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We explore the properties of magnetic excitations on the trellis lattice which is relevant for the so-called
telephone-number compounds A14Cu24O41 with A= �La,Sr,Ca� and the system SrCu2O3. The trellis lattice
consists of two-leg ladders which are coupled in a strongly frustrated fashion. We use the effective model
obtained for a single two-leg spin ladder to calculate the two-dimensional one-triplon dispersion and the
corresponding one-triplon contribution to the dynamical structure factor. Special attention is laid on signatures
of the frustrating interladder magnetic exchange. A detailed suggestion is made for an experimental detection
of this exchange in inelastic neutron-scattering experiments.
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Low-dimensional quantum antiferromagnets display a va-
riety of fascinating properties. The reduced dimensionality
can either be realized by strongly anisotropic magnetic ex-
changes or by a strongly frustrating topology of the system.
The so-called telephone-number compounds A14Cu24O41
with A= �La,Sr,Ca� and the system SrCu2O3 are often dis-
cussed as realizations of idealized quasi-one-dimensional
two-leg ladders.1–7 These one-dimensional structures build a
two-dimensional trellis lattice �see Fig. 1�, i.e., the coupling
between the ladders is strongly frustrated. However, the de-
tailed influence of such a coupling and its quantitative
strength are currently unknown.

Quantum chemistry calculations have revealed a sizable
value for the magnetic exchange between the one-
dimensional ladder structures for the system SrCu2O3.8 It is
therefore an important issue to clarify the impact of the two
dimensionality of these systems on their magnetic properties.
Theoretically, this question has been treated by mean-field
theory using the bond-operator approach which is reliable
when the rung-coupling J� dominates.9 Exact diagonaliza-
tion studies were performed on small clusters which provide
only a limited number of points in momentum space.10 In
this work, we approach this issue by studying the effects of
the interladder coupling Jint on the elementary excitations of
the single ladder and its dynamics. We concentrate on the
paramagnetic case which is the experimentally relevant one.
We give a detailed description for a possible experimental
detection and determination of such a coupling by inelastic
neutron scattering.

The couplings considered are shown in Fig. 1. They refer
to the Hamiltonian

H = H0 + Hcyc + Hint, �1a�

H0 = J��
i,j

Si,j;LSi,j;R + J� �
i,j;���L.R�

Si,j;� Si+1,j+1;� , �1b�

Hcyc = Jcyc�
i,j

��Si,j;LSi+1,j+1;L��Si,j;RSi+1,j+1;R�

+ �Si,j;LSi,j;R��Si+1,j+1;LSi+1,j+1;R�

− �Si,j;LSi+1,j+1;R��Si,j;RSi+1,j+1;L�� , �1c�

Hint = Jint�
i,j

Si,j;R�Si+1,j;L + Si,j−1;L� , �1d�

where the pair i , j�Z denotes the rungs, not the sites,
counted along the unit vectors e1 and e2 shown in Fig. 2. The
subscripts L and R stand for the left and right spins, respec-
tively, on the particular rung.

In order to explain the influence of various changes of
parameters, we give below the formulas for the two-

FIG. 1. �Color online� Heisenberg exchange couplings
�J� ,J� ,Jint� and the four-spin exchange coupling Jcyc �circles� con-
sidered in the Hamiltonian �Eq. �1��. The rung coupling �horizontal
solid lines� is J�, the one along the legs of the ladders �vertical
solid lines� is denoted by J�, and the coupling between adjacent
ladders �dashed lines� is denoted by Jint.
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dimensional dispersion �k,q on a trellis lattice and for the
dynamic structure factor Sk,q���. The approach starts from
the effective model that we have derived previously for a
single ladder.11,12 It is given in terms of triplons, the elemen-
tary excitations of the spin ladder. In the following, we give
a summarized description how we derived the effective
model for the single spin ladder. Technical details are given
in Refs. 13 and 14.

We apply a particle-conserving perturbative continuous
unitary transformation �CUT� which uses the states on iso-
lated rungs as reference. The CUT maps the Hamiltonian of
the single ladder to an effective Hamiltonian which con-
serves the number of triplons. In order to calculate spectral
properties and to treat the interladder coupling Hint, the rel-
evant observables have to be transformed by the same CUT.
Here, we use the perturbative realization of CUT which gives
series expansions for the effective Hamiltonian and the ef-
fective observables in terms of the expansion parameters x
ªJ� /J� and xcycªJcyc/J� in the thermodynamic limit. The
obtained series are extrapolated giving reliable results in a
broad range of the parameter space.15,16

For the present purpose, we need to know �k
0 the single-

triplon dispersion along the ladder and the spectral weight ak
2

of the single triplon when it is excited by Sz or another spin
component. This spectral weight is known as a function of
the wave vector k. The coupling between the ladders is
treated on the mean-field level starting from the ladders, not
the isolated rung dimers,9 as unperturbed system.17,18 We
stress that the hard-core property of the triplons is taken into
account along the ladders but not perpendicular to them.

