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We study the critical properties of a two-dimensional Ising model with competing ferromagnetic exchange
and dipolar interactions, which models an ultrathin magnetic film with high out-of-plane anisotropy in the
monolayer limit. In this work, we present a detailed calculation of the �� ,T� phase diagram, � being the ratio
between exchange and dipolar interaction intensities. We compare the results of both mean field approximation
and Monte Carlo numerical simulations in the region of low values of �, identifying the presence of a recently
detected phase with nematic order in different parts of the phase diagram, besides the well-known striped and
tetragonal liquid phases. We also found that, in the regions of the phase diagram where Monte Carlo simula-
tions display nematic order, the mean field approximation predicts hybrid solutions composed by stripes of
different widths. Another remarkable qualitative difference between both calculations is the absence, in this
region of the Monte Carlo phase diagram, of the temperature dependency of the equilibrium stripe width
predicted by the mean field approximation.
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I. INTRODUCTION

Many ultrathin magnetic films, e.g., Co/Cu, Co/Au, and
Fe/Cu, undergo a reorientation transition at a temperature
TR; for temperatures below TR, the spins align preferentially
in a direction perpendicular to the film, while above TR, they
align in a magnetized state parallel to the plane of the film.1–3

This reorientation transition is due to the competition be-
tween the in-plane part of the dipolar interaction and the
surface anisotropy.4 Furthermore, in the range of tempera-
tures where the magnetization points out of the plane, the
competition between exchange and dipolar interactions
causes the global magnetization to be effectively zero but
instead striped magnetic domain patterns emerge.2,3,5 In the
limit of a monolayer film, the following dimensionless Ising
Hamiltonian emerges as a minimal model to describe many
of the relevant physical properties of those materials:3

H = − ��
�i,j�

SiSj + �
�i,j�

SiSj

rij
3 , �1�

where � stands for the ratio between the exchange J0�0 and
the dipolar Jd�0 interaction parameters, i.e., �=J0 /Jd. The
first sum runs over all pairs of nearest-neighbor Ising spins
Si= ±1 in a square lattice and the second one over all distinct
pairs of spins of the lattice �every pair is counted once�; rij is
the distance, measured in crystal units, between sites i and j
and the energy is measured in units of Jd. In spite of intense
theoretical work,3,6–15 there are still many important open
questions regarding the critical properties of this model. A
detailed understanding of those critical properties is the cor-
nerstone of the theoretical framework needed to explain
complex phenomena in ultrathin magnetic films, such as the
recently observed inverse transition in Fe on Cu films.5

The main difficulties to analyze the critical properties of
this model are related to the long-range character of the di-
polar interactions, which, combined with the frustration de-
rived from the competition between interactions, adds to any
theoretical approach an extra degree of complexity. Then,

even the simplest approach, namely, mean field �MF� ap-
proximation, leads to an infinite number of coupled equa-
tions that, except for some particular situations, cannot be
solved exactly. For instance, in an early work, Czech and
Villain6 derived an exact expression for the MF critical tem-
perature between the disordered and the modulated �striped�
phases; however, for subcritical temperatures, the determina-
tion of any property must rely on numerical solutions of the
mean field equations or further ansatz has to be introduced16

to obtain approximated solutions of the MF equations. An
example is the temperature dependency of the equilibrium
stripe width; being experimentally accessible,16 reliable the-
oretical predictions of this property could be very important
to understand the basic mechanisms behind the complex be-
havior observed in these materials. Though MF is a powerful
theoretical tool, it is known that, even when the correspond-
ing equations can be solved exactly, neglecting fluctuations
can introduce qualitative changes in the critical behavior.
Therefore, it is important to compare MF predictions with
those obtained by other methods, in order to establish the
limits of validity of the approximation.

A natural way to check the mean field predictions is to
contrast them with Monte Carlo �MC� simulations. However,
the long-range order nature of the dipolar interactions makes
it very difficult to simulate large system sizes. The ground-
state stripe width h is the natural length scale in these prob-
lems. Hence, in order to avoid strong finite-size effects, the
simulations must be carried out for system sizes L�h; this
restricts the simulations to situations in which h is much
smaller than the experimentally observed values �typical val-
ues of the stripe width in Fe on Cu films, for instance, are of
the order16,17 of 1 �m, which corresponds roughly to h
=4000 lattice constants�. Since the ground-state value of h
increases exponentially with18 �, the values of � available for
simulations are about of 1 order of magnitude smaller than
the realistic values.

