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The magnetic structures of small clusters of Fe, Mn, and Cr supported on a Cu�111� surface have been
studied with noncollinear first-principles theory. Different geometries such as triangles, pyramids, and wires are
considered and the cluster sizes have been varied between two and ten atoms. The calculations have been
performed using a real-space linear muffin-tin orbital method. The Fe clusters are found to order ferromag-
netically regardless of the cluster geometry. For Mn and Cr clusters, antiferromagnetic exchange interactions
between nearest neighbors are found to cause collinear antiferromagnetic ordering when the geometry allows
it. If the antiferromagnetism is frustrated by the cluster geometry, noncollinear ordering is found. A comparison
between the calculated structures and ground states obtained from simplified Heisenberg Hamiltonians show
that the exchange interaction varies for different atoms in the clusters as a result of the different local structure.
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I. INTRODUCTION

The remarkable progress of experimental methodologies
with atomic resolution, such as the scanning electron
microscopy1 �STM�, has paved the way for studies of nanos-
cale magnetic materials such as adatoms, clusters, and wires
deposited on surfaces. As a result of the reduced dimensions
and symmetries for such systems, magnetic behavior that
differs from bulk materials can be found.2,3 This attracts in-
terest not only for the novel physics that can occur in these
systems but also for the possibility to tailor the electronic
and magnetic properties by changing the structure and the
local environment of the systems.

Studies of systems consisting of only a few atoms can
give valuable information on how the magnetic structure
evolves from single atoms toward the bulk behavior. Fe, Mn,
and Cr are all known to exhibit interesting magnetic behav-
ior. While being ferromagnetic in the bcc phase, Fe in the fcc
phase has been found to exhibit a spin-spiral structure when
synthesized as precipitates in a Cu matrix4 and calculations
show that the magnetic structure is strongly dependent on the
lattice parameter.5 Cr has in bulk an incommensurate antifer-
romagnetic spin-density wave,6 which can be tuned by cre-
ating superlattices with ferromagnetic or paramagnetic layers
and varying the interface roughness and layer thickness.7

When deposited on stepped surfaces, Cr can be found to
have noncollinear ordering.8 Bulk Mn exhibits perhaps the
most intriguing magnetic structure of all elements with a unit
cell containing 58 atoms9 with a complex noncollinear anti-
ferromagnetic magnetic structure.10 Recently, several Mn
based compounds, where the magnetic ordering is noncol-
linear due to geometric frustration between the magnetic mo-
ments of Mn atoms, have been studied11,12 experimentally as
well as theoretically.

Free clusters of Fe, Mn, and Cr have been studied both
experimentally and theoretically. Stern-Gerlach measure-
ments on Fe �Ref. 13� clusters show ferromagnetic behavior,
while Mn clusters14 and Cr clusters15 show varying small net

deflections, which can be interpreted as the result of antifer-
romagnetic or even noncollinear magnetic configurations.
Calculations have shown that small Mn and Cr clusters can
exhibit noncollinear magnetic ordering16–18 in agreement
with the Stern-Gerlach experiments.

Supported transition-metal clusters have also been studied
extensively, where a majority of the studies have been theo-
retical. Among the experimental studies, most works have
been done on Fe, where Fe clusters deposited on a Ni surface
have been found to be ferromagnetic with oscillating magni-
tude of the orbital moments19 and Fe clusters supported on a
graphite surface have been found to exhibit enhanced spin
and orbital moments compared to bulk.20 Among the theoret-
ical studies, the reported calculations have mostly only con-
sidered collinear magnetization densities. Monatomic wires
of Fe on Cu�111� and Cu�001� show ferromagnetic behavior
with a strong magnetic anisotropy.21,22 Small Mn clusters on
Ag�001� have been found to exhibit magnetic bistability,23,24

which is also the case for mixed clusters of FeMn and FeCr
that have been found to have both ferro- and antiferromag-
netic solutions close in energy.25 Early model calculations of
supported equilateral triangular transition-metal clusters have
shown that noncollinear ordering can be obtained from the
frustration due to antiferromagnetic interactions between the
cluster atoms.26,27 Recent studies have found that small clus-
ters of Mn and Cr become noncollinear when deposited on
Ni�001� �Ref. 28� and Fe�001� �Refs. 29 and 30� surfaces due
to competing exchange interactions between the cluster at-
oms and the surface.28

In a previous paper,31 we reported on noncollinear mag-
netic ordering for a selection of small Mn clusters supported
on a Cu surface. In this paper, we expand these results and
present theoretical results concerning the magnetic ordering
and interactions for Fe, Mn, and Cr clusters deposited on a
Cu�111� surface. The calculations have been performed using
the real-space linear muffin-tin orbital �RS-LMTO-ASA�
method that is a first-principles order-N method which has
recently been extended to the treatment of noncollinear
magnetism.31
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II. METHOD

