice. The effect of H on the nodal quasiparticles
depends on the angle between the Fermi velocity at the
nodes and the field and hence provides a directional probe of
the nodal properties.3

At the simplest level, screening of the field and the result-
ing flow of the Cooper pairs, either in the Meissner or in the
vortex state, locally shifts the energy required to create an
unpaired quasiparticle relative to the condensate �Doppler
shift�.4–6 Our focus here is on the vortex state, where the
supercurrents are in the plane normal to the applied field, and
hence only the quasiparticles moving in the same plane are
significantly affected. Applying the field at different angles
with respect to the nodes preferentially excites quasiparticles
at different locations at the Fermi surface and leads to fea-
tures in the density of states �as a function of the field
direction�.3,7 This, in turn, produces oscillations in the mea-
surable thermodynamic and transport quantities, which can
be used to investigate the nodal structure of unconventional
superconductors.

Such investigations have been carried out experi-
mentally in a wide variety of systems. Due to higher
precision of transport measurements, more data exist
on the thermal conductivity anisotropy under rotated
field. The anisotropy was reported in high-temperature
superconductors,8,9 heavy fermion UPd2Al3,10 CeCoIn5,11

PrOs4Sb12,
12 organic �− �BEDT-TTF�2Cu�NCS�2,13 and bo-

rocarbide �Y,Lu�Ni2B2C,14 see Ref. 15 for a review. The
heat-capacity measurements are more challenging and were
carried out in the borocarbides,16,17 and CeCoIn5.18 While the
experiments provided strong indications for particular sym-
metries of the superconducting gap in these materials, they
did not lead to a general consensus. The main reason for that
has been the lack of reliable theoretical analysis of thermal
and transport properties in the vortex state.

Historically, there was a schism between theoretical stud-
ies of the properties of s-wave type-II superconductors at low
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fields, where the single-particle states are localized in the
vortex cores, and the investigations near the upper critical
field Hc2, where vortices nearly overlap and the quasiparti-
cles exist everywhere in space. The distinction between the
two regimes is not so clear-cut in unconventional supercon-
ductors, since it is the extended near-nodal states that control
the electronic properties both at high and at low fields.5 Of-
ten, it is hoped that a single theoretical approach may pro-
vide results valid over a wide temperature and field range in
nodal superconductors.

In part because early experiments on the vortex state of
unconventional superconductors focused on the high-Tc
cuprates,8,9 theoretical work has long been rooted in the low-
field analysis. The Doppler-shift approximation was used to
predict and analyze the behavior of the specific heat3,5,7,19

and the thermal conductivity20–23 under an applied magnetic
field. The method is semiclassical in that it considers the
energy shift of the nodal quasiparticles with momentum p̂ at
a point R. Consequently, it is only valid at low fields, H
�Hc2, when the vortices are far apart, and the supervelocity
varies slowly on the scale of the coherence length. Moreover,
most such calculations account only for quasiparticles near
the nodes and are therefore restricted to energies small com-
pared to the maximal superconducting gap, and hence to
temperatures T�Tc. In addition, the energy shift leaves the
quasiparticle lifetime infinite in the absence of impurities,
and therefore the method does not account for the scattering
of the electrons on vortices. While some attempts to remedy
the situation exist,8,21,24 no consistent description emerged.

Recent experiments cover heavy fermion and other low-
temperature superconductors and generally include the re-
gime T�Tc and H�Hc2. Consequently, there has been sig-
nificant interest in developing alternatives to the low-field
Doppler-shift approach. The goal is to treat transport and
thermodynamics on equal footing, to be able to describe the
electronic properties over a wide range of fields and tempera-
tures, and to include the effects of scattering on vortices.
Fully numerical solution of the microscopic Bogoliubov–de
Gennes equations has been employed for computing the den-
sity of states �see, for example, Ref. 25� but is not naturally
suited for computing correlation functions and transport
properties. Calculation of the Green’s function in the super-
conducting vortex state is difficult due to the appearance of
additional phase factors from the applied field. Moreover,
transport calculations need to include the vertex corrections,
since the characteristic intervortex distance is large com-
pared to lattice spacing; hence, the scattering on the vortices
corresponds to small momentum transfer, and the forward
scattering is important.

Here we use the microscopic approach in conjunction
with a variant of the approximation originally due to
Brandt-Pesch-Tewordt26 �BPT� that replaces the normal elec-
tron part of the matrix Green’s function by its spatial average
over a unit cell of the vortex lattice. While originally devel-
oped for s-wave superconductors, this approach has recently
been successfully and widely applied to unconventional sys-
tems �see Secs. II B and III for full discussion and refer-
ences�, where it gave results that are believed to be valid
over a wide range of temperatures and fields.27,28

We employ the approximation in the framework of the
quasiclassical method.29,30 Two main advantages of this ap-

proach are �a� that BPT approximation results in a closed-
form solution for the Green’s function,27,31,32 enabling us to
enforce self-consistency for any field, temperature, and im-
purity scattering and facilitating the subsequent calculations
of physical properties, and �b� that quasiclassical equations
are transport-like, so that the difference between single par-
ticle and transport lifetimes appears naturally, without the
need to evaluate vertex corrections. Consequently, we are
able to compute the density of states, specific heat, and the
thermal conductivity on equal footing and provide a detailed
comparison with experiment.

In this work, we pay particular attention to the data on
heavy fermion CeCoIn5, where the specific-heat and the ther-
mal conductivity data were interpreted as giving contradic-
tory results for the shape of the superconducting gap. The
anisotropic contribution to the specific heat exhibited minima
for the field along the �100� directions, which led the authors
to infer dxy gap symmetry,18 while the �more complicated�
pattern in the thermal conductivity for the heat current along
the �100� direction under rotated field was interpreted as con-
sistent with the dx2−y2 gap.11 In a recent Letter,33 we sug-
gested a resolution for the discrepancy and provide the de-
tailed analysis here.

The remainder of the paper is organized as follows. In
Sec. II, we briefly review the quasiclassical approach and the
BPT approximation to the vortex state. Section III gives the
derivation of the equilibrium Green’s function. Some of the
more technical aspects of the calculation are described in the
appendices: Appendix A describes a useful choice of ladder
operators that enable us to efficiently solve the quasiclassical
equations in the BPT approach, and Appendix B shows how
to find a closed-form solution for the Green’s function.

Many of the salient features of our results are clear from a
simple and pedagogical example of a two-dimensional �2D�
d-wave superconductor with a cylindrical Fermi surface con-
sidered in Sec. IV B. We discuss the influence of the field on
the density of states in the vortex state and present the results
for the anisotropy of the specific heat and heat conductivity
for an arbitrary direction of the applied magnetic field.

As one of our goals is the comparison of the results with
the data on layered CeCoIn5, Sec. IV C is devoted to the
fully self-consistent calculations for more realistic quasicy-
lindrical Fermi surfaces, Fig. 1. The discussion of the results,
comparison with the data, and implications for future experi-
ments are contained in Sec. V. Paper II uses these results to
derive and discuss the behavior of the thermal conductivity.

We aimed to make this paper useful to both theorists and
experimentalists. Sections IV B and V are probably most
useful for those readers who are interested only in the overall
physical picture and the behavior of the measured properties;
the figures in Sec. IV C show the main differences between
the self-consistent and non-self-consistent calculations.

II. QUASICLASSICAL APPROACH

A. Basic equations and formulation

We begin by writing down the quasiclassical equations for
a singlet superconductor in magnetic field29,30,32,34–36 and
summarizing the details relevant for our discussion. The
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equations are for the quasiclassical �low-energy �� Green’s
function, which is a matrix in the Nambu �spin and particle-
hole� space ��2 is the Pauli matrix�,

ĝ�R,p̂;�� = � g i�2f

i�2f� − g
� . �1�

This matrix propagator has been integrated over the quasi-
particle band energy and therefore depends only on the di-
rection at the Fermi surface p̂ and the center of mass coor-
dinate R.

We formulate our approach in terms of the real-energy
retarded, advanced, and Keldysh propagators. This is a natu-
ral path for the self-consistent calculation of the quasiparticle
spectrum needed for the determination of thermodynamic
properties such as entropy and heat capacity. Moreover, the
Keldysh technique is the most direct route toward nonequi-
librium calculations, required for the transport properties
such as thermal conductivity, which is covered in paper II.
Consequently, we establish a unified approach to describe
both the thermodynamics and transport in the vortex state.

Retarded �R� and advanced �A� functions ĝ= ĝR,A satisfy
�we take the electron charge e�0�

	�� +
e

c
v f�p̂�A�R��	̂3 − �̂�R,p̂� − �̂imp�R;��, ĝ�R,p̂;��


+ iv f�p̂� · �Rĝ�R,p̂;�� = 0, �2�

together with the normalization condition

ĝR,A�R,p̂;�m�2 = − 
21̂. �3�

Here, � is the real frequency and v f�p̂� is the Fermi velocity
at a point p̂ on the FS. The magnetic field is described by the
vector potential A�R�, and the self-energy �̂imp is due to
impurity scattering. The equations for the retarded and the
advanced functions differ in the definition of the correspond-
ing self-energies.