The rungs of the trellis lattice form a Bravais lattice so
that there is exactly one mode of given magnetic quantum
number Sz per point in the first Brillouin zone. However, the

lattice has a skewed unit cell due to the fact that adjacent
ladders are shifted with respect to each other by half the
distance c between two rungs in one ladder �see Fig. 2�.
Conventionally, one would express the momentum in units
of the reciprocal basis vectors e1

* and e2
*. However, in this

system, it is more convenient to describe the momentum by
its component along the ladders �k, measured in units of
2� /c� and by its component perpendicular to the ladder �q,
measured in units of 2� / �2a2�, cf. Fig. 2�. Note that as a
consequence, the dispersion ��k ,q� does not have the peri-
odicities one would naively expect. The periodicity in k and
q separately is 2, not unity. However, shifting k→k+1 and
q→q+1 together reproduces the spectrum as it has to be.22

We use the same approach as in Refs. 17 and 18 to treat
the coupling Hint between the ladders. The observables
Si

x,y,z,R are transformed according to

Si,eff
x,y,z,R

ª U†Si
x,y,z,RU = �

�

a� �ti+�
x,y,z† + ti+�

x,y,z� + ¯ , �2�

where the dots stand for normal-ordered quadratic and higher
terms in the bosonic operators. In the following, we neglect
these terms corresponding to multi-triplon contributions.
Note that the symmetry Si,eff

�,L =−Si,eff
�,R holds on this level of

approximation. The Fourier transform squared of a� yields
the one-triplon spectral weight ak

2. In this approximation, the
total Hamiltonian of the trellis lattice is quadratic in terms of
the operators tx,y,z,† and tx,y,z. Neglecting the hard-core prop-
erty allows us to diagonalize the Hamiltonian by a Bogoliu-
bov transformation which is justified as long as the coupling
Jint is small.

The following two-dimensional dispersion �k,q is ob-
tained:

�k,q = �k
0	1 −

8Jint

�k
0 ak

2 cos��q�cos��k� . �3�

The two-dimensional dynamic structure factor reads

Sk,q��� = ak,q
2 ��� − �k,q� �4a�

ak,q
2 = 2 sin2
�q

a

2a2
�ak

2 �k
0

�k,q
. �4b�

The sine factor stems from the interference of the excitation
processes from the left and from the right spin in each rung.
Recall that a single triplon has an odd parity on the isolated
ladder with respect to reflections about the centerline.11,12

The data for an isolated ladder are shown in Fig. 3 for the
one-triplon dispersion of a single ladder and in Fig. 4 for the
one-triplon weight. The couplings and energies are given in
units of the rung coupling J�, that is, xªJ� /J� and xcyc
ªJcyc/J�. This constitutes the input data for the two-
dimensional calculation.

Note that at x=1.5, the extrapolation of the weight at
small momentum spuriously leads to slightly negative val-
ues. In this parameter regime, the three-triplon continuum
overlaps with the one-triplon dispersion leading to a possible
decay and a finite lifetime of the elementary excitations.
Therefore, we put the one-triplon spectral weight in this
range to zero.23 We refrain from displaying data for even

FIG. 2. �Color online� Unit cell of a trellis lattice spanned by the
unit vectors e1 and e2. The distance between two adjacent rungs on
the same ladder is c. The distance between the legs of a ladder is a,
the distance perpendicular to the ladders between the centers �dots�
of two rungs on adjacent ladders is a2.
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larger values of x because there is a growing body of evi-
dence that x� �1,1.5� is the relevant range for cuprate
ladders4–7,19,20 even though early quantum chemical
calculations21 indicated even larger values of x�2. More-
over, our approach is less reliable beyond x�1.5.