The RS-LMTO-ASA method is based on the LMTO-ASA
technique32 and the Haydock recursion method.33 The
LMTO-ASA formalism provides an efficient, parameter-free,
basis set for treating close packed metallic systems, and the
recursion method gives the ability to treat problems where
translational symmetry is absent and does also convey order-
N scaling with respect to the number of nonequivalent atoms
in the system. The recursion method does not directly solve
the eigenvalue problem as formulated in the density-
functional theory but allows one to calculate the local density
of states �LDOS� for the orbitals of the atoms in the selected
system. The RS-LMTO-ASA method has successfully been
used for a wide range of problems including bulk systems,
multilayers, embedded impurities and clusters, and clusters
on surfaces. Earlier and more detailed descriptions of the
collinear implementation of the RS-LMTO-ASA can be
found elsewhere.34,35

In the local spin-density approximation,36 the electron
density is expressed through a 2�2 density matrix � which
can be expressed in terms of the nonmagnetic charge density
n and the magnetization density m as �= �nI+m ·�� /2,
where I is the 2�2 identity matrix and �= ��x ,�y ,�z� are
the Pauli matrices. Self-consistent methods37–39 for calculat-
ing the electronic structure for noncollinear magnetization
densities have existed for quite some time,40 and here we
will focus on the specific details for treating noncollinear
magnetization densities within the RS-LMTO-ASA.

With the recursion method, the local density of states
N���, where � is the energy, is obtained as N���=
− 1

�I tr G���. Here G��� is the local Green’s function G���
= ��−H�−1, where H is the Hamiltonian. Similar to the
LDOS, the collinear magnetic density of states m��� can be
calculated as m���=− 1

�I tr��zG����. Since the Pauli spin ma-
trix �z is diagonal in spin space, the collinear magnetic den-
sity of states can be calculated using only diagonal elements
of the Green’s function. If a generalized noncollinear mag-
netization density

m��� = −
1

�
I tr��G���� , �1�

where �= ��x ,�y ,�z� is sought, evaluation of the off-
diagonal parts of the Green’s function is in principle needed.
The off-diagonal elements of the Green’s function are pos-
sible to obtain by performing the recursion starting from
carefully selected linear combinations of muffin-tin orbitals41

or by performing a computationally more demanding block
recursion calculation.42 However, in our implementation, we
avoid the evaluation of off-diagonal elements by applying
successive unitary transformations U on the Hamiltonian,
H�=UHU†. When the Hamiltonian is transformed in this
way, the Green’s function transform similarly, G�=UGU†.

Using the unitary property U†U=1 and the fact that cyclic
permutations of matrix multiplications conserve the trace of
the product, the generalized magnetic density of states m���
can be written as

m��� = −
1

�
I tr��U†UGU†U� = −

1

�
I tr���G�� , �2�

where �� is the Pauli matrices after the unitary transforma-
tion. The transformation matrix U is different for the three
directions and chosen so that U� jU†=�z�, for j=x ,y ,z, to
yield a diagonal representation. In the trivial case of j=z, the
unitary transformation is just the identity matrix. For the
other directions, the unitary transformation corresponds to a
spin rotation where U can be calculated using spin-1

2 rotation
matrices. Decomposing the Hamiltonian into a spin-
dependent part B and a spin-independent component H
yields, that U operates only on the spin-dependent part,

H� = H + B · U�U†. �3�

From the transformed Hamiltonians H�, the LDOS for the
different directions can then be calculated using the regular
recursion method and the magnetic density along the three
directions can be obtained. From the three orthogonal direc-
tions, the local magnetization axis is calculated and the
LDOS for the local spin axis can be constructed by taking
the scalar product of the generalized magnetic density of
states and the local magnetization vector. As all Hamilto-
nians are constructed within an ab initio LMTO-ASA formal-
ism, all calculations are fully self-consistent, and the spin
densities are treated within the local spin density
approximation.36 Since the recursion procedure is performed
for three orthogonal directions, the computational cost for
each iteration is tripled compared with the collinear imple-
mentation of the RS-LMTO-ASA, but the linear scaling with
respect to the number of nonequivalent atoms is retained.