The mean-field order parameter

�̂ = � 0 i�2�

i�2�* 0
� �4�

is defined via the self-consistency equation involving the
Keldysh function fK,

��R,p̂� =� d�

4
i
� dp̂FS� nf�p̂��V�p̂,p̂��fK�R,p̂�;�� . �5�

In equilibrium, fK= �fR− fA�tanh�� /2T�, and we obtain the
usual self-consistency equation computing the � integral in
the upper �lower� half plane for fR�fA�.

We wrote Eq. �5� for a general Fermi surface and there-
fore introduced the density of states �DOS� at a point p̂ on
the Fermi surface in the normal state Nf�p̂�. The net density
of states N f =�dp̂FSNf�p̂�, and we define nf�p̂�=Nf�p̂� /N f.
We absorbed the net DOS N f into the definition of the pair-
ing potential V�p̂ , p̂��.

Since below we frequently perform the integrals over the
Fermi surface, we introduce a shorthand notation


•�FS =� dp̂FSnf�p̂� • , �6�

so that the gap equation above can be rewritten as

��R,p̂� =� d�

4
i

V�p̂,p̂��fK�R,p̂�;���FS. �7�

All calculations below are for separable pairing,

V�p̂,p̂�� = VsY�p̂�Y�p̂�� , �8�

where Y�p̂� is the normalized basis function for the particular
angular momentum, 
Y�p̂�2�FS=1. For example, for dx2−y2

gap over a Fermi surface parametrized by angle �, we have
Y���=�2 cos 2�. Hence, the order parameter is ��R , p̂�
=��R�Y�p̂�.

Finally, we include the isotropic impurity scattering via
the self-energy,

�̂imp�R;�� = � D + � i�2�imp

i�2�� imp D − �
� = nimpt̂�R;�� . �9�

Here, nimp is the impurity concentration, and, in the self-
consistent t-matrix approximation,

t̂�R;�� = u1̂ + uN f
ĝ�R,p̂;���FSt̂�R;�� , �10�

where u is the single impurity isotropic potential. Comparing
Eqs. �2� and �9�, we see that � effectively renormalizes the
energy �, while �imp accounts for the impurity scattering in

the off-diagonal channel. The term D1̂ drops out of equations
for the retarded and advanced Green’s functions since the
unit matrix commutes with the Green’s function in Eq. �2�.
This term, however, generally appears in the Keldysh part
and has a substantial effect on transport properties.37,38 Be-
low, we parametrize the scattering by the “bare” scattering
rate 
=nimp /
N f and the phase shift �0 of the impurity scat-
tering, tan �0=
uN f.

In equilibrium, we explicitly write Eqs. �2� and �3� as a
system of equations,

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������

x
0 y

0

z
0

H

φ0

FIG. 1. �Color online� In this paper, we present calculations for
a simple cylindrical Fermi surface and a Fermi surface shown here.
The d-wave order parameter has lines of vertical nodes. Our goal is
a calculation of the thermodynamic properties, such as specific heat
and entropy, and their anisotropy under magnetic field rotations �0

in the ab plane.
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g2 − f f� = − 
2, �11a�

iv f�p̂� · �Rg + �̃f� − �̃� f = 0, �11b�

	− 2i�̃ + v f�p̂���R −
2ie

c
A�R��
 f = 2i�̃g , �11c�

	− 2i�̃ − v f�p̂���R +
2ie

c
A�R��
 f� = 2i�̃� g , �11d�

where �̃=�−�, �̃=�+�imp, and ��̃ =�*+�� imp.

B. Vortex state ansatz and Brandt-Pesch-Tewordt
approximation

So far, our discussion remained completely general. In the
vortex state of a superconductor, the order parameter and the
field vary in space, and the quasiclassical equations have to
be solved together with the self-consistency equations for the
gap function and Maxwell’s equation for the self-consistently
determined magnetic field and the vector potential. Finding a
general nonuniform solution of such a system is a daunting,
or even altogether impossible, task. Therefore, we make sev-
eral simplifying assumptions and approximations that allow
us to obtain a closed-form solution for the Green’s function.

First, we assume the magnetic field to be uniform. This
assumption is valid for fields H�Hc1, where the typical in-
tervortex spacing �of the order of the magnetic length �
= ��c /2�e�B�1/2� is much smaller than the penetration depth,
the diamagnetic magnetization due to the vortices is negli-
gible compared to the applied field, and the local field is
close to the applied external field, B�H. All the materials
for which the anisotropy measurements have been performed
are extreme type-II superconductors, where this assumption
is valid over essentially the entire field range below Hc2.

In writing the quasiclassical equations, we only included
the orbital coupling to the magnetic field, assuming that it
dominates over the paramagnetic �Zeeman� contribution.
This is valid for most superconductors of interest, and the
detailed analysis of the Zeeman splitting will be presented
separately;39 the main conclusions of this paper remain un-
affected.

Second, we take an Abrikosov-like vortex lattice ansatz
for the spatial variation of the order parameter, which is a
linear superposition of the single-vortex solutions in the
plane normal to the field. We enforce the self-consistency
condition, which requires going beyond the simple form sug-
gested by the linearized Ginzburg-Landau equations. The de-
tails of this choice are given in Sec. III below.

In the vortex lattice state, the quasiclassical equations
generally do not allow solution in a closed form. We there-
fore employ a variant of the BPT approximation.26 The
method consists of replacing the diagonal part of the Green’s
function by its spatial average while keeping the full spatial
structure of the off-diagonal terms. It was initially developed
to describe superconductors near the upper critical field,
where the amplitude of the order parameter is suppressed
throughout the bulk, and the approximation is nearly exact.

This is confirmed by expanding the Green’s function in the
Fourier components of the reciprocal vortex lattice,
g�R , p̂ ;��=�K g�K , p̂ ;��exp�iKR�, and noticing that
gR�K��exp�−�2K2� so that the K=0 component is expo-
nentially dominant.26 In situations where the states inside the
vortex cores are not crucial for the analysis, such as in ex-
treme type II �Ref. 40�, or nodal superconductors,27,41 the
method remains valid essentially over the entire field range.
Consequently, the BPT approach and its variations were ex-
tensively used to study unconventional superconductors in
the vortex state.27,42,43 One of the advantages of the method
is that it reproduces correctly the H=0 BCS limit32 and
therefore may be used to interpolate over all fields. One,
however, needs to be cautious in computing the properties of
impure systems: averaging over the intervortex distance
���� prior to averaging over impurities is allowed only
when � /��1, where � is the mean free path, and hence the
approach does break down at very low fields and only as-
ymptotically approaches the zero-field result. We show the
signatures of this breakdown in Sec. IV C.

The use of the BPT approximation relaxes the constraints
imposed by the assumption of a perfectly periodic vortex
arrangement. Indeed, averaging over the unit cell of the vor-
tex lattice is somewhat akin to the coherent potential ap-
proximation in many-body physics, although with an impor-
tant caveat that this is only done for the normal part of the
matrix Green’s function. Consequently, the results derived
within this approach are also applicable to moderately disor-
dered vortex solids.

III. SINGLE-PARTICLE GREEN’S FUNCTION

Hereafter, we use g to denote the spatially averaged elec-
tron Green’s function, g�g�p̂ ;��=g�R , p̂ ;��. The approach
we take here follows the standard practice27,31,32,42 of deter-
mining g from the spatially averaged normalization condi-
tion, Eq. �11a�,

g2 − f� f = − 
2. �12�

Here, we defined the average over vortex lattice of a product
as

f1f2 =� dR

V
f1�R�f2�R� . �13�

The anomalous components of the Green’s function satisfy
Eqs. �11c� and �11d�. Formally, the solution is obtained by
acting with the inverse of the differential operator in the

right-hand side on the product �̃g and �̃� g, respectively.
Upon replacement of g by its average, the operator acts
solely on the order parameter,

f�R,p̂;�� = 2ig�p̂;��Ôf�̃�R,p̂;�� , �14a�

f��R,p̂;�� = 2ig�p̂;��Ôf�
*�̃� �R,p̂;�� , �14b�

where

Ôf = 	− 2i�̃ + v f�p̂���R − i
2e

c
A�R��
−1

, �15a�
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Ôf�
* = 	− 2i�̃ − v f�p̂���R + i

2e

c
A�R��
−1

. �15b�

The strategy is to use a vortex lattice solution as an input,
compute the anomalous Green’s functions f and f� in terms of
g from Eq. �14�, determine g from the normalization condi-
tion, and then enforce the self-consistency on � and the im-
purity self-energies. In principle, any complete set of basis
functions is suitable for expanding both ��R , p̂� and f�R , p̂�.
In practice, of course, we are looking for an expansion that
can be truncated after very few terms, enabling efficient
computation of the functions. The Abrikosov lattice ansatz
for ��R� is a superposition of the functions corresponding to
the single-vortex solution of the Ginzburg-Landau equations,
and therefore it is natural to use these functions as our basis.