In this work, we carried out a detailed analysis of the
equilibrium phase diagram of this model in the �� ,T� space
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for low values of �, i.e., for 0���4, which corresponds to
stripe widths h�7. By extending the Czech and Villain6 MF
approach to the low-temperature region of the phase dia-
gram, we performed in Sec. II a detailed analysis of the
different transition lines between striped states, by solving
numerically the MF equations. Those results are compared in
Sec. III with MC simulations that refine previous
results7,10,11,13–15 and extend them to other regions of the
phase diagram. Our results show that, at least in the analyzed
region of the phase diagram, several discrepancies are ob-
served between both phase diagrams, which are discussed in
Sec. IV.

II. MEAN FIELD PHASE DIAGRAM

The Hamiltonian �1� can be rewritten as

H = −
1

2�
i,j

JijSiSj , �2�

where

Jij = �
� − 1 if i, j are nearest neighbors

0 if i = j

−
1

rij
3 otherwise. � �3�

A straightforward way to derive a mean field theory for
this Hamiltonian is the usage of the variational MF free en-
ergy per particle:19

fMF =
1

N
�H�� +

1

�N
�ln ���, �4�

where N=L�L is the system size, we have taken kB=1 and
the averages are taken using the independent particle density
matrix �=�i�i; the one particle density matrices are sub-
jected to the constraints:

�
Si=±1

�i = 1, �
Si=±1

Si�i = mi.

Using the local order parameters mi as variational param-
eters, we obtain the free-energy functional

fMF	
mi�� = −
1

2N
�
i,j

Jijmimj +
1

2�N
�

i

	�1 + mi�ln�1 + mi�

+ �1 − mi�ln�1 − mi�� . �5�

Minimizing Eq. �5� with respect to the order parameters
mi leads to the set of MF equations

mi = tanh
��
j=1

N

Jijmj�, i = 1, . . . ,N . �6�

Assuming periodic boundary conditions, we introduce the
Fourier transforms

mi =
1

�N
�

k�
m̂k�e

ik�·r�i, �7�

Ĵ�k�� = �
i

J0ie
−ik�·�r�i−r�0� = 2��cos kx + cos ky�

− �
i

1

rij
3 cos�k� · r�ij� , �8�

where r�i is the position vector of site i, r�ij �r�i−r� j, m̂−k� = m̂k�
*

and the wave vectors k� are restricted to the first Brillouin
zone. Expanding the logarithms, Eq. �5� can be rewritten as

fMF =
1

2N
�

k�
	T − Ĵ�k����m̂k��2 +

1

�N
�

i
�
j=2

	 
 1

2j − 1
−

1

2j
�mi

2j ,

�9�

which has the form of a Landau expansion. From this expres-
sion, it is immediate that a second-order transition between
the disordered phase, m̂k� �0∀k�, and an ordered phase, with
nonzero-order parameters, happens at the critical
temperature:6

Tc = max
k�

Ĵ�k�� . �10�

We calculated Tc��� by solving Eq. �10� numerically.
Equation �6� can now be written as

mi = tanh� �

�N
�

k�
m̂k�e

ik�·r�iĴ�k���, i = 1, . . . ,N . �11�

We analyzed numerically the solutions of Eq. �11� for tem-
peratures T
Tc and 0
��4. In particular, we analyzed the
solutions that share the symmetries of the different ground
states, namely, antiferromagnetic �AF� and striped solutions.
For �
0.425, the ground state is antiferromagnetic,7 while
for ��0.425, the ground state is composed by stripes of
width h���. For large values of �, we have7 h����e�/2; for
small values of �, the equilibrium values of h can be easily
evaluated numerically by comparing the energies of different
striped configurations of increasing finite system sizes �they
converge very quickly�. h��� is shown in Fig. 1, where we

FIG. 1. Equilibrium stripe width as a function of � at T=0.
Filled circles indicate the values of delta at which two adjacent
striped configurations take the same energy.
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see that it attains the asymptotic exponential behavior for
rather small values of �.