The calculations of the transition-metal clusters have been
performed by embedding the clusters as a perturbation on a
self-consistently converged perfect Cu�111� surface. The Cu
surface has been calculated using the experimental lattice
parameter of Cu. As is usually the case for LMTO-ASA
methods, the vacuum outside the surface needs to be simu-
lated by having a number of layers of empty spheres above
the Cu surface in order to provide a basis for the wave func-
tion in the vacuum and to treat charge transfers correctly.
After embedding the cluster on the surface, the charge and
magnetization densities of the cluster atoms and the neigh-
boring Cu atoms and empty spheres are then recalculated
until self-consistency is obtained, while the electronic struc-
ture for atoms far from the cluster are kept unchanged to
their unperturbed values. Structural relaxations have not
been included in this study, so the cluster sites have been
placed on the regular fcc lattice above the Cu surface. Earlier
studies on supported transition-metal clusters43 have shown
that structural relaxations can change the magnetic properties
of the clusters. On the other hand, in an experimental situa-
tion, small clusters as those considered in this study are usu-
ally constructed in an out-of-equilibrium situation by ma-
nipulation with an STM tip and calculated equilibrium
geometries might therefore not be relevant. The most rel-
evant relaxation for these kinds of artificially created clusters
would be the distance between the cluster atoms and the
substrate atoms and since a noble-metal substrate is used in
this study, the interaction between clusters and substrate
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plays a lesser role compared to the interactions between the
cluster atoms. The clean Cu�111� surface has been modeled
by a large ��5000� slab of atoms, and the continued fraction
that occurs in the recursion method has been terminated with
the Beer-Pettifor44 terminator after 30 recursion levels.

The noncollinear calculations have been performed with-
out including the spin-orbit coupling. Since this term is ne-
glected, a preferred spin axis does not exist in the system and
the magnetic structures are thus only converged with respect
to the directions of the magnetic moments relative to the
other spin moments in the cluster. In order to minimize the
risk of finding magnetic orderings that correspond to only a
local minimum, several starting guesses were used for each
system.

The calculated magnetic structures can be analyzed in
terms of the exchange interactions Jij between spins on at-
oms situated at sites i and j. A well-known connection be-
tween the exchange interactions and the magnetic ordering is
given by the classical Heisenberg Hamiltonian,

HH = − �
i,j,i�j

Jij cos 	ij , �4�

where 	ij is the angle between the magnetic moment on sites
i and j. Note that in Eq. �4�, the magnitude of the spins has
been incorporated into the effective Jij interactions.

In this work, we have calculated exchange interactions
directly using the formula of Liechtenstein et al.45 as imple-
mented in the RS-LMTO-ASA �Ref. 46� for a large selection
of the considered clusters. The Jij’s shown in this study have
been obtained from the ferromagnetic configuration of the
clusters. Other magnetic configurations typically result in
different values of the Jij’s, although the signs are seldom
changed.47 If the exchange interactions would be indepen-
dent of 	ij, the magnetic structure could in principle be cal-
culated by minimizing the Heisenberg Hamiltonian with Jij’s
calculated from a ferromagnetic configuration. This is not the
case for the systems considered in this work, which moti-
vates a full noncollinear calculation of the magnetic struc-
tures. However, on a qualitative level the cause of the mag-
netic ordering, e.g., the effect of frustration or the
competition between nearest and next-nearest interactions,
can still be discussed in terms of the calculated exchange
interactions.

For a selection of Cr clusters, which are discussed in Sec.
III C, our calculated magnetic structures have been compared
to the structure found by minimizing the Heisenberg Hamil-
tonian for a fixed configuration of Jij’s, where only nearest-
neighbor interactions are finite. The minimization of the
Heisenberg Hamiltonian for these clusters has been per-
formed by a genetic search algorithm.48

III. RESULTS

A. Fe clusters

In Fig. 1, the magnetic structure of several Fe clusters are
shown. Regardless of the geometry of the studied Fe clusters,
we find the magnetic ordering in the clusters to always be
ferromagnetic. The collinear magnetic structure for these

clusters, which can be put in contrast with the noncollinear
ordering found for fcc structured Fe clusters embedded in
bulk Cu,4 could be caused by the fact that the decreased
coordination of the surface clusters leads to a high-spin state
which favors ferromagnetic coupling between neighboring
Fe atoms.49 This is also consistent with an analysis by Liz-
arraga et al.50 It should be pointed out here that large mag-
netic moments do not automatically lead to collinear magne-
tism. As we will see in the section below, Mn is an example
where large moments result in an antiferromagnetic inter-
atomic exchange coupling, which on a frustrated geometry
lead to noncollinear magnetism. In the case of Fe, the large
calculations result in large moments and a ferromagnetic in-
teratomic exchange coupling.

The spin moments for the Fe atoms in the clusters shown
in Fig. 1 range between 3.45
B for the atoms in the dimer
and 2.56
B for the central atom in the seven atom cluster
displayed in Fig. 1�d�. It has been shown for Co clusters in
Cu�001� �Ref. 35� and Fe clusters on Ni and Cu surfaces51

that the magnetic moment has a linear behavior as function
of the number of cluster neighbors around the site. The spin
moments of the Fe clusters on Cu�111� of Fig. 1 show a
similar trend and depend almost linearly on the number of
nearest Fe neighbors. For these ferromagnetic Fe clusters, the
orbital moments were calculated and they were also found to
depend on the number of nearest neighbors. The largest or-
bital moment was found to be 0.15
B per atom for the atoms
in the dimer, and the smallest orbital moment is 0.06
B for
the central atom in the cluster shown in Fig. 1�d�.