In the following, we will first discuss the generic proper-
ties of the two-dimensional spectra. To this end, we concen-
trate on the case x=1 and xcyc=0. However, the features
obtained are similar for all couplings in the paramagnetic
phase. The influence of the interladder coupling xint on the
dispersion of a single triplon is shown in Fig. 5. For q=1.5,
the effect of the trellis structure vanishes completely due to
destructive interference. The largest effects can be seen for
q=1 and q=2. �We refer to q=1.5 and q=2 instead of q
=0.5 and q=0 although this does not make any difference in
the framework of our theoretical model. However, it eases

the contact to the experimental investigations, see, e.g., Ref.
7, where one keeps away from zero momentum where no
magnetic scattering occurs.� Clearly, deviations from q=1.5
lead to a lifting of the reflection symmetry about k= ±0.5 and
to a difference between q=1 and q=2. On the level of our
description, a ferromagnetic coupling −xint at q=1 is
equivalent to an antiferromagnetic coupling xint at q=2 and
vice versa. The one-triplon gap is shifted for an antiferro-
magnetic coupling from k=0.5 to a lower momentum for q
=2 and from k=0.5 to a higher momentum for q=1.

The physical interpretation of the destructive interference
at half-integer values of q or of k relies on the geometry of
the trellis lattice �see Fig. 2�. Consider, for instance, two
hopping processes from the two rungs, where the arrows e1
and e2 end, to the rung, from where both arrows start. For
half-integer value of q, these processes have opposite sign so
that they cancel each other. Hence, no effect of Jint occurs.
The same is true for two hopping processes from the two
rungs in the ladder in the middle in Fig. 2 to one of the other
rungs. For half-integer value of k, these processes have op-
posite sign so that they cancel each other. Again, no effect of
Jint occurs. This explains why Jint has to be significantly large
in order to imply a sizeable effect if at least one of the mo-
menta q and k is close to a half-integer values. Additionally,
Fig. 4 shows that for values of k which deviate substantially
from half-integer values the spectral weight of the triplons is
very low so that the interladder coupling has only very lim-
ited influence on their dynamics, even away from half-
integer values of momentum k.

Besides the energy of the elementary triplon excitation,
also the spectral weight is affected by the interladder cou-
pling. The corresponding results are shown in Fig. 6. In ac-
cordance to the one-triplon gap, the maximum of the one-
triplon spectral weight is shifted for an antiferromagnetic
coupling from k=0.5 to a lower momentum k for q=2 and
from k=0.5 to a higher momentum k for q=1. However, the
overall effect on this quantity is rather small due to the frus-
tration.

FIG. 3. �Color online� Dispersion �k
0 of a single triplon for an

isolated ladder. Upper panel: one-triplon dispersion for xcyc=0 and
x=1 �black curve� and x=1.5 �cyan/gray curve�. Lower panel: one-
triplon dispersion for xcyc=0.25 and x=1 �black curve� and x=1.5
�cyan/gray curve�.

FIG. 4. �Color online� Weight ak
2 of a single triplon for an iso-

lated ladder. Upper panel: one-triplon spectral weight for xcyc=0
and x=1 �black curve� and x=1.5 �cyan/gray curve�. Lower panel:
one-triplon spectral weight for xcyc=0.25 and x=1 �black curve�
and x=1.5 �cyan/gray curve�.

FIG. 5. �Color online� The influence of the interladder coupling
xint on the dispersion �k,q of a single triplon on the trellis lattice, as
shown in Fig. 2 for x=1 and xcyc=0. Upper panel: data sets for q
=1 and xint= �−0.4;−0.2;0.0;0.2;0.4�. Lower panel: data sets for
q=2 and xint= �−0.4;−0.2;0.0;0.2;0.4�.
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Next, we discuss a possible experimental detection of the
interladder coupling in inelastic neutron-scattering experi-
ments. From the above, it becomes clear that measurements
collecting events in the interval q� �1,2� do not allow to
establish the interladder coupling. We consider the possible
detection of an interladder coupling to be an essential ques-
tion because it concerns the dimensionality of the magnetic
systems A14Cu24O41 and SrCu2O3. Therefore, we suggest to
measure around q=1 and around q=2. The comparison of
the two constant energy scans of k provide the data to deter-
mine the value of Jint. We point out that the weight factor
sin2��q a

2a2
� is reduced only by 25% if one deviates from the

optimum value of q=1.5 �where the sine is unity� to q=1 or
q=2. In this argument, we assume the approximate ratio a2
=1.5a.

In our opinion, the best experimental way to determine
the interladder coupling by inelastic neutron scattering is to
perform constant energy scans S�k ,q= ±1,�=�+�� at mo-
menta q=1 and q=2 for energies �+� slightly above the
one-triplon gap �, i.e., ��0. The resulting spectra will show
characteristic asymmetries with respect to reflections about
k=0.5 �see Fig. 7�.