For an s-wave superconductor with an axisymmetric
Fermi surface �isotropic in the plane normal to the field�, it is
well known that the vortex lattice is given by a superposition
of the single flux line solutions, the oscillator �Landau level
�LL�� functions �0�x−x0�, centered at different points in the
plane normal to the applied field,44

��R� = �
ky

Cky
eikyy�0� x − �2ky

�
� . �16�

Here, the symmetry of the coefficients Cky
determines the

structure of the lattice. This form emerges from the solution
of the linearized Ginzburg-Landau �GL� and is also consis-
tent with the solution of the linearized, with g=−i
, quasi-
classical equations. Moreover, this form is valid down to low
fields as the admixture of the contributions from higher Lan-
dau levels, �n with n�0, to ��R� remains negligible.45 Con-
sequently, the set of oscillator functions �n provides a con-
venient basis for the expansion of anomalous functions f . It

is common to rewrite the operator Ô via the bosonic creation
and annihilation operators a† and a.32 At the microscopic
level, inserting this ansatz for ��R� into the quasiclassical
equations, Eqs. �14�, and enforcing the self-consistency con-
dition yield the order parameter which only includes the
ground-state oscillator functions, justifying the use of Eq.
�16�.32

In unconventional superconductors, the situation is more
complex. While the solution of the GL equations is still
given by Eq. �16�, this form is not a self-consistent solution
of the linearized microscopic equations: the momentum and
the real space dependences of the order parameter are
coupled via the action of the operator v f�p̂� ·�R. Since the
wave functions for Landau levels form a complete set, they
can still be used as a basis for the expansion. The micro-
scopic equations mix different Landau levels, and the self-
consistent solution for the vortex state involves a linear com-
bination of an infinite number of �n at each site.46 For the
axisymmetric case, the spatial structure of ��R� is still close
to that for the s-wave case, and the weight of the higher
Landau levels in the self-consistent solution decreases rap-
idly with increasing n.41,46 Hence, in practice, the series in n
is truncated either at n=0 �as for s wave� or at the second
nonvanishing term.27,41 While this is often sufficient to de-
scribe the salient features of the thermal and transport coef-

ficients, care should be taken in determining the anisotropies
of these coefficients under a rotated field: the anisotropy is
often of the order of a percent, and the structure of the vortex
lattice should therefore be determined to high accuracy as
well.

The situation is even more complex for unconventional
superconductors with nonspherical Fermi surface, when the
Fermi velocity is anisotropic in the plane normal to the ap-
plied field. Quasi-two-dimensional systems with the field in
the plane, such as shown in Fig. 1, give one example of such
difficulties. Frequently in the microscopic theory, the expan-
sion is still carried out in the LL functions using the opera-
tors for the isotropic case. These functions are now strongly
mixed, and hence �numerically intensive� inclusion of many
LLs is required before the self-consistency is reached. Deter-
mining the magnetization in the vortex state, for example,
was carried out with six LL functions.47

This difficulty, however, is largely self-inflicted since, in
contrast to the isotropic case, the LL functions in the form
used in Ref. 47 are not the solutions to the linearized GL
equations. For an arbitrary Fermi surface, the coefficients of
the Ginzburg-Landau expansion are anisotropic, and the vor-
tex lattice solution is given by the n=0 Landau level in the
rescaled, according to the anisotropy, coordinates.48 We show
in Appendix A that the proper rescaling is

x� = x/�Sf, y� = y�Sf , �17�

where Sf is a measure of the anisotropy of the Fermi surface.
For a FS with rotational symmetry around the z0 axis and for
the field at an angle �H to this axis,

Sf =�cos2 �H +
v0�

2

v0�
2 sin2 �H. �18�

Here, v0�
2 =2
Y2�p̂�v�i

2 �pz��FS and v0�
2 =2
Y2�p̂�v�

2�pz��FS,
where v� is the projection of the Fermi velocity on the z0
axis, and v�i with i=x0 ,y0 is the projection on the axes in the
plane normal to z0. For the field in the basal plane, �H
=
 /2, and therefore Sf =v0� /v0�.

The appropriate basis functions, which we use hereafter,
correspond to the oscillator states in the rescaled coordinates.
If we chose the direction of the field as the z axis,

�̃n�x,ky� = �n� x − �2�Sfky

��Sf
� . �19�

For an s-wave superconductor, the n=0 ansatz for ��R� sat-
isfies microscopic equations, while for unconventional order
parameters, different LLs are once again mixed. However,
with our choice of the basis functions, this mixing is weak,
enabling us to truncate the expansion at three components.
Consequently, we use a generalized form of the vortex lattice
��R , p̂�=��R�Y�p̂�, where

��R� = �
n

�n
R�n� , �20a�
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R�n� = �
ky

Cky

�n�e
iky�Sfy

�4 Sf�
2

�̃n�x,ky� . �20b�

The normalizing factor in Eq. �20b� is introduced so that the
states 
R �n� are orthonormal, i.e.,

� dR

V

R�n��
R�n���* = �n,n�, �21�

provided

�
ky

�Cky

�n��2 = 1. �22�

Consequently, �n in Eq. �20a� has the meaning of the ampli-
tude of the appropriate component of the order parameter in
the LL expansion.

The ladder operators,

a =
�

�2
	− �x� + i��y� + i

x�

�2�
 , �23a�

a† =
�

�2
	�x� + i��y� + i

x�

�2�
 , �23b�

obey the usual bosonic commutation relations, �a ,a†�=1 and
�a ,a�= �a† ,a†�=0, and connect the states �n� via a�n�=�n�n
−1� and a†�n�=�n+1�n+1�.

To solve Eq. �14�, we rewrite the differential operators Of
and Of�

via the ladder operators, Eq. �23�, and find

Of = 	− 2i�̃ + v f�p̂���R − i
2e

c
A�R��
−1

�24�

=	− 2i�̃ +
1

�2�
�v−�p̂�a† − v+�p̂�a�
−1

, �25�

where

v± = vx�p̂�/�Sf ± ivy�p̂��Sf . �26�

For convenience, we introduce the rescaled Fermi velocity

ṽ f�p̂�x = v f�p̂�x/�Sf, ṽ f�p̂�y = v f�p̂�y
�Sf , �27�

and its projection on the xy plane �perpendicular to H�,

�ṽ f
��p̂�� = �ṽ f�p̂�x

2 + ṽ f�p̂�y
2, �28�

as well as the “phase factors”

ṽ±�p̂� =
ṽ f�p̂�x ± iṽ f�p̂�y

�ṽ f
��

. �29�

The off-diagonal parts of the matrix Green’s function can
be expressed in terms of the normal component g and written
as a series over the set 
R �m�. The solution is based on
exponentiating the operator Of to explicitly evaluate the re-
sult of its action on the order parameter31,32 and is detailed in
Appendix B. We find

f�R,p̂;�� = �
m

fm�p̂,��
R�m� , �30a�

fm�p̂,�� = ig�
n

�− ṽ−�p̂��m−nDm,n��, �p̂���̃n�p̂;�� ,

�30b�

where �̃n�p̂ ;��=�n�p̂�+�imp,n���. The coefficients

Dm,n��, �p̂�� = �

2�

�ṽ f
�� �

j=0

min�m,n�

�− 1�n1Dm,n
n1,n2�2�̃�

�ṽ f
��
� , �31�

with n1�j�= j+ ��m−n�− �m−n�� /2 and n2�j�= j+ ��m−n�+ �m
−n�� /2 in each term and

Dm,n
n1,n2�z� = �− i

�2
�n1+n2 �n!�m!

�n − n1�!n1!n2!
W�n1+n2��z� , �32�

where W�n��z� is the nth derivative of the function W�z�
=exp�−z2�erfc�−iz�. These functions have the following sym-
metries: W�n��z�*= �−1�nW�n��−z*�, Dm,n= �−1�m−nDn,m, and
Dm,n

n1,n2�z�*=Dm,n
n1,n2�−z*�.

The diagonal part, g, is determined from the average f f
and the normalization condition. The details, once again, are
relegated to Appendix B, with the result

g = − i
/�1 + P , �33a�

P = − i�

2

w2�
n

�
m

�̃� n�̃m �
k,l�0

� �ṽ+�l�− ṽ−�k

l!k!

n�a†kal�m�

��− i
�2

�k+l

W�k+l+1���2�̃

w
� , �33b�

where w= �ṽ f
�� /�2�, and the prime over the k, l sum denotes

the restriction that the matrix element 
n�a†kal�m�
=�n!m! / �n−k�!�m− l�! is nonzero only for k�n, l�m and
k− l=n−m.

If we truncate the expansion of the order parameter in the
vortex state at the lowest Landau-level function, n=0, we
find from Eqs. �33�

g =
− i


�1 − i�
� 2�

�ṽ f
���

2

W��2�̃�

�ṽ f
��
��̃0�̃� 0

, �34�

which agrees with previously obtained
expressions.27,31,32,42,49 In the zero-field limit, ��1/�H→�,
we use the asymptotic behavior at large values of the argu-
ment, W�z�� i /�
z, W��z��−i / ��
z2�, to verify that this
Green’s function tends to the BCS limit,27,32 and therefore all
the conventional results for the density of states in nodal
superconductors immediately follow.