Due to the strong correlation between the magnetic mo-
ment for the atoms in the Fe clusters and the number of Fe
neighbors, the magnetic moments obtained above can in
principle be used to predict the total magnetic moment of
any Fe cluster as long as the shape is determined and the
cluster is planar. This would indicate that the magnetic mo-

(a) (b) (c)

(d) (e) (f)

FIG. 1. The geometries for clusters of Fe atoms on a Cu�111�
surface. All Fe clusters are found to exhibit a ferromagnetic ground
state regardless of the cluster structure. The numbers indicate the
atom projected spin moment of the different atoms.
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ment per atom for a perfect monolayer of Fe atoms on a
Cu�111� surface would be �2.7
B, which is in good agree-
ment with earlier calculations of Fe monolayers on Cu.52–55

Our findings of ferromagnetic coupling indicate that a single
Fe monolayer would be ferromagnetic in agreement with
Ref. 52, whereas Ref. 53 found that a single row antiferro-
magnetic order would be the most stable magnetic configu-
ration. This discrepancy may be explained by the use of dif-
ferent lattice parameters in Refs. 52 and 53.

B. Mn clusters

In a previous paper,31 we showed that due to antiferro-
magnetic coupling between nearest-neighbor atoms in Mn
clusters deposited on Cu, one finds either a collinear antifer-
romagnetic structure or, if frustration occurs due to the clus-
ter geometry, a noncollinear magnetic structure. A collection
of frustrated cluster geometries with triangular shapes is
shown in Fig. 2. The magnetic moments obtained for each
atom of the studied Mn cluster are shown in Table. I. For the
equilateral triangle in Fig. 2�a�, a noncollinear arrangement
with an angle of 120° between the magnetic moments is the

most stable configuration. The total-energy difference be-
tween the stable noncollinear solution and a frustrated col-
linear antiferromagnetic solution, with two spins parallel to
each other and antiparallel to the third spin, is 13 meV/at.
The ferromagnetic solution was found to have an energy of
102 meV/at. higher than the stable noncollinear solution.
The isosceles triangle shown in Fig. 2�b� has an antiferro-
magnetic collinear ground state, which indicates that the ex-
change coupling between the two Mn atoms furthest from
each other is either very small compared to the antiferromag-
netic nearest-neighbor exchange coupling or has the opposite
sign �i.e., ferromagnetic�. As the size of the triangular clus-
ters increases �Figs. 2�c�–2�e��, the behavior becomes more
intricate. Although the six-atom triangle �Fig. 2�c�� by the
analogous geometry as the three atom triangle in Fig. 2�a�
could be expected to align in a structure with 120° between
neighboring atoms, it is, in fact, a collinear antiferromagnetic
order that is the most stable solution. The energy difference
between the collinear structure and a noncollinear structure
was found to be 18 meV/at.. The cause for the preferred
collinear order is the different environment for the corner
atoms which only have two nearest neighbors compared to
the three central atoms which have four nearest neighbors
each. The reduced coordination for the corner atoms causes
their antiferromagnetic exchange coupling to nearest neigh-
bors to be enhanced. The calculated Jij’s confirm this behav-
ior since the strength of the exchange interaction between a
corner atom and a nearest neighbor amounts to −27 meV
while it is −12 meV between two central atoms. A similar
mechanism can be expected for the nine-atom cluster dis-
played in Fig. 2�d�, but for this geometry the atoms that are
not situated at the corners of the triangle have three nearest
neighbors due to the hole in the middle of the cluster. There-
fore, the difference in the local geometry is smaller between
the corner atoms, and the central atoms which leads to a
more delicate balance of the exchange couplings. The result-
ing structure has the moments pointing in three different di-
rections instead of two directions, which would be the case
for a collinear antiferromagnetic solution. The angle between

(a) (c)

(b) (d)

(e)

FIG. 2. The calculated magnetic ordering for triangular Mn
clusters on a Cu�111� surface. For all geometries except the isosce-
les triangle shown in �b� and the six-atom triangle in �c�, noncol-
linear solutions are obtained due to magnetic frustration.

TABLE I. Magnetic moments �in 
B� for atoms in the clusters
displayed in Figs. 2�a�–2�e�. The atoms are numbered in the left
column, starting from the leftmost atom, increasing around the clus-
ter in the clockwise direction and, for the largest cluster, ending
with the central atom.