At low but finite temperatures, the local magnetization
inside the stripes decreases, i.e., �mi�
1. Let us consider, for
instance, a vertical striped state of width h. We demand the
solutions of Eq. �11� to satisfy the conditions m�x+h,y�=
−m�x,y�∀x ,y and m�x,y�=m�x,y��∀x ,y ,y�. This restricts the
harmonics in Eq. �7� to those satisfying �kx ,ky�= 	±�2l
+1�� /h ,0�, with l an integer such that 2l+1�h. For in-
stance, for h=1, we only have kx=�; for h=2, we have kx
= ±� /2; for h=3, we have kx= ±� /3 ,�; etc. In other words,
for a stripe solution of width h, we have h independent com-
plex amplitudes m̂k�. In order to obtain pure real solutions, we
must impose m̂k�

*= m̂−k�. Replacing those conditions into Eqs.
�7� and �11� leads to a set of h nonlinear algebraic equations
for the amplitudes that can be solved numerically. To solve

those equations, we must evaluate Ĵ�kx ,0� from Eq. �8�. A
suitable approximation for that function is �see Appendix�

Ĵ�kx,0� � 2��cos kx + 1� − kx
2 + 2��kx� −

2�2

3
− 2��3� ,

�12�

where ��x� is the Riemann zeta function. For the antiferro-
magnetic solution m�x,y�=m0�−1�x+y, we have to compute

Ĵ��,�� = − 4� + 3��3� − 4�
x=1

	

�− 1�x�
y=1

	
�− 1�y

�x2 + y2�3/2 ,

�13�

where the last term is calculated numerically. We calculated
the MF stripe solutions for h=1, . . . ,6 for a wide range of
values of �� ,T
Tc�. To discriminate whether they are actu-
ally minima, we analyzed the second derivatives of the free
energy. For every value of h, we first analyzed the stability of
the solutions, that is, for every value of �, we calculated the
temperature Ts��� above which nontrivial solutions of the
above described type cease to exist. This can be done by
linearizing the corresponding set of equations around m̂k� =0
and demanding the condition of nontrivial solution, i.e., zero
determinant of the linearized equations; this leads to the ex-
pression

Ts��,h� = Ĵ
�

h
,0� . �14�

The stability lines are shown in Fig. 2, together with Tc���. It
can be seen that for large values of �, the stability lines
accumulate near the order-disorder transition line Tc���, im-
plying an increasingly large number of metastable states as �
increases. Another remarkable fact is the presence of regions
near Tc��� where no striped solutions exist �see Fig. 2�. In
those regions, another type of solutions appears, which are
composed by parallel ferromagnetic stripes of different
widths. We called them hybrid states. The hybrid states,
which we denote by 
h1

n1h2
n2
¯hl

nl�, following the notation
of Selke and Fisher20 for the axial next-nearest-neighbor
Ising model �ANNNI�, consists in the periodic repetition of a

fundamental pattern composed by n1 stripes of width h1
�with opposite orientation�, followed by n2 stripes of width
h2, and so on. The regions where the hybrid states appear are
shown in the MF phase diagram presented in Fig. 3. The
boundaries between ordered phases �corresponding to first-
order transitions� were determined by comparing the free en-
ergies of the different solutions �striped and hybrid� using
Eq. �5�; they are shown by dashed lines in Fig. 3. We found
that the hybrid states appear through a sort of branching pro-
cess near the boundary between two stable striped solutions
as the temperature approaches Tc from below. For instance,
the transition line between the striped phases h=1 and h=2
ends in a triple point where a stable phase �1 2� appears
between them; as we increase �, the transition line between
the striped phase h=2 and the hybrid one �1 2� bifurcates in
a new triple point giving rise to the appearance of a �122�
phase between the �1 2� and the h=2 and so on �see inset of
Fig. 3�. As the temperature increases, more complicated hy-
brid states proliferate �we just show a few of them in Fig. 3

0 1 2
δ

0

1

2

3

4

T

No Stripe Solution

h = 1

h = 2

h
=

3

FIG. 2. Stability lines Ts�� ,h� for the MF striped solutions at
finite temperatures �dashed�. Full line: critical temperature Tc���.
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FIG. 3. Mean field phase diagram. The numbers in the low-
temperature region indicate the equilibrium stripe width h of the
phases. Dashed lines correspond to first-order phase transition be-
tween ordered phases; the full line corresponds to the critical tem-
perature Tc���. Inset: Zoom of the hybrid region near the boundary
between the striped phases h=1 and h=2.