Equations �30� and �33� give the solution of the quasiclas-
sical equations in the BPT approximation for a given vortex
lattice and impurity self-energies, i.e., provided the coeffi-
cients �n ,�� m and � ,�imp,n ,�� imp,m are known. The self-
consistency equations for these coefficients,
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�n ln
T

Tc0
=� d�

4
i
� dp̂FSnf�p̂�Y�p̂�� fn

R�p̂;�� − f�n
R�p̂;��*

− 2
i
�nY�p̂�

�
�tanh

�

2T
, �35�

and the equations for the impurity retarded and advanced
self-energy, Eq. �9�, written explicitly through solution of Eq.
�10� for the t matrix,

t̂ = �t+ + t− t�i�2

i�2t�� t+ − t−
� =

1

nimp


sin2 �0

1 −
sin2 �0


2 �
g�2 − 
f�
f�� + 
2�

��cot �0 + 
g�/
 �
f�/
�i�2

i�2�
f��/
� cot �0 − 
g�/

� , �36�

complete the closed-form solution. Here, Tc0 is the critical
temperature for the clean system, 
=0, which we used to
eliminate the interaction strength Vs and the high-energy cut-
off. The elimination can also be done in favor of the impurity
suppressed Tc, see, e.g., Ref. 50.

IV. HEAT CAPACITY

A. Density of states and the specific heat

Once we self-consistently determined the Green’s func-
tion, we can calculate the quasiparticle spectrum. We use the
standard definition for the angle-resolved density of states at
the Fermi surface,

N��,p̂�
Nf�p̂�

= −
1



Im gR�p̂,�� , �37�

where Nf is the normal-state DOS.
The heat capacity is the derivative of the entropy, C

=T�S /�T, where

S = − 2�
k

�„1 − f�Ek�…ln„1 − f�Ek�… + f�Ek�ln f�Ek��

= − 2�
−�

+�

d�N����„1 − f���…ln„1 − f���… + f���ln f���� ,

where f���=1/ �e�/T+1� is the Fermi function, and N���
=�dp̂N�� , p̂� is the net DOS at energy �. In practice, numeri-
cal differentiation of the entropy is computationally either
noisy or very time consuming due to the high accuracy re-
quired in finding S and is therefore not very convenient. At
low temperatures, the order parameter and the density of
states are weakly temperature dependent, and therefore the
specific heat can be obtained by differentiating only the
Fermi functions. This leads to the well-known expression

C�T,H� =
1

2
�

−�

+�

d�
�2N�T,H;��

T2 cosh2��/2T�
�38�

that lends itself more efficiently to numerical work. Note that
the x2 /cosh2�x /2� function has a single sharp peak at x
�2.5, so the DOS at ��2.5–3T contributes the most to the

C /T. The difference between the specific heat defined from
the density of state and the exact result is, of course, dra-
matic near the phase transition from the normal metal to a
superconductor, where the peak in the specific heat is en-
tirely due to entropy change not accounted for in Eq. �38�. At
the same time, the regime where the anisotropy of C�T ,H� is
measured is far from Tc, and there we find that the results are
very weakly dependent on the method of calculation. We
therefore use the approximate expression above except
where noted and give a more detailed account of the differ-
ence between the two approaches for the specific Fermi sur-
face shape in Sec. IV C.

B. Cylindrical Fermi surface

We are now prepared to consider the behavior of the spe-
cific heat in the vortex state of a superconductor. As men-
tioned above, our goal is to analyze the variations of the
specific heat when the applied field is rotated with respect to
the nodal directions. We consider first the simplest model of
a cylindrical Fermi surface with vertical lines of nodes, and
the field applied in the basal plane, at varying angle to the
crystal axes.

This is a simplified version of a model for layered com-
pounds, such as CeCoIn5, considered below in Sec. IV C.
There we compute the specific heat for a quasicylindrical
Fermi surface, open and modulated along the z0 axis. The
main advantage of considering an uncorrugated cylinder first
is that it provides a good basis for semianalytical understand-
ing of the main features of the thermodynamic properties.
Moreover, this model gives results that are in semiquantita-
tive agreement with those for the more realistic model of
Sec. IV C.

The disadvantage of the model is that it is not self-
consistent. If the Fermi surface is cylindrical, there is no
component of the quasiparticle velocity along the z0 direction
�the axis of the cylinder�. The field applied in the plane does
not result in the Abrikosov vortex state, as the supercurrents
cannot flow between the layers. Consequently, it is impos-
sible to set up and solve the self-consistency equations for
the order parameter as a function of the applied field. None-
theless, we assume the existence of the vortex lattice where
the order parameter has a single n=0 Landau-level compo-
nent, with the amplitude ��T ,H�=��T ,0��1−H /Hc2�T�,
analogous to Refs. 3 and 7. With this assumption, we solve
self-consistently for the temperature-dependent ��T ,0� and
for the impurity self-energies. We consider the unitarity limit
of impurity scattering �phase shift �0=
 /2�. In the next sec-
tion, we compare this model with a more realistic fully self-
consistent approach and show that the major features of the
two are very similar.

While in the cylindrical approximation the results depend
solely on the ratio H /Hc2, for comparison with the results of
the self-consistent calculation, we recast them in similar
form. We measure the field in the units of B0=�0 /2
�0

2,
where �0=hc /2�e� is the flux quantum and �0=�v f /2
Tc is
the temperature-independent coherence length in the ab
plane. At zero temperature, the upper critical field along the
c axis is computed self-consistently, Hc2,c�0.55B0. We set
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the in-plane Hc2=1.1B0 to approximate the factor of 2 aniso-
tropy found in CeCoIn5 and choose the normal-state scatter-
ing rate 
 /2
Tc=0.007 �suppression of the critical tempera-
ture �Tc0−Tc� /Tc0�5%�. We checked that the resulting map
of the anisotropy in the specific heat in the T-H plane does
not strongly depend on this particular choice. Of course,
large impurity scattering smears the angular variations.

For a single Landau-level component, the solutions for
the Green’s function have a particularly simple form of Eq.

�34�. For a dx2−y2 superconductor, the gap function is ����
=� cos 2�. If the magnetic field is applied at an angle �0 to
the x axis �inset in Fig. 2�, the component of the Fermi ve-
locity normal to the field is

v f
���� = v f sin�� − �0� . �39�

Therefore, the Green’s function of Eq. �34� takes the form

g��,�� =
− i


�1 − i�
� 2��

v f�sin�� − �0���
2

W�� 2�̃�

v f�sin�� − �0���cos2 2�

. �40�

Let us focus first on the residual density of states,
�→0+ in the clean limit, 
=0, to compare with the semi-
classical Doppler approximation. In this case, W��0�
=2i /�
 and the density of states reduces to

N�0� = �
0

2
 d�

2


1

�1 +
1

4z2

cos2 2�

sin2�� − �0�

, �41�

where z=v f /4�2����H /Hc2. The DOS can be obtained
analytically for the nodal and antinodal alignments of the
field.

Node, �0=
 /4. Then, Eq. �41� reduces to

Nnode�0� =
2




z
�1 + z2

K� 1
�1 + z2� , �42�

where K is the complete elliptic integral of the first kind. We
use the convention of Ref. 51 for the argument of all elliptic
functions. In the weak field limit, z�1,

Nnode�0� �
2z



ln

4

z
. �43�

Antinode, �0=0. The corresponding DOS is evaluated to
be

Nantinode�0� =
z

�z2 + 1/4�1/4

2



	K�r� −

1

2
F��,r�
 , �44a�

where F�� ,r� is the incomplete elliptic integral of the first
kind, and

� = arccos
1 − �z2 + 1/4

1 + �z2 + 1/4
, r =

1
�2
�1 +

1 + z2

�1 + 4z2
.

�44b�

At low fields, z�1, the antinodal DOS

Nantinode�0� =
2�2z



ln

4�2

z
. �45�

Apart from the logarithmic correction �which is rapidly
washed away by finite impurity scattering�, the antinodal
DOS exceeds the nodal value by a factor of �2, in complete
agreement with the Doppler approach.3,7 As the field in-
creases, however, Eqs. �42� and �44� predict a crossing point
z*�0.63 above which the residual nodal DOS becomes
greater than Nantinode�0�; this result was obtained numerically
in Refs. 25 and 52. With our choice of ��H�=��1−H /Hc2,
the zero-temperature crossover point lies at H* /Hc2�0.6.

Similar analytic expressions cannot be written for finite
energies, and we evaluate the DOS and the specific heat
numerically, including the impurity effects. Results for the
anisotropy of the heat capacity are shown in Fig. 2. We
present them in a form of a phase diagram �left panel� that
shows the regions with the opposite anisotropy. Shaded
�white� areas correspond to the minimum �maximum� of C
when H is along a node. Of course, the node-antinode aniso-
tropy disappears as the field H→0. Since we are primarily
interested in comparison of our results with the experimental
data, we focus on the regime of moderate fields and show the
evolution of specific heat for different directions of the field
�0 with the temperature in the right panel of Fig. 2. Notice
that at �0=45°, when the field is along a nodal direction, the
minimum in C��0� evolves into the maximum as T increases.