The existing experimental data of magnetic excitations in
A14Cu24O41 and SrCu2O3 are consistent with coupling con-
stants x=1.2–1.5 and xcyc=0.2–0.25.5–7 In the following, we
discuss the parameter set x=1.5 and xcyc=0.25 which has
been deduced from recent inelastic-neutron-scattering data
for La4Sr10Cu24O41.

7 Typical curves are shown in Fig. 7.
Note again that in our mean-field treatment, a change from
antiferromagnetic to ferromagnetic interladder coupling
xint→−xint leads to the same curves as in Fig. 7 where the
momentum q is changed to q+1.

The large anisotropy x=J� /J�=1.5 is questioned by quan-
tum chemistry calculations.8 It is argued that the magnetic
exchanges along the legs J� and the rungs J� are almost
equal but a strong ferromagnetic interladder coupling xint�
−0.2 is present �the calculations were done for the compound
SrCu2O3�. We want to point out that this scenario of an iso-

tropic exchange x�1 is not consistent with our results. As
discussed above, the effects of the interladder coupling are
washed out if one averages over the momentum q perpen-
dicular to the ladder direction. This has been done when
fitting the experimental data in Ref. 7. Therefore, the de-
duced parameters x=1.5 and xcyc=0.25 will not change if
one takes into account a finite coupling xint.

Independently from the intraladder anisotropy x, the
strong ferromagnetic interladder coupling deduced in Ref. 8
is an interesting new aspect of the physics in these materials.
It will be interesting to see if the analysis of inelastic-
neutron-scattering data using the results obtained in this
work will yield values of the magnetic exchange Jint which
are consistent with the quantum chemistry calculations.

In summary, we have discussed the properties of magnetic
excitations on the frustrated trellis lattice in the paramagnetic
phase by calculating the one-triplon dispersion and the cor-
responding one-triplon contribution to the dynamical struc-
ture factor. The trellis lattice can be viewed as being built
from coupling components of one-dimensional two-leg lad-
ders. Technically, an effective model for a single two-leg
ladder is used as the starting point to discuss the influence of
the interladder coupling. The strong frustration of the lattice
causes the system to be effectively one dimensional, i.e., the
magnetic excitation spectrum reveals many properties of a
single two-leg spin ladder. The leading order of the interlad-
der coupling Jint interferes destructively around the minima
of the dispersion in the ladder. Hence, the effects of small or
even sizable inter-ladder couplings are generically small. Yet,
they lead to typical asymmetries of the dispersion and the
spectral weight of a single mode.

Although the mobility of triplons is strongly reduced by
frustration, we expect that two- or multi-triplon properties
such as the interaction between the triplons are affected in a
stronger fashion. While the hopping of triplons cancels due
to frustration their interaction as induced by different cou-
plings adds. Thus, it is an important challenge for future

FIG. 6. �Color online� The influence of the interladder coupling
xint on the spectral weight ak,q

2 of a single triplon on the trellis
lattice, as shown in Fig. 2 for x=1 and xcyc=0. Upper panel: data
sets for q=1 and xint= �−0.4;−0.2;0.0;0.2;0.4�. Lower panel: data
sets for q=2 and xint= �−0.4;−0.2;0.0;0.2;0.4�.

FIG. 7. �Color online� Constant � scan of the dynamical struc-
ture factor at �=0.25J� with x=1.5 and xcyc=0.25 as a function of
the momentum k in ladder direction. The black curves correspond
to xint=0.4 and the cyan/gray curves correspond to xint=0.2. The
upper panel shows q=1 and the lower panel shows q=2. A Lorent-
zian broadening of 	=0.05 is used in all panels.
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work to clarify the influence of the interladder coupling on
optical properties and on all other probes of multi-triplon
properties.

We have made a detailed prediction how to detect the
magnetic interladder coupling in experimental systems such
as the so-called telephone-number compounds A14Cu24O41

and the system SrCu2O3. We have provided arguments that
experimental averages over the momentum perpendicular to
the ladder direction do not yield information about the inter-
ladder coupling. Therefore, the recently deduced parameter
set x=1.5 and xcyc=0.25 will not be affected by a finite in-

terladder coupling.7 This experimentally established differ-
ence between J� and J� calls for further quantum chemical
analyses of the superexchange couplings.

The study of the inelastic-neutron-scattering spectra at q
=1 and q=2 should clarify the sign and the size of the two-
dimensional interladder coupling in the experimental sys-
tems. Thereby, the important issue of the dimensionality of
these magnetic systems will be elucidated.
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