PHASE DIAGRAM OF AN ISING MODEL FOR ULTRATHIN… PHYSICAL REVIEW B 75, 224433 �2007�

224433-3



as an example�, in a completely analogous way as in a re-
lated model, namely, the three-dimensional Ising model with
competing short-range ferromagnetic interactions and long-
range Coulomb interactions.21 The MF phase diagram of that
model is very similar to that of the present one, the striped
states being replaced by lamellar ones.

Finally, we found evidences that the proliferation of hy-
brid states also happens near the boundary between striped
phases with larger widths �for instance, 3 and 4�, but they
appear very close to Tc and the computational effort needed
to obtain an accurate estimation of the phase boundaries be-
comes very high.

III. MONTE CARLO PHASE DIAGRAM

Different parts of the phase diagram of this model were
analyzed by different authors using MC numerical simula-
tions, for small values of � and small system
sizes.7,8,10,12,14,15 In this section, we extend those results to
other parts of the phase diagram and to larger system sizes
�in some cases�, in order to obtain a complete description of
the small-� phase diagram that can be compared with the MF
phase diagram.

The MC results were obtained using heat bath dynamics
on N=L�L square lattices with periodic boundary condi-
tions �Ewald sums were used to handle it3�. We analyzed the
equilibrium behavior of different quantities for system sizes
running from L=24 to L=84; the maximum sizes used for
each quantity were chosen according to the associated com-
putational effort.

The first quantity we calculated was the order-disorder
transition temperature as a function of �, which we called
Tc

�2���� 	analogous to Tc��� in the MF case�. This quantity
was determined by means of the specific heat

C�T� =
1

NT2 ��H2� − �H�2� , �15�

where �¯� stands for a thermal average. For some values of
�, we also calculated the fourth-order cumulant

V�T� = 1 −
�H4�

3�H2�2 �16�

to characterize the order of the phase transition.
At intermediate high temperatures �close to the order-

disorder transition and above it�, this system presents a par-
tially disordered phase with broken orientational order called
tetragonal liquid.3,8,12–14 It is characterized by domains of
stripes with mutually perpendicular orientations forming a
kind of labyrinthine structure. At higher temperatures, these
domains collapse and the system crosses over continuously
to a completely disordered phase �paramagnetic�, without a
sharp phase transition between them.3 While the existence of
the tetragonal liquid phase has been clearly established by
MC simulations, it is completely absent in the MF approxi-
mation �we discuss this point in Sec. IV�. MC simulations
also showed recently14 that for �=2, an intermediate phase
with nematic order is present between the tetragonal liquid
and the striped phase. The nematic phase is characterized by

positional disorder and long-range orientational order and is
consistent with one of the two possible scenarios predicted
by a continuum approximation for ultrathin magnetic films in
Refs. 22 and 23. The presence of the nematic phase is re-
flected �among several manifestations� in the appearance of
two distinct maxima at different temperatures in the specific
heat, associated with the stripe-nematic and the nematic-
tetragonal liquid phase transitions, respectively. On the other
hand, it was shown that for �=1, the specific heat presents a
unique maximum, consistent with a direct transition from the
tetragonal liquid to the striped phase,14 suggesting that the
nematic phase is only present for some range of values of �.
We will call Tc

�2� the temperature of the high-temperature
peak of the specific heat, whenever it presents two peaks, or
the temperature of the unique peak if only one is present �for
the system sizes considered and between the precision of the
calculation�. We will call Tc

�1� the temperature of the low-
temperature peak of the specific heat when it presents two
peaks. While the calculation of Tc