Inversion of the anisotropy in the T-H phase diagram is at
odds with the semiclassical result that always predicts a
minimum in the specific heat for the field parallel to the
nodal direction. In the shaded area adjacent to the Hc2�T� line
in Fig. 2, with minima for H �node, the specific heat is al-
ready sensitive to the density of states near the BCS singu-
larity in the DOS at ���0, and therefore direct comparison
with the semiclassical analysis is not possible. Moreover, we
show in the following section that the self-consistent models
require nodal-antinodal anisotropy of the upper critical field,
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and the results for this part of the phase diagram are modi-
fied.

On the other hand, the anisotropy inversion between the
low-T, low-H region and the intermediate temperatures and
fields still occurs in the regime where the semiclassical logic
may have been expected to work. The dotted line in the left
panel of Fig. 2 separates the two regions of the residual
zero-energy DOS: below that line, Nnode�0��Nantinode�0�,
while above the line, Nnode�0��Nantinode�0�. The inversion of
the anisotropy in the specific heat is clearly not just a conse-
quence of the behavior of the zero-energy DOS found above.
Recalling that C /T is predominantly sensitive to the density
of states at energies of the order of a few times T �see Eq.
�38��, we conclude that the origin of the anisotropy inversion
is in the behavior of the finite-energy DOS. We plot the
low-energy N�� ,H� at several values of the magnetic field in
the left panel of Fig. 3. At low fields, the DOS anisotropy at
small � agrees with the semiclassical prediction, but the den-
sities of states for the field along a node �dashed lines� and
along an antinode �solid lines� become equal at a finite en-
ergy indicated by arrows. Above this energy, the DOS aniso-
tropy is reversed and is manifested in the reversal of the
specific-heat anisotropy as T increases. The crossing point
moves to lower energies with increasing field and is driven to
zero when the residual, �=0, DOS for the two directions
become equal. In our numerical work with finite impurity
scattering rate, this occurs at H*�0.5Hc2, and we checked
that H*→0.6Hc2 as the system becomes more pure, in agree-
ment with the analytical results above.

As suggested by us in the short Letter communicating our
main results, the inversion stems from the interplay between
the energy shift and scattering due to magnetic field.33 Mag-

netic field not only creates new quasiparticle states on the
Fermi surface but also scatters the quasiparticles and, conse-
quently, redistributes their spectral density. This scattering is
present in the microscopic method, but not in the Doppler-
shift treatment. To understand this effect and to make con-
nection with the semiclassical approach, we analyze the
angle-resolved DOS obtained from the Green’s function, Eq.
�34�. It is instructive to rewrite the Green’s function in the
BCS-like form which makes the distinction between the en-
ergy shift and scattering rate explicit. We define the “mag-
netic self-energy” �=��− i�� from ��−��−2

� i�
�2� / �ṽ f
���2W��2�̃� / �ṽ f

��� so that the Green’s function
reads

gR = − i
�1 −
��0�2Y2�p̂�

�� − ����,H,p̂� + i����,H,p̂��2�−1/2

.

�46�

The density of states for a given direction at the Fermi sur-
face can be found from the comparison of �−��p̂� with
�0Y�p̂�=�max cos 2�. Since W��x� is a complex-valued
function, both �� and �� are generally nonzero: the former
shifts the quasiparticle energy, while the latter accounts for
the direction-dependent scattering. For now, we neglect the
impurity broadening: for quasiparticles moving not too close
to the field direction, the field-induced scattering is normally
greater than the scattering by impurities. Nonzero �� is the
key signature of our microscopic solution. Both real and
imaginary components of the self-energy depend on the qua-
siparticle energy �, the strength and direction of the field H,
and the momentum of the quasiparticle with respect to both
nodal direction and the field. Using the expansion around
W��0�=2i /�
 at small values of the argument, and taking
W��z�1��−i /�
z2 for large arguments, we find two limit-
ing cases,

����������������������
����������������������
����������������������
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����������������������
����������������������
����������������������
����������������������
����������������������
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FIG. 2. �Color online� Left panel: The phase diagram for the
anisotropy of the heat capacity for cylindrical Fermi surface. At low
T and H �shaded area�, the minimum in the heat capacity occurs
when the field point in a nodal direction �0=45. As T increases, the
minimum first evolves into a maximum, and then switches back to
a minimum. The inversion of zero-energy DOS is indicated by the
dotted line. Right panel: evolution of the heat-capacity anisotropy
with temperature for H /Hc2=0.136 �circles in the left panel�. Some
curves are shifted vertically for clarity, and their original values at
�0=0 are shown in boxes. �N is the Sommerfeld coefficient in the
normal state.
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FIG. 3. �Color online� Left: the low-energy part of the DOS for
cylindrical FS. The nodal and antinodal DOS cross at finite energies
�arrows�. Right: the angle-resolved DOS �shaded� for the two field
orientations in the regions indicated by the dotted boxes in the left
panel. The angle integrated DOS is given by the area of the shaded
regions. See text for details.
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� − � � i
�ṽ f

��

2�2�
+ O��2�2

�ṽ f
��2� if � �

�ṽ f
��

2�
, �47�

� − � � � + O� �ṽ f
��2

�2�2� if � �
�ṽ f

��
2�

. �48�

Note that �ṽ f
��p̂�� /2���H is the characteristic magnetic en-

ergy scale for quasiparticles at position p̂ on the Fermi sur-
face. In the first limit, valid at low energies �or moderately
strong fields� for quasiparticle momenta away from the field
direction, the imaginary part of the self-energy is dominant.
In the opposite limit, the effect of the field is small. Between
these two limits, i.e., at finite energies, moderate fields, and
arbitrary p̂, the real �energy shift� and the imaginary �scatter-
ing� parts of the self-energy can be comparable.

We can now analyze the angle-dependent contribution to
the density of states from different regions at the Fermi sur-
face at a given field, which is shown in the right panel of Fig.
3. Consider first very low energy �→0, Figs. 3�b� and 3�c�,
so that we are in the regime described by Eq. �47�. At low
fields, panel �c�, the characteristic energy �ṽ f

��p̂�� /2� is
smaller than the maximal gap �max, and therefore most of the
field-induced quasiparticle states appear near the nodes for
which �ṽ f

��p̂�� is moderately large. Consequently, as in the
semiclassical result, the field applied along a nodal direction
does not create quasiparticles near that node, while the field
applied along the gap maximum generates new states at all
nodes. The small contribution seen in the right frame of
panel �c� at the nodes aligned with the field is due to impu-
rity scattering. Thus, while the scattering on the vortices, i.e.,
the imaginary part of Eq. �47�, does produce a nonvanishing
contribution to the DOS over most of the Fermi surface, at
very low energy and low field, the spectral weight of the
field-induced states is mainly concentrated near the nodal
points.

This changes as the field is increased, see panel �b�. At
high field, the Doppler shift and pair breaking due to scatter-
ing are strong and sufficient to contribute to the single-
particle DOS over almost the entire Fermi surface where
�ṽ f

��p̂�� /2���max�H� �as a reminder, in our notations, the
maximal gap �max=�0

�2, since we chose Y���=�2 cos 2�
to be normalized�. The obvious exceptions are the momenta
close to the direction of the field, when �ṽ f

��p̂���v f. For the
field aligned with the node, this restriction is not severe; near
the node, v f

��v f�� and ��p̂��2�max��, where �� is the
deviation from the nodal �and field� direction. Hence, if
v f / �2����max, almost the entire Fermi surface contributes
to the DOS when the field is aligned with a node. In contrast,
for the field along the gap maximum, in a range of angles
close to the field direction, the gap is large and the magnetic
self-energy is small, and hence no spectral weight is gener-
ated. As a result, the density of states is higher for the nodal
orientation. This is the origin of zero-energy DOS inversion
as found numerically in Ref. 25 and as derived above.

We finally consider the DOS at finite energy ���max,
panel �d�. In the absence of the field, the most significant
contribution to N��� comes from the BCS peaks at �
=�0�Y�p̂��, located at momenta p̂� at angles �n±���, where

�n=
 /4+
n /2 are the nodal angles and ����� / �2�max�
=� / �2�2�0�. Scattering on impurities or vortices broadens
these peaks and redistributes the spectral density to different
energies �as in all unconventional superconductors, scatter-
ing reduces the weight of the singularity and piles up spectral
weight at low energies�. However, the vortex scattering is
anisotropic as it depends on v f

�, see Eq. �47�, the component
of the velocity normal to the field. Therefore, if a field is
applied along a nodal direction, at that node v f

��v f���

�v f, and the peaks in the angle-resolved DOS remain
largely intact �panel �d�, right�. On the other hand, if the field
is applied along a gap maximum, BCS peaks near all four
nodes are broadened by scattering, and their contribution to
the net DOS is reduced �panel �d�, left�. So, even when the
field is moderately low but the quasiparticle energy exceeds
some value ��, which can only be determined numerically,
the gain from sharp �unbroadened by scattering� coherence
peaks exceeds the field-induced contribution from the near-
nodal regions. Then, the DOS is higher for the field along a
node rather than the gap maximum. Recalling that the spe-
cific heat at temperature T is largely controlled by the density
of states at the energy of about 2.5T, we expect that the
anisotropy of the specific heat is also inverted at T /Tc
��� /2.5Tc. It is this change in the finite-energy density of
states, rather than the zero-energy DOS, that determines the
inversion line in the phase diagram, see Fig. 2.