2�a� 2�b� 2�c� 2�d� 2�e�

1 4.25 4.54 4.33 4.15 4.25

2 4.25 4.23 3.57 3.77 3.56

3 4.25 4.54 4.33 3.77 3.56

4 3.57 4.15 4.25

5 4.37 3.77 3.56

6 3.57 3.77 3.56

7 4.15 4.25

8 3.77 3.56

9 3.77 3.56

10 2.64
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two neighboring central atoms is 152°, while the angle be-
tween a corner atom and a nearest neighbor is 104°. Contrary
to what was found for the six-atom cluster in Fig. 2�c�, it
thus appears that the exchange coupling is larger between
central atoms than between a corner atom and a central atom.
This behavior is supported by the calculated Jij’s, where the
coupling between a corner atom and a nearest neighbor is
−9 meV, while the exchange coupling is found to be
−36 meV between two central atoms. The noncollinear solu-
tion for the nine-atom cluster has a total energy which is
3 meV/at. lower than a collinear antiferromagnetic solution.

The analysis of the final ten-atom triangle shown in Fig.
2�e� is even more complicated. From a geometrical view, this
cluster has three nonequivalent sites; the three corner atoms,
the six atoms neighboring to the corner atoms, and the cen-
tral atom. The magnetic structure does, however, have a
lower symmetry that can be described by decomposing the
cluster into the central atom and three “subtriangles,” con-
sisting of the three atoms closest to each corner of the cluster.
Within each subtriangle, the three atoms couple to each other
in a geometry that resembles the 120° structure of a single
three-atom triangular cluster, but since exchange interactions
from other neighboring atoms are present as well, the angles
between the moments in these subtriangles vary between
146° and 104°. All angles between the moments for the at-
oms in the ten atom cluster can be seen in Table II. The
influence of the different numbers of neighbors for the clus-
ter atoms determines their magnetic moments where the cor-
ner atoms have a magnetic moment of 4.3
B, the central
atom has 2.6
B, and the magnetic moment for the remaining
six atoms is 3.6
B.

Atomic wires constitute a group of nanostructures that has
attracted a lot of attention.3,56,57 We have calculated the mag-
netic structure for wires of Mn atoms with lengths between

and nine atoms. The wires are oriented along a 11̄0 direction
on the Cu surface. The total-energy differences �per cluster
atom� between the antiferromagnetic and the ferromagnetic
magnetic configurations for the Mn wires are shown in Fig.
3. A large energy difference of 96 meV/at. is found for the
dimer, whereas the energy differences for the longer wires
are significantly smaller. If only-nearest neighbor interac-
tions played the role, one would expect an energy difference

�per atom� between ferromagnetic and antiferromagnetic
coupling with a functional form J�1− 1

N
�, where N is the

number of atoms in the wire. Hence for long chains, this
energy difference should be equal to J, whereas the energy
difference would continuously become smaller and reach the
value J /2 for N=2. The data in Fig. 3 do not display this
trend, which suggests that next-nearest-neighbor interactions
are important and/or that the value of J depends on the num-
ber of atoms of the cluster.

For the dimer and trimer, only a collinear antiferromag-
netic solution is found, whereas for longer chains a slightly
canted noncollinear order is also found. For almost all of the
longer chains, the noncollinear solutions are unstable but re-
semble the collinear antiferromagnetic solution closely, both
in energy, in all cases less than 0.5 meV/at., and in the an-
gular difference, where the deviation from the collinear
structure is smaller than 3° per atomic pair.

The Mn pentamer is, however, an interesting exception
from the behavior of the other wires, and for this system, the
ground state is actually found to be a noncollinear configu-
ration, shown in Fig. 4. The noncollinear configuration for
the pentamer can be described by the angle between an edge
atom and its nearest neighbor, which is 170°, and the angle
between two neighboring central atoms, which is 155°. The
energy difference between the noncollinear and the antifer-
romagnetic solutions for the pentamer is 2 meV/at.

The straight wires do not have geometries that cause frus-
tration in the same way as the triangular clusters mentioned

TABLE II. The magnetic configuration described by angles between moments for atoms in the cluster displayed in Fig. 2�e�. The atoms
are numbered starting from the leftmost atom, increasing around the cluster in the clockwise direction and ending with the central atom.

Atom 1 2 3 4 5 6 7 8 9 10

1 0 146 52 147 57 20 90 150 104 103

2 146 0 98 52 155 158 56 60 107 52

3 52 98 0 146 107 60 56 158 155 52

4 147 52 146 0 104 150 90 20 57 103

5 57 155 107 104 0 47 138 96 49 150

6 20 158 60 150 47 0 108 141 96 107

7 90 56 56 90 138 108 0 108 138 53

8 150 60 158 20 96 141 108 0 47 107

9 104 107 155 57 49 96 138 47 0 150

10 103 52 52 103 150 107 53 107 150 0

2 3 4 5 6 7 8 9
Wire length (atoms)

0

20

40

60

80

100

E
A

F
-E

F
(m

eV
/a

to
m

)