�2� is relatively easy, the
calculation of Tc

�1� is much more complicated and subtle, as it
will be discussed below. Tc

�2� was calculated for different val-
ues of 0���4.2 using the following simulation protocol:
for each value of �, we let first the system thermalize at a
high enough temperature �such that it is in the disordered
phase� during 105 Monte Carlo steps �MCS�; after that, we
calculated the specific heat for decreasing temperatures,
down to a temperature well below the transition region. For
every temperature, we took the final configuration of the pre-
vious one and discarded the first 2�104 MCS for thermali-
zation and averaged over 105 MCS. Every curve was aver-
aged then over 40 independent runs. This calculation was
performed for system sizes L�50 for all the values of �, in
order to make the finite-size bias comparable �for every
value of �, we choose the closer value of L commensurated
with the modulation 2h of the corresponding ground-state
width�. The results are shown by triangles joined by a con-
tinuous line in Fig. 4. The order of the associated phase
transition will be discussed in Sec. IV.

We next calculated the stability of the striped phases in
different parts of the phase diagram. It was shown in Ref. 10
that the striped phases can remain in a metastable state for
values of � such that the equilibrium ground-state width cor-
responds to a different stripe width. Following the same pro-

0 1 2 3 4
δ

0

1

2

T

Tetragonal Liquid

No Stripe Solution

T
c

(2)

h = 1
h = 2
h = 3
h = 4
h = 5

FIG. 4. �Color online� Order-disorder transition temperature
Tc

�2���� and striped stability lines Ts��� for different values of h �see
text for details�.
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cedure as in Ref. 10, we analyzed the striped staggered mag-
netization

mh =
1

N���x,y
�− 1� fh�x�Sx,y�� , �17�

where3 fh�x�= 	i−mod�x ,h�� /h and x ,y=1, . . . ,N. This
quantity takes the value of 1 in a completely ordered vertical
striped state of width h and zero in a disordered state �para-
magnetic, tetragonal, or nematic�. Starting from an initially
ordered vertical striped state at zero temperature, we increase
the temperature up to high temperatures, averaging mh at
every step and using a similar procedure as for the calcula-
tion on Tc

�2�, but averaging over 106 MCS for every tempera-
ture to diminish metastability effects �see discussion below�.
We repeated this calculation for different values of �, for
each value of h; for every value of �, the curve mh�T� was
averaged over 25 independent runs. Typical curves mh�T� are
shown in Fig. 5 for different values of h and �. From these
curves, we estimated the stability lines Ts��� �i.e., the tem-
perature above which mh=0� for h=1, . . . ,5 and 0
�
4.1.
The stability lines are shown in Fig. 4.

As in the MF case, we observe the existence of regions
below Tc

�2� where no stable striped solutions exist, at least up
to �=3; for values of ��3, the data become very noisy
�probably due to finite-size effects� and the large error bars
do not allow us to identify clearly those regions for the
present system sizes. We found that the equilibrium phase in
those regions is a nematic one, instead of a hybrid state, as in
the MF case �we checked the possible presence of hybrid
states in those regions and they always decay after a short
time into a nematic one�. The nematic phase is characterized
by an algebraic decay of the spatial spin-spin correlations in
one of the coordinate directions and an exponential decay in
the other. This can be studied through the structure factor
�Fourier transform of the correlation function�

S�k�� � ��Ŝk��2� , �18�

where Ŝk� = 1
N�iSie

−ik�r�i. Cannas et al.14 calculated an approxi-
mate expression for the nematic phase structure factor

S�k�� �
�ky,0

2�N
� 


�kx − k0�2 + 
2 +



�kx + k0�2 + 
2� . �19�

We ran simulations for L=72 and different � values in the
uncovered regions. The system was slowly heated from zero
temperature using the same process described above up to a
temperature in the uncovered region, where we calculated
S�k�� by averaging over 2�105 MCS. The typical observed
behavior of S�k�� is shown in Fig. 6, together with Lorentzian
fittings using Eq. �19�; two typical spin configurations in
corresponding regions can be seen in Fig. 7 �compare with
the results of Ref. 14�.