C. Quasi-two-dimensional Fermi surface

We mentioned above that a major motivation of our work
is to address the apparent discrepancy between the thermal
conductivity and specific-heat measurements in CeCoIn5.
While this material does possess a quasi-two-dimensional
sheet of the Fermi surface, the normal-state resistivity aniso-
tropy is very moderate, indicating a significant c-axis elec-
tronic dispersion. Consequently, while the results of the pre-
vious section are very suggestive of the anisotropy reversal,
we need to verify that similar physics persists in a more
realistic open quasicylindrical Fermi surface described by

pf
2 = px

2 + py
2 − �r2pf

2�cos�2spz/r
2pf� .

We parametrize this FS by the azimuthal angle in the ab
plane, �, and momentum along the c axis, pz, so that the
Fermi velocity at a point �� , pz� is

v f�pz,�� = ��pf/m��1 + r2 cos�2spz/r
2pf� cos �

�pf/m��1 + r2 cos�2spz/r
2pf� sin �

�pfs/m�sin�2spz/r
2pf�

� .

With this parametrization, the anisotropy factor of the
normal-state DOS is nf�p̂�=1. Parameter r determines the
corrugation amplitude along the z axis, and we find that the
results do not depend on its value; below, we set r=0.5. The
second parameter, s, is physically important since it fixes the
anisotropies of the normal-state transport and the critical
field; the characteristic velocities in the ab plane and along
the c axis are v0�= pf /m�v f and v0�= pfs /m. The normal-
state conductivity anisotropy is �zz /�xx=s2.

The main advantage of allowing for the c axis dispersion
is the ability to solve the quasiclassical equations in the BPT
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approximation self-consistently, with respect to both the or-
der parameter as a function of T and H and the impurity
self-energy. We take moderate values of the anisotropy, s
=0.25 and s=0.5, for which the vortex structure is still three
dimensional. The latter value yields Hc2 anisotropy close to
that of CeCoIn5. The calculations below are done with three
Landau-level channels for the order parameter, �0, �2, and
�4. With the rescaling of Appendix A, this is sufficient for
convergence of the upper critical field. The values of the
higher components �2 and �4 are less than 5% of �0, see
Fig. 4, and addition of further components does not change
the results.

For this Fermi surface, we solve the linearized self-
consistency equation and compute Hc2 in the basal plane.
The anisotropy between nodal and antinodal upper critical
fields appears naturally as a result of the d-wave symmetry,
Hc2

node�Hc2
antinode. The value of Hc2 is essentially determined

by balancing the kinetic energy of the supercurrents vs the
condensation energy, and the former is different for different
orientations of the field.

Let us now look at the difference between the self-
consistent and non-self-consistent order-parameter calcula-
tions. For this, we again present a phase diagram, Fig. 5,
analogous to Fig. 2 for the cylindrical FS. The left panel
shows the results for the Fermi surface with r=s=0.5 and the
impurity strength 
 /2
Tc=0.007 �Tc /Tc0�0.95,
�tr /�0�70�. The values of the critical fields at T=0 are
Hc2

antinode�1.45B0, Hc2
node�1.27B0, and Hc2

c �0.57B0. This
gives the in-plane anisotropy, �Hc2

antinode−Hc2
node� /Hc2

antinode

�15%, and the ratio between the c axis and antinodal direc-
tions, Hc2

c /Hc2
antinode=0.4. To demonstrate the influence of the

FS c-axis curvature on this phase diagram, we present in Fig.
5�b� a similar diagram a Fermi surface with parameters r
=0.5 and s=0.25. These parameters correspond to the reduc-
tion by factor of 2 of the velocity along the c axis and the
critical fields Hc2

antinode�2.85B0, Hc2
node�2.55B0, and Hc2

c

�0.57B0. The Hc2 anisotropies are 10% in the basal plane
between nodal and antinodal directions, and Hc2

c /Hc2
antinode

=0.2. Figure 5 shows that a factor of 2 difference in the
c-axis velocity affects only the absolute values of Hc2

�anti�node,
but otherwise the two diagrams for the anisotropy in the ab
plane look almost identical.

The shaded “semiclassical” region at low temperatures
and fields in Fig. 5, where minima of C are for H �node,
expanded compared with that for cylindrical FS �Fig. 2�. We
note that if we truncate the order-parameter expansion at the
lowest Landau level without full convergence of Hc2, the
“nodal minimum” region occupies similar range for both cor-
rugated and purely cylindrical FSs. Therefore, this expanded
range is the result of the self-consistency and inclusion of
higher harmonics. On the other hand, the shaded “minimum-
at-a-node” region near Hc2 shrunk to low H and high T,
where the anisotropy is almost washed out and is experimen-
tally undetectable.

Specific heat as a function of the field direction is shown
in Fig. 6. The curves are computed at the �T ,H� points indi-
cated in the phase diagram of Fig. 5 by circles and squares.
The left �right� panel refers to lower �higher� field. At higher
fields, the gap nodes always correspond to maxima of C. At
low fields, however, nodes correspond to either minima or
maxima of C depending on the temperature, Fig. 6 �left�. The
lowest dashed curve in the left panel of Fig. 6 appears to
contradict the semiclassical results; we show below that it
corresponds to the breakdown of the BPT approximation. We
conclude that the optimal range of field and temperature for
experimental detection of the nodes based on the heat-
capacity anisotropy is at intermediate values of H /Hc2 and
T /Tc, where the anisotropy of C is large and the ambiguity in
interpretation is small.

The discrepancy between t=0.5 profile on the left that
shows a weak minimum at the nodes and the position of the
point in the “maximum” region of the phase diagram in Fig.
5 is due to the fact that we computed and differentiated en-
tropy to determine the phase diagram but employed the ap-
proximate formula Eq. �38� to calculate the heat-capacity
anisotropy profile �neglecting the derivative of the DOS with
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temperature�. Comparison of the exact and approximate for-
mulas for the heat capacity is shown in Fig. 7. The lower
inversion between the minimum and the maximum of C for
the field along the nodes is only slightly shifted to higher T
due to the use of the approximate formula �inset�. The point
of the high-T inversion is more sensitive to it but, as dis-
cussed above, is not in the regime of experimental interest.

At the lowest fields and temperatures in Fig. 5 �below
0.1Hc2 and 0.77Tc�, there appears a very small anomalous
region where the heat-capacity anisotropy is inverted com-
pared to the semiclassical result. Our analysis shows that this
is an artifact caused by the breakdown of the BPT approxi-

mation. Manifestations of this failure are enhanced �com-
pared to cylindrical FS� by the fully self-consistent calcula-
tion of the multiple Landau channel order parameter.

A necessary condition for the validity of the BPT approxi-
mation is that the electron mean free path is much greater
than the intervortex distance, ��H�=v f	�H����H�. Only in
this case we are allowed to carry out the vortex lattice spatial
averaging before averaging over the impurity configurations
to compute the self-energy. Consequently, for finite impurity
concentration, the approximation is bound to fail at low
fields. In Fig. 8, we present the DOS at low field and tem-
perature for different number of � channels and the purity of
the material. Notice that for the dirtier material with more
than one channel of the order parameter, the DOS oscillates
at low energies when the field H is �antinode, panel �b�.
These oscillations lead to the additional unphysical inversion
of the heat-capacity anisotropy at very low T and H, which is
seen in the bottom left corner of the phase diagram in Fig. 5
and is shown by the dashed line in the left panel of Fig. 6.
The same oscillations are also present in the self-consistently
calculated impurity self-energies, which we do not show
here. We find that they decrease in a cleaner material, Fig.
8�c�.

The interval of the fields where the oscillations are ob-
served coincides with the region where the BPT approxima-
tion is no longer trustable. We consider the BPT breakdown
at low temperature, where the density of states is, Eq. �40�,
N�0,H� /N0=−Im
g /
���H /Hc2. The impurity self-
consistency in the unitary limit gives 	�H�= 1

2�N�0,H� /N0

� 1
2�

� H
Hc2

. Here, �=
 sin2 �0 is the normal-state scattering
rate. Recalling that ��H� /�0��Hc2 /H and requiring
v f	�H����H�, we obtain a condition for the applicability of
BPT: H /Hc2�� /2
Tc. Thus, for our impurity bandwidth
� /2
Tc�0.01, the BPT approximation is only applicable for
fields H /Hc2�0.01 and the oscillations seen in the DOS are
likely a signature of this breakdown. We checked that in-
creasing disorder expands the anomalous region and is con-
sistent with this interpretation. For the single-component
�lowest Landau level� �, the numerically computed DOS
does not show significant anomalous behavior, Fig. 8�d�, at
the same impurity level as in Fig. 8�b�. We argue that al-
though the breakdown of the approximation is still there, its
manifestation is less pronounced compared with the
multiple-channel order parameter. The use of higher Landau
channels for the expansion of � leads to the appearance of
the higher derivatives of the W�z� function W�n��z� in the
Green’s function, see Eq. �33�. These grow very fast with n
at z=0 �approximately as double factorial n!!� and are
strongly oscillating as the argument is increased from zero.
This is likely the underlying reason for the oscillations in the
DOS, and therefore the ultralow T-H inversion is an artifact
of using the approximation beyond its region of validity. In
contrast, other inversion lines in the phase diagram corre-
spond to the physical inversion of the measured properties.