FIG. 3. Total-energy differences between antiferromagnetic EAF

and ferromagnetic EFM configurations of wires of Mn atoms, ori-

ented along a �11̄0� direction on a Cu�111� surface.
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earlier, so a probable cause for the noncollinearity of the Mn
pentamer is the competition between ferromagnetic and an-
tiferromagnetic exchange interactions between the different
atoms in the cluster. Since the nearest-neighbor interactions
are always antiferromagnetic for the Mn clusters �at least for
the nearest-neighbor distance used in this study�, more long-
range interactions must play a role in destabilizing the col-
linear magnetic state. In order to examine the size and range
of the exchange interactions, we have calculated exchange
coupling parameters Jij for the five-atom wire shown in Fig.
4. The values of the exchange parameters are shown in Table
III, where the i and j are chosen so that sites 1 and 5 are the
edge atoms and site 3 is the central atom. Hence, site 2 is the
nearest neighbor to site 1 and 3 and the nearest neighbors for
site 4 is sites 3 and 5. It may be observed that the exchange
interactions are strongest and antiferromagnetic between
nearest neighbors, with a smaller long-range interaction that
oscillates between ferromagnetic and antiferromagnetic cou-
plings. The largest magnitude for the exchange interaction is
obtained for J12 and J45, i.e., between an edge atom and its
nearest neighbor. Furthermore, Table III shows that although
the nearest-neighbor interactions have the largest magnitude,
the more long-ranged interactions always seem to counteract
the nearest-neighbor interactions. This might not be obvious
from the values in Table III but as a clarifying example, we
can examine the exchange interactions between atom 1 and
the other atoms. The negative nearest-neighbor interactions
in the pentamer would prefer an antiferromagnetic order so
that atom 1 would be ferromagnetically coupled to atoms 3
and 5, and antiferromagnetically coupled to atoms 2 and 4.

However, the calculated exchange interactions in Table III
show that the J13 and J15 are, in fact, negative while J14 is
positive, thus competing against the antiferromagnetic
nearest-neighbor ordering, which results in the noncollinear
magnetic state shown in Fig. 4.

C. Cr clusters

In Fig. 5, the geometries and calculated magnetic configu-
rations for a selection of Cr clusters are shown. Calculations
for Mn clusters with similar geometries can be found
elsewhere.31 The magnetic moments obtained for each atom
of the Cr clusters shown in Fig. 5 can be seen in Table IV.
The magnetic structures are for most of the clusters quite
similar to the calculated magnetic structure for Mn clusters,
although certain differences occur, as will be commented on
below. Both the Cr dimer and a straight trimer �not shown�
order antiferromagnetically, while a three-atom triangle has
the same noncollinear structure as its Mn counterpart, as
shown in Fig. 2�a�. It can be noted that this noncollinear

FIG. 4. Calculated magnetic configurations for a five-atom Mn

wire, oriented along a �11̄0� direction on a Cu�111� surface.

TABLE III. Calculated exchange parameters Jij �in meV� for the
Mn pentamer shown in Fig. 4. The atoms are numbered from left to
right.

i \ j 1 2 3 4 5

1 −34 −5.0 6.3 −3.6

2 −34 −12 −11 6.3

3 −5.0 −12 −12 −5.0

4 6.3 −11 −12 −34

5 −3.6 6.3 −5.0 −34

(a) (b) (c)

(d) (e) (f)

FIG. 5. The calculated magnetic ground state for Cr clusters on
a Cu�111� surface.

TABLE IV. Magnetic moments �in 
B� for atoms in the clusters
displayed in Fig. 5�a�–5�f�. The atoms are numbered starting from
the leftmost atom, counting around the cluster in the clockwise
direction and, if applicable, ending with the central atom.

5�a� 5�b� 5�c� 5�d� 5�e� 5�f�

1 3.99 3.99 3.82 3.54 3.87 3.57

2 3.99 3.89 3.82 3.54 3.65 3.28

3 3.99 3.92 3.82 3.54 3.89 3.89

4 3.50 3.89 3.82 3.54 3.65 3.28

5 3.99 3.82 3.54 3.87 3.57

6 3.82 3.54 3.65 3.28

7 3.12 3.89 3.89

8 3.65 3.28

9 2.81
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structure has also been reported from calculations on Cr clus-
ters, with the same geometry, supported on Au�111�.58,59 The
cluster in Fig. 5�a� has a collinear antiferromagnetic ground
state since the edge atoms only have one nearest neighbor
and therefore no frustration occurs. The pentamer in Fig.
5�b� also exhibits an antiferromagnetic ground state, which
in contrast to the noncollinear behavior of the Mn pentamer
is purely collinear. This finding indicates that the magnetic
structures of the Cr clusters are more strongly dependent on
the nearest-neighbor exchange coupling than the Mn clusters
are. The calculated exchange parameters Jij for the Cr pen-
tamer are shown in Table V. Compared with the exchange
interactions for the Mn pentamer in Table III, we see that the
nearest-neighbor interactions are indeed larger between the
Cr atoms. On the other hand, the more long-ranged interac-
tions also have larger magnitudes in the Cr pentamer than for
the Mn counterpart. The exchange interactions between at-
oms further from each other do, however, not always com-
pete against the nearest-neighbor interactions as was the case
for the Mn pentamer.