Following the same steps as in the MF case, we calculated
next the transition lines between different phases at low tem-
perature. The transition lines were obtained by comparing
the free energies of the striped phases of widths h and h+1.
The system size was chosen in these calculations to be a
multiple of both 2h and 2�h+1�. In what follows, we will
assume that the free energy of a metastable state can be
obtained by following a thermodynamical path �that is, a
close sequence of equilibrated states� from a thermodynami-
cally stable reference state. To calculate the free energy of a
striped phase of width h, we first computed the internal en-
ergy per spin u�T ,�i���H� /N along a quasistatic path from
an initially low temperature T0 up to a working temperature
T
Ts��i� keeping �i constant and taking the initial spin con-
figuration of a given temperature as the final configuration of

0 0.5 1 1.5
T

0

0.5

1

m
h

FIG. 5. Staggered magnetization for different � and h values:
h=2, �=3.4, and L=60 ���; h=3, �=4.1, and L=48 ���; and h
=5, �=2.9, and L=40 ���.

0 2
k

x

0

0.1

0.2

0.3

0.4

S(
k x,0

)

δ=2.1, Τ=0.78
δ=2.7, Τ=1.12

FIG. 6. �Color online� Structure factor for a L=72 system with
�=2.1, T=0.78 ��� and �=2.7, T=1.12 ���. Continuous lines cor-
respond to fittings using Eq. �19�: for �=2.1, T=0.78, we obtained

=0.033, k0=1.39; for �=2.7, T=1.12, 
=0.0149, k0=0.947.
S�0,ky�=0∀ky in both cases.

FIG. 7. Typical nematic spin configurations for L=72. �A� �
=2.10, T=0.78; �B� �=2.70, T=1.12.
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the previous one; the value of �i was chosen well separated
from the border value at zero temperature between the
striped phases of widths h and h+1. The free energy was
then obtained by numerically integrating the thermodynamic
relation

�fh��,�i� = �0fh��0,�i� + �
�0

�

u���,�i�d��, �20�

where �=1/T and �0=1/T0. Once we arrive to the final
configuration at �T ,�i�, we perform a second quasistatic path
at constant temperature, by slowly changing �, up to a final
value � f corresponding to a striped ground state of width h
+1. Along this path, we measure the average exchange en-
ergy

uex��,�� � −
1

N��
�i,j�

SiSj� . �21�

From the expression,

f = −
1

N�
log Z , �22�

where Z is the partition function, is easy to see that

�f

��
= uex��,�� . �23�

Hence, the free energy along the last path can be obtained by
numerically integrating the equation

fh��,�� = �
�i

�

uex��,���d�� + fh��,�i� . �24�

Repeating the same procedure for the striped phase h+1,
but following the second path in the inverse sense �i.e., de-
creasing � from � f down to �i�, we calculated the free energy
fh+1�� ,�� at the same temperature. The transition point �t�T�
is obtained from the equation fh�� ,�t�= fh+1�� ,�t�. We cal-
culated the first-order transition lines between striped phases
up to h=6. The results are shown in the MC phase diagram
of Fig. 8 �the transition lines between the AF and the h=1
and between the h=1 and h=2 phases were already calcu-
lated in Ref. 10; we put it here for completeness�. Notice that
all the calculated transition lines are almost independent of
T, at variance with the MF prediction.

We next analyzed the transition temperature Tc
�1� between

the nematic and the striped phases. In order to check whether
the stability lines Ts��� can be used to estimate Tc

�1�, we ana-
lyzed the behavior of the specific heat and fourth-order cu-
mulant 	Eqs. �15� and �16�� around the regions below Tc

�2�

where no striped states exist. The simulation protocol used to
determine Tc

�2� is completely unable to detect the low-
temperature transition at Tc

�1�. This is because free-energy
barriers associated with both transitions for the system sizes
here considered are larger around Tc

�1� than around Tc
�2�, as

was shown in Ref. 14. Indeed, a rough estimation of the
average times needed by the system to jump the free-energy
barrier between the striped and the nematic phases is of the
order of the millions of MCS, thus generating a strong meta-

stability when the average times are of the order of 105

MCS.24 In Ref. 14, it was shown that an accurate estimation
of Tc

�1� for �=2 requires, for every temperature, average
times of the order of 2�108 MCS. However, we verified that
an average time of 5�107 is enough to determine Tc