V. DISCUSSION AND CONCLUSIONS

In this work, we laid the foundations for an approach that
provides a highly flexible basis to the calculation, on equal
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footing, of the transport and thermodynamic properties of
unconventional superconductors under magnetic field. The
theoretical method is based on the quasiclassical theory of
superconductivity and the Brandt-Pesch-Tewordt approxima-
tion for treatment of the vortex state in superconductors. This
approximation allows for accurate and straightforward �ana-
lytic closed-form expressions for the Green’s functions� way
to describe effects of the magnetic field in almost the entire
T-H phase diagram for clean superconductors, with the ex-
ception of ultralow fields and temperatures. Combined with
the nonequilibrium Keldysh formulation of the quasiclassical
theory, it paves a path for a very effective computational
scheme that self-consistently takes into account multiple
Landau levels of the expansion of the order parameter and
impurities and allows calculations for arbitrary temperature
and magnitude of the field. Paper II extends the method to
the calculation of transport properties and focuses on the
electronic thermal conductivity.

Here, we computed the density of states and the specific
heat in the T-H plane for a d-wave superconductor with a
quasi-two-dimensional Fermi surface �cylinder modulated
along the symmetry axis� and the magnetic field rotated in
the basal plane. This choice of the Fermi surface and the field
orientation was motivated by experiments on the heavy fer-
mion CeCoIn5.18 We provided a complete description of the
evolution of the anisotropy of the heat capacity due to nodes
of the superconducting gap across the T-H phase diagram,
see Fig. 9.

Our main conclusion is that the anisotropic scattering of
quasiparticles due to vortices plays a crucial role in the varia-
tion of the density of states and the specific heat as a function
of the field direction. This effect is absent in the semiclassi-
cal �Doppler-shift� approach and becomes important already
at moderately low fields and at finite temperatures. As our
phase diagram of Fig. 9 shows, as a result of this scattering,
the anisotropy in the specific heat changes sign as a function
of T and H. At low fields and temperatures, the minima in the
heat capacity occur when the field is oriented along the nodal
directions, in agreement with the semiclassical �Doppler-
shift� calculation. At higher T and H �already at T /Tc�0.2 at

low fields�, the situation is reversed, and the maxima rather
than the minima of the specific heat are found when the field
is along a nodal direction. Moreover, we showed that the
inversion is related to the behavior of the density of states at
finite energy, and not simply the residual DOS at the Fermi
surface.

While we expect that the loci of the inversion lines in the
T-H plane depend on the shape of the Fermi surface,53 it is
the existence of this inversion and its connection to the scat-
tering and the finite-energy DOS that emerged from our the-
oretical description and were not captured by previous ap-
proaches to the problem. Our calculations serve as a basis for
the analysis of the experimental data, and we note that the
interpretation of experiments based on the low-field expecta-
tions of minima for the field along the nodes can lead to
diametrically opposite conclusions regarding the gap sym-
metry, depending on the values of the field and temperature
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where the anisotropy has been measured. The results suggest
that the amplitude of the anisotropy is the greatest at inter-
mediate temperatures and fields and that it is desirable not
only to measure the C anisotropy at a few temperatures and
fields but also to determine its evolution over the phase dia-
gram.

As an example, we consider the data for CeCoIn5 from
Ref. 18 and plot in Fig. 9 the points where the published data
were taken. The measured C��0� shows minima for the field
along the �100� and �010� directions ��0=
n /2 with n
=0,1 ,2 ,3�, at all three locations, with vanishingly small an-
isotropy at point 3. Points 2 and 3 are clearly in the region
where maxima of C��0� determine the nodes and thus firmly
point toward dx2−y2 symmetry. Point 3 is also close to the
inversion line, which explains small amplitude of the oscil-
lations. Point 1, in contrast, is in the semiclassical region,
and therefore the minima of C��0� for the field along the
crystal axes may be more suggestive of a dxy symmetry. We
note, however, that the exact location of the inversion line is
sensitive to the exact shape of the Fermi surface and changes
between the calculations restricted to the lowest Landau
level for cylindrical Fermi surface, Fig. 2, and the multicom-
ponent quasi-2D case, Fig. 5. We therefore argue that points
2 and 3 are more reliable indicators of the gap symmetry, and
the results are more suggestive of the dx2−y2 gap. While such
a conclusion purely from the specific-heat data is not fool-
proof, we show in paper II that the dx2−y2 symmetry is also
supported by the analysis of the heat transport anisotropy of
Ref. 11.

The microscopic approach, by its very nature, couples the
gap symmetry with the shape of the Fermi surface. For that
reason, direct comparison of our results with other experi-
mental data, for example, in the borocarbides YNi2B2C �Ref.
16� and LuNi2B2C,17 is not possible. These systems are es-
sentially three dimensional, and the Fermi surface has no
quasicylindrical sheets. Moreover, it is very likely that there
is substantial gap modulation along the z axis, and compari-
son should be made with both point and line node
models.14,16 While the argument for the change in the aniso-
tropy due to scattering on the vortices is quite general, the
position of the anisotropy inversion lines in the phase dia-
gram �if any� is undoubtedly different from that found for the
quasi-2D system, and such differences are known to occur in
the zero-energy DOS.53 Therefore, we will consider the
nodal structures of these systems separately in near future.

To reiterate, the approach described in this work presents
a powerful tool in studying the gap symmetry in the uncon-
ventional superconductors taking into account their realistic
Fermi surfaces. Our results serve as a basis for interpretation
of experimental data, pointing toward a resolution of the dis-
crepancy between the results of the specific-heat and thermal
conductivity measurements in CeCoIn5, which is also ad-
dressed in paper II. The method developed here can be easily
generalized to include other Fermi surfaces, paramagnetic
effects, and other aspects of real materials, the discussion of
which we defer to future publications.
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APPENDIX A: CHOICE OF OPERATORS FOR
ANISOTROPIC FERMI SURFACE

The raising and lowering operators for the eigenfunction
expansion of the order parameter a† and a and the corre-
sponding ladder states can be introduced in several different
ways. We want to define them in a manner that facilitates the
efficient computations. This issue becomes important for an-
isotropic Fermi surfaces and arbitrary direction of the field.
Anisotropy of the FS is directly translated into the shape of a
single vortex, and we can choose the orthogonal states such
that they approximate this shape well already at the lowest-
order truncation of the expansion of ��R�.

We consider an axisymmetric FS in cylindrical coordi-
nates �r ,� ,z0�. The energy has the form 2m�= pr

2+ f�pz0
�,

with an arbitrary function f�pz0
� of the momentum pz0

. The
vortex state near the critical temperature Tc is determined
from the linearized GL equations,

− Kij�̃i�̃ j��R� + � T

Tc
− 1���R� = 0, �A1�

Kij = Tc�
�m




4��m�3

Y2�p̂�v f ,i�p̂�v f ,j�p̂��FS, �A2�

�̃ = �− i
2e

c
A�R� . �A3�

In these equations, the coordinates �x ,y ,z� �Fig. 10� are cho-
sen so that the field is along the z axis, B=Bẑ, and we take
A= �0,Bx ,0�. The form of the Kij tensor depends on the
shape of the Fermi surface, the pairing state, and orientation

��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������

x
0

y
0

z
0

H

y

x

z
θ0

φ0

FIG. 10. �Color online� Quasicylindrical Fermi surface consid-
ered in this paper. Direction of H defines �xyz� coordinates with
ẑ �H. To go from �x0y0z0� coordinates, associated with the Fermi
surface, to �xyz� coordinates, associated with the field, we perform
first rotation by �0 around ẑ0, and then rotation by �0 around ŷ.
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of the magnetic field. If the rotational symmetry axis is z0,
the velocity of quasiparticles is v f�� , pz0

�
= (vr�pz0

�cos � ,vr�pz0
�sin � ,vz0

�pz0
�). If B is along one of

the FS symmetry axes, x0, y0, or z0, Kij is diagonal for
d-wave pairing with Y=�2 cos 2��−�0�. We have Kx0x0
=Ky0y0