The collinear antiferromagnetic behavior found for the
pentamer also occurs for the six-atom ring displayed in Fig.
5�c�, which is expected since the geometry does not cause
frustration for the nearest-neighbor interactions. The cluster
in Fig. 5�d� has a symmetric noncollinear ground state with
an angle between two neighboring atoms on the rim of the
cluster of 157°, and between the central atom and any outer
atom the angle is 101°. This can be compared with the en-
ergy minimum obtained when minimizing the nearest-
neighbor Heisenberg Hamiltonian, where all nearest-
neighbor Jij’s are set to be negative but equal. The

Heisenberg model would give equilibrium angles of the same
cluster geometry of between 151° outer neighbors and 104°
between the central atom and any neighbor. Although the
agreement between our calculated ground state and the
Heisenberg minimum is good, it should be noted that due to
the difference in the local structure around the central and
outer atoms, the exchange parameters Jij should be different
between two outer atoms compared to Jij’s connecting to the
central atom. This difference can be considered in a simple
model analysis by damping the strength of the exchange pa-
rameters where the central atom is connected, and for a
damping of 20% for these exchange parameters, the Heisen-
berg Hamiltonian approach yields an energy minimum with
the angles of 157° for neighboring outer atoms and 101°
between the central atom and an edge atom which are in
perfect agreement with our calculated angles.

Since the atoms of the hollow cluster in Fig. 5�e� do not
all have only two nearest neighbors, as is the case for the
other ringlike geometry of Fig. 5�c�, the cluster cannot have
an unfrustrated antiferromagnetic solution. Describing the
cluster with a Heisenberg Hamiltonian with equal and nega-
tive Jij’s would yield a ground state with 120° between
neighboring atoms. As seen in Fig. 5�e�, our calculated mag-
netic structure differs from the Heisenberg minimum, it is
instead described with three different nearest-neighbor
angles. The upper and lower edge atoms have an angle of
112° to their neighbors, while the leftmost and rightmost
atoms have an angle of 169° to their nearest neighbors. The
third angle is that between two atoms with three neighbors
each and they have an angle of 133° between them. This
structure can be explained in a similar way as the cluster in
Fig. 5�d� could, with different local geometries resulting in
different strengths of the exchange coupling and thus differ-
ent Jij’s for different atoms. The angles between the different
magnetic moments for the cluster shown in Fig. 5�e� are
given in Table VI.

Filling the empty site in the middle of the cluster in Fig.
5�e� gives the cluster geometry shown in Fig. 5�f�. This ad-
ditional atom causes the magnetic structure to be even more
complex. Since the symmetry is lowered compared to the
cluster in Fig. 5�d�, the central atom does not have the same
angle toward all of its neighbors. Instead, two angles are
needed to describe the structure of the neighbors of the cen-
tral atom. One of these is the angle of 69° which the central

TABLE V. Calculated exchange parameters Jij �in meV� for the
Cr pentamer shown in Fig. 5�b�. The atoms are numbered from left
to right.

i \ j 1 2 3 4 5

1 −143 4.6 18.9 15.3

2 −143 −97.0 −40.5 18.9

3 4.6 −97.0 −97.0 4.6

4 18.9 −40.5 −97.0 −143

5 15.3 18.9 4.6 −143

TABLE VI. Angles between magnetic moments for atoms in the cluster displayed in Fig. 5�e�. The atoms
are numbered starting from the leftmost atom and increasing along the clockwise direction of the cluster.

Atom 1 2 3 4 5 6 7 8

1 0 169 56 56 112 56 56 169

2 169 0 112 133 56 133 112 0

3 56 112 0 112 56 112 0 112

4 56 133 112 0 169 0 112 133

5 112 56 56 169 0 169 56 56

6 56 133 112 0 169 0 112 133

7 56 112 0 112 56 112 0 112

8 169 0 112 133 56 133 112 0
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atom makes toward the leftmost and rightmost atoms, and
the other angle connects the central atom with the remaining
four neighbors and the size of this angle is 128°. The upper
and lower edge atoms make an angle of 137° with their
neighbors. The angles between different magnetic moments
for the cluster shown in Fig. 5�f� are given in Table VII.