�1� be-
tween the error bars we are using in the present calculation
�although such time scales are not enough to determine the
height of the specific-heat maximum with precision and
therefore to allow a finite-size scaling analysis�. In order to
save computational effort, we used the following procedure
for fixed values of � around the regions of interest: first, we
ran the same simulation protocol as for Tc

�2� down to low
temperatures and repeated it for the same parameter values,
but heating from a low temperature up to high temperatures
and taking as initial configuration the ordered striped state.
In both cases, we calculated the internal energy u�T� along
the path. This allowed us to determine the approximated lo-
cation of Tc

�1�, by looking at the temperature range where the
internal energy exhibits metastability.24 Then, we calculated
C and V for a limited set of temperatures in that region, by
taking averages for each temperature over a single MC run of
5�107 MCS. In order to get a more accurate estimation of
Tc

�2� for the same values of �, we also repeated the latter
calculation for temperatures around the previous estimation
of Tc

�2� taking averages over 107 MCS. These calculations
were performed for �=2.1 and 2.25 �near the h=1−h=2
border� with L=48. The behavior of C and V for �=2.25 is
shown in Fig. 9 �compare with the results of Ref. 14�. We
verified that the location of the low-temperature peak of C
coincides between the error bars with the value of Ts��� for
the same values of �. The values of Tc

�1� for �=2 �from Ref.
14�, �=2.1,2.25 �from the above calculation�, and �
=2.7,2.8,2.9 �estimated from the stability lines� are shown
by diamonds in the MC phase diagram of Fig. 8. Reliable
calculations of Tc

�1� for larger values of � would require sys-

FIG. 8. �Color online� Monte Carlo phase diagram. The num-
bers indicate the equilibrium width of the low-temperature striped
phases. The order of the different phase-transition lines is indicated
in the inset �see text for details�. The continuous lines are a guide to
the eyes.
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tem sizes that are out of the present computational capabili-
ties.

IV. DISCUSSION

We have presented a detailed calculation of the finite tem-
perature phase diagram of the Ising dipolar model in the
range 0���4, which allow striped ground-state configura-
tions of width up to h=7. We compared the predictions of
MF approximation with extensive MC numerical simula-
tions. Although the overall appearance of both phase dia-
grams looks similar, several differences are remarkable.

The first difference to be noticed is the absence of nematic
and tetragonal orders in the MF approximation. This results
from the fact that both phases are spatially disordered, which

implies that �Ŝk��= m̂k� =0∀k�. The characteristic features of
those states, namely, the broken rotational symmetry of the
nematic state and the discrete rotational symmetry of the
tetragonal state, can only be observed when looking at the
behavior of the spatial correlations or, equivalently, of the
structure factor3,14 	Eq. �19��. Since fluctuations are ne-
glected in the MF approximation, it follows that S�k��
= m̂k�m̂−k� =0 and therefore the only possible spatially disor-
dered solution within this approximation is the paramagnetic
one. On the other hand, the MF approximation presents hy-
brid state solutions in the regions of the phase diagram where
MC predicts only nematic order. Moreover, we verified that
hybrid states are unstable in that regions, suggesting that �in

the language of renormalization group� fluctuations play the
role of a relevant scaling field that turns the MF hybrid fixed
points unstable toward nematic attractors �in some sense, the
hybrid states could be the closest state to a nematic one that
can be obtained when fluctuations are neglected�. This would
be consistent with the fact that fluctuations, when included,
can modify the continuous nature MF prediction for the
phase transition between the high-temperature disordered
phase and the low-temperature ordered one: Hartree approxi-
mation applied to the continuous version of Hamiltonian �1�
predicts a fluctuation-induced first-order transition of any fi-
nite value of �,12 which continuously fades out for increasing
values of �.24 In fact, MC simulations show a more complex
scenario, where the nature of the order-disorder phase tran-
sition at Tc