=K0v0�
2 , Kz0z0

=K0v0�
2 , where K0=7��3� /8�2
Tc�2,

and

v0�
2 = 2
Y2�p̂�vx0�y0�

2 �pz0
��FS, �A4�

v0�
2 = 2
Y2�p̂�vz0

2 �pz0
��FS. �A5�

We apply the magnetic field at a tilt angle �H from the z0
direction toward the x0 axis. A coordinate system associated
with B is chosen as follows: ẑ is along B, ŷ= ŷ0, and x̂ lies in
the �x0 ,z0� plane and perpendicular to ẑ. Projections of the
Fermi velocity at different points of the FS on these new
coordinate axes and v f ,x�pz0

,��=v f ,x0
�pz0

,��cos �H

−v f ,z0
�pz0

,��sin �H, v f ,y�pz0
,��=v f ,y0

�pz0
,��, and

v f ,z�pz0
,��=v f ,z0

�pz0
,��cos �H+v f ,x0

�pz0
,��sin �H. In �x ,y ,z�

coordinates, the tensor Kij is not diagonal anymore, Kyy
=Ky0y0

, Kxx=Kx0x0
cos2 �H+Kz0z0

sin2 �H, Kzz=Kx0x0
sin2 �H

+Kz0z0
cos2 �H, and Kxz= �Kx0x0

−Kz0z0
�sin �H cos �H, and for

the choice of the operator �−i2e /cA= ��x ,�y

− i2e /cBx ,�z�, the GL equation is

− Kxx�x
2� − Kyy��y − i

2eB

c
x�2

� − 2Kxz�x�z�

+ � T

Tc
− 1�� = 0. �A6�

It is easy to check by setting �=��x ,y�exp�ikzz� that the
highest critical field still corresponds to kz=0, and we put
�z�=0 below. We rescale the coordinates x�=x /�Sf and y�
=y�Sf and choose the scaling factor Sf such that Kxx /Sf
=KyySf. Thus,

Sf
2 =

Kxx

Kyy
= cos2 �H +

v0�
2

v0�
2 sin2 �H. �A7�

After introducing the creation and annihilation operators
��2=c /2 �e �B and e�0�,

a =
�

�2
	− �x� + i��y� + i

x�

�2�
 , �A8�

a† =
�

�2
	�x� + i��y� + i

x�

�2�
 , �A9�

Eq. �A6� becomes

�a†a +
1

2
���x,y� =

�2

2

Sf

Kxx
�1 −

T

Tc
���x,y� . �A10�

Then, for any axisymmetric FS, we obtain the well-known
result of the anisotropic mass model for the upper critical
field, determined by the ratio of the Fermi velocities for the
two directions, as follows:

Bc2��H,T� =
const � �1 − T/Tc�

�cos2 �H +
v0�

2

v0�
2 sin2 �H

. �A11�

We also find a set of eigenfunctions,

��n��x,y� = �
ky

Cky

�n�e
iky�Sfy

�4 Sf�
2

�n� x − �2�Sfky

��Sf
� . �A12�

In terms of the operators a and a†, the gradient term in the
Eilenberger equation has the form

v f�p̂���R − i
2e

c
A�R�� =

�ṽ f
��

�2�
�− ṽ+�p̂�a + ṽ−�p̂�a†� .

�A13�

Here, we rescaled the Fermi velocity in the xy plane,

ṽ f�p̂�x = v f�p̂�x/�Sf , �A14�

ṽ f�p̂�y = v f�p̂�y
�Sf , �A15�

with

�ṽ f
��p̂�� = �ṽ f�p̂�x

2 + ṽ f�p̂�y
2 �A16�

and

ṽ±�p̂� =
ṽ f�p̂�x ± iṽ f�p̂�y

�ṽ f
��

. �A17�

APPENDIX B: CLOSED-FORM SOLUTION FOR THE
GREEN’S FUNCTION

To solve the semiclassical equations, we use Eq. �A13� to

cast the operator Ôf from Eq. �15� in an integral form,

Ôf = 	− 2i�̃ +
�ṽ f

��
�2�

�ṽ−a† − ṽ+a�
−1

= �
0

�

dt1e−�−2i�̃+��ṽf
��/�2���ṽ−a†−ṽ+a��t1

= �
0

�

dt1e2i�̃t1−w2t1
2/2e−wt1ṽ−a†

ewt1ṽ+a, �B1�

where we introduced the magnetic field energy

w =
�ṽ f

��
�2�

�B2�

and used the operator identity exp�A+B�
=exp�A�exp�B�exp�−C /2�, if �A ,B�=C is a c-number.
In all integrals, we also keep in mind that Im �̃�0 for re-
tarded functions, so that the convergence is ensured.

In this formulation, it is convenient to work with bra and
ket functions for different vortex states, which correspond to
the R representation to states �Eq. �A12��. We present de-

composition of �̃ as
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�̃ = �
n

�̃n�n�, �̃� = �
n

�̃� n
n� , �B3�

with operator Ôf acting to the right,

f = �2ig�Ôf�̃ = �2ig��
0

�

dt1e2i�̃t1−w2t1
2/2e−wt1ṽ−a†

ewt1ṽ+a�̃ ,

�B4�

and operator Ôf�
† acting to the left,

f� = �2ig��̃� Ôf�
†. �B5�

We rewrite the operator Ôf�
as

Ôf�
= �2i�̃* − w�ṽ−a† − ṽ+a��−1 = Ôf

†

= �
0

�

dt2e−2i�̃*t2−w2t2
2/2ewt2ṽ−a†

e−wt2ṽ+a, �B6�

so that the spatial average of the off-diagonal functions is

f� f = �2ig�2�
0

�

dt1�
0

�

dt2e2i�̃�t1+t2�−w2�t1 + t2�2/2

��̃� �e−w�t1+t2�ṽ−a†
ew�t1+t2�ṽ+a��̃ , �B7�

where we make sure that bra vectors stay on the left of ket
vectors. Here, we again used operator-in-exponent rule to
commute exponents. After an appropriate variable substitu-
tion,

f� f = �2ig�2�
0

�

dtte2i�̃t−w2t2/2�̃� �e−wtṽ−a†
ewtṽ+a��̃ . �B8�

This form is very convenient if we intend to keep several
Landau channels in the expansion of �. If the highest Landau
level used is N, the series expansion for ewtṽ+a contains only
N+1 terms, and to calculate the spatial average f� f , we need
to compute only a finite number, �2N+1�, of W�n� functions,
since

�
0

�

dtt�wt�ne2i�̃t−w2t2/2 =
1

2w2 �− i�
��−
i

�2
�n

W�n+1���2�̃

w
� .

�B9�

The solution for f is written as

f�R,p̂;�� = �
m

fm�p̂,��
R�m� , �B10�

with the amplitudes

fm�p̂,�� = ig�
n

�− ṽ−�m−n�p̂�Dm,n��, �p̂���̃n�p̂;�� .

�B11�

Here,

Dm,n��, �p̂�� =
2�
�

�ṽ f
�� �

n2

m

�− 1�n1Dn
n1,n2�2�̃�

�ṽ f
��
� , �B12�

Dn
n1,n2�z� = �− i

�2
�n1+n2�n!��n − n1 + n2�!

�n − n1�!n1!n2!
W�n1+n2��z� .

�B13�

The sum starts from n2=max�0,m−n� and, in each term,
n1=n−m+n2. This sum can be cast in a more symmetric
form with respect to the indices m and n, which we present
in the main text in Eq. �31�.

We limit ourselves to superconductors with inversion
symmetry. Then, the singlet and triplet order parameters
transform under inversion as follows:

P��R,p̂� = ��− R,− p̂� = ��R,− p̂� = ��R,p̂� ,

P��R,p̂� = ��− R,− p̂� = ��R,− p̂� = − ��R,p̂� ,

where we assumed that the order parameter is an even func-
tion of the spatial coordinates R. This assumption is justified
by the analysis of the behavior of the off-diagonal functions
fm�p̂�. The expansion of the anomalous propagators in the
Landau-level basis contains all components 
R �m�; however,
even and odd coefficients have different parities under the
inversion p→−p,

f m
s �− p̂� = ig�

n
ṽ−

m−n�p̂�Dm,n��p̂���̃n�p̂� ,

f m
t �− p̂� = − ig�

n
ṽ−

m−n�p̂�Dm,n��p̂���n�p̂� .

As a result, it is easy to show that for both singlet and triplet
order parameters, the even and odd coefficients �n are de-
coupled since no mixed term survives averaging over the
Fermi surface,

� d�p̂

4

Ys,t�p̂�fs,t�p̂� . �B14�

Note also that, in zero field for superconductors with basis
functions 
Y�p̂��FS=0, the off-diagonal impurity self-energy
vanishes since 
f�p̂��FS=0. Under magnetic field, however,
the direction p̂ is inequivalent to the direction perpendicular
to it, p̂�, and f�p̂� is not simply proportional to Y�p̂�. Hence,
for the field in the plane and d-wave gap, 
f�p̂��FS�0, and
there is a contribution to the off-diagonal self-energies from
impurities. This integral still vanishes for p-wave order pa-
rameters, since in magnetic field, the directions p̂ and −p̂
may remain equivalent and so the symmetry f�−p̂�=−f�p̂� is
still valid.
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