D. Three-dimensional clusters

So far, the studied clusters have all been confined in one
layer above the Cu surface. However, our method can treat
three-dimensional clusters as well. In order to demonstrate
this, we show the obtained magnetic configurations for a
pyramidlike tetrahedron shaped cluster in Fig. 6. As expected
from the results for Fe clusters reported earlier in this work,
the Fe cluster �Fig. 6�a�� exhibits a ferromagnetic order. The

atom situated on top of the pyramid has a magnetic moment
of 3.40
B while the three Fe atoms closer to the Cu surface
have a magnetic moment of 3.11
B. For the Mn cluster
shown in Fig. 6�b�, a noncollinear structure is found and for
the Cr pyramid, shown in Fig. 6�c�, a collinear antiferromag-
netic solution is found. A model Heisenberg Hamiltonian, as
in Eq. �4�, with only antiferromagnetic nearest-neighbor ex-
change parameters Jij of equal size, yields a twofold degen-
erate ground state, either a collinear antiferromagnet or a
noncollinear tetragonal configuration with 109° between
neighboring angles. The calculation for the Mn pyramid over
Cu�111� shows angles which are slightly distorted relative to
those of the free pyramid, around 116° between the base
atoms close to the substrate and angles of about 100° be-
tween the base site and the top one. It is peculiar that the Mn
cluster has the noncollinear tetragonal configuration as the
ground state, whereas the Cr cluster has the collinear antifer-
romagnetic ground-state solution. A possible explanation for
the noncollinear ground state of the Mn pyramid could be
that, similar to the situation for several of the planar clusters,
the reduced neighbor coordination for the top atom com-
pared to the atom in the base of the pyramid yields different
exchange interaction strengths between the atoms in the clus-
ter. The calculated exchange parameters confirm this since
the exchange interaction between a top and a base atom is
−83 meV, while the interaction between two base atoms is
−46 meV. The reduced neighbor coordination also affects
the magnetic moment for the top atom which is 4.5
B com-
pared to 4.0
B for the base atoms. However, the situation
with different exchange parameters is also present for the Cr
pyramid, where the interaction strength between the top atom
and a base atom is −171 meV compared to −98 meV for the
coupling between two base atoms. The magnetic moment for
the Cr atom on top of the pyramid is 4.2
B, while the mag-
netic moment for the base atoms is 3.6
B. The difference in
the magnetic ordering found for the Cr and Mn pyramids
indicates that the bilinear exchange terms J cannot always
describe the magnetic interactions between the atoms in sup-
ported magnetic clusters, a fact which has previously been
suggested for magnetic dimers on surfaces.60 It can be noted
that the difference in the total energy between the noncol-
linear ground-state structure and the antiferromagnetic solu-
tion for the Mn cluster is 25 meV/at. while the correspond-

TABLE VII. Angles between magnetic moments for atoms in the cluster displayed in Fig. 5�f�. The atoms are numbered starting from the
leftmost atom, increasing along the clockwise direction of the cluster and ending with the central atom.

Atom 1 2 3 4 5 6 7 8 9

1 0 156 40 95 74 95 40 156 69

2 156 0 137 86 95 86 137 0 128

3 40 137 0 137 40 137 0 0137 40

4 95 86 137 0 156 0 137 86 128

5 74 95 40 156 0 156 40 95 69

6 95 86 137 0 156 0 137 86 128

7 40 137 0 137 40 137 0 137 40

8 156 0 137 86 95 86 137 0 128

9 69 128 40 128 69 128 40 128 0

(a) (b)

(c)

FIG. 6. The calculated magnetic ordering for pyramid shaped
clusters on a Cu�111� surface. �a� shows an Fe cluster with a ferro-
magnetic solution, �b� shows a Mn cluster, and �c� shows the Cr
pyramid.
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ing difference for the Cr pyramid is −15 meV/at..

IV. CONCLUSIONS

We have studied the magnetic structure of small clusters
of Fe, Mn, and Cr supported on a Cu�111� surface with non-
collinear, first-principles calculations. The studied Fe clusters
are found to order ferromagnetically regardless of the cluster
geometry. For Mn and Cr clusters, antiferromagnetic ex-
change interactions between nearest neighbors are found to
cause either collinear antiferromagnetic ordering or noncol-
linear ordering. The noncollinear ordering occurs when the
cluster geometry is such that an antiferromagnetic arrange-
ment becomes frustrated. The calculations have been accom-
panied by comparisons with calculated effective exchange
interactions as well as with ground states obtained from a
simplified Heisenberg Hamiltonian, and the comparisons
show that the exchange interactions vary for different atoms
in the clusters as a result of the different local structure.

Differences between the magnetic ordering for Mn and Cr
clusters are found where Cr clusters seem to prefer collinear
solutions to a higher degree while Mn clusters can exhibit
noncollinear configurations even for unfrustrated cluster ge-
ometries. Comparisons with model Hamiltonians show that
the magnetic structure of certain clusters can be explained by
a simple nearest-neighbor Heisenberg Hamiltonian while
other cluster geometries cause more complex behaviors.
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