�2� depends on the value of �.
Rastelli et al. have shown that for �=0, the transition is

indeed continuous and belongs to the universality class of the
nearest-neighbor Ising model.15 They also found a rather
clear evidence of a second-order transition for �=0.85, but
with an unusual value for the critical exponent �.15 However,
Cannas et al. have shown that for �=1, the system presents a
weak first-order phase transition.14 These results are consis-
tent with the presence of a second-order transition line for
small values of � that joins with continuous slope a first-
order transition line for larger values of � at a tricritical point
somewhere between �=0.85 and �=1 and the unusual criti-
cal exponents at �=0.85 are probably due to a crossover
effect near the tricritical point. There are also clear evidences
that the transition is first order for �=2 �Refs. 12 and 14� and
�=1.7,2.5 �Ref. 15�. The behavior of the fourth-order cumu-
lant observed in the present work for �=2.1 and �=2.25 is
also consistent with a first-order transition. For �=3, the re-
sults of Rastelli et al.15 appear to suggest that the transition
becomes continuous again. However, this is a matter of
debate,24 and numerical results using a completely different
technique13 for �=4.45 are also consistent with a first-order
transition.

We also presented numerical evidences of the presence of
an intermediate nematic phase between the disordered and
the striped ones in different parts of the phase diagram. Al-
though it seems that the nematic phase is only located near
the border lines between striped states, the presence of this
phase in other regions in narrow ranges of temperatures can-
not be excluded and larger system sizes should be required to
clarify this.

The existence of both types of scenarios for relatively
large values of �, namely, one direct first-order transition
from the striped phase to the tetragonal liquid or two phase
transitions with an intermediate nematic phase, would be in
qualitative agreement with theoretical predictions based on a
continuous approach.22,23 It is worth mentioning that Abanov
et al.23 conjectured a second-order nematic-tetragonal phase
transition; since their whole analysis is based on mean field
arguments, the disagreement with the MC results can be un-
derstood from the fluctuation-induced nature of the transition
�see the discussion in Refs. 12 and 14�. Regarding the order
of the transition at Tc

�1����, the situation is less clear. Cannas
et al.14 have shown for �=2 that, even when the finite-size
scaling is consistent with a first-order transition, the energy
changes continuously at Tc

�1���� in the thermodynamic limit;

FIG. 9. Specific heat and fourth-order cumulant as a function of
T for �=2.25 and L=48.
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this produces a saturation in the associated specific-heat peak
behavior that strongly resembles that observed in a
Kosterlitz-Thouless �KT� transition. That could be indicative
of the emergency of smectic order between the nematic and
the striped phases for larger system sizes and would be in
qualitative agreement with theoretical predictions based on a
continuous approach.22,23 If that would be the case, probably
our calculation of Tc

�1���� overestimates the true transition
temperature, since it is known that the specific-heat peak
locates above the KT transition temperature,19 and therefore
the nematic phase would extend in larger regions of the
phase diagram. However, at the present level, it is very dif-
ficult to improve this estimation due to finite-size effects.

Regarding the low-temperature behavior, a remarkable
prediction of both MF and MC is the existence of an increas-
ingly large number of striped metastable states as � in-
creases.

Finally, we found that, at variance with the MF prediction,
up to �=4, the transition lines between striped phases that
are completely vertical imply temperature independence of
the stripe width. This suggests the existence of some large
threshold value of �, above which wall fluctuations make the
system to cross over to a “mean field regime,” where it starts
to exhibit temperature dependency of the stripe width.
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APPENDIX

When ky =0, Eq. �8� can be written as

Ĵ�kx,0� = 2��cos kx + 1� − S�kx,0� , �A1�

with

S�kx,0� � �
i

1

rij
3 cos�kxxi� , �A2�

where xi is the x component of r�i. This last term can be
rewritten as follows:

S�kx,0� = 2�
x=1

	

cos�kxx�R�x� + 2��3� , �A3�

with

R�x� � �
y=−	

	
1

�x2 + y2�3/2 , �A4�

��3� � �
y=1

	
1

y3 � 1.202, �A5�

where x ,y represents the Cartesian coordinates of each site
and ��x� is the Riemann zeta function. R�x� can be approxi-
mated by6

R�x� � �
−	

	 dy

�x2 + y2�3/2 =
2

x2 , �A6�

which has an error of 1% in the worst case �x=1�. Inserting
this in Eq. �A3�, we get

S�kx,0� � 4�
x=1

	
cos�kxx�

x2 + 2��3� = kx
2 − 2��kx� +

2�2

3
+ 2��3� ,

�A7�

which replaced in Eq. �A1� gives expression �12�.
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