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The effect of the Rashba-type spin-orbit interaction on the domain-wall �DW� magnetoresistance �MR� is
investigated for a smooth linear DW within the semiclassical approach. Results of this study are indicative of
a negative MR for current-in-wall geometry for some ranges of the impurity densities and the chirality
dependence of the DW MR. The increase of the Rashba coupling strength can effectively increase the MR of
the DW in the samples with low impurity concentrations.
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I. INTRODUCTION

Nowadays the spin-dependent transport and nanoscale
physics have been very active and constitute a prolific field
of inquiry in science. On the one hand, spin-dependent trans-
port in the new generation of electronic devices in which the
spin of electron plays the role of the active element has
gained crucial importance. Spintronics has attracted notice-
able interest and has turned into a fast-growing research field
in condensed matter physics and semiconductor electronics.
Such an interest is a direct result of extremely rapid success
in giant magnetoresistance devices as magnetic-field sensors
in the read heads of commercial high-performance hard
disks. On the other hand, recent progress in nanotechnology
has enabled researchers to fabricate low-dimensional de-
vices. By embracing special quantum-mechanical effects,
such low-dimensional structures produce a variety of excit-
ing and novel features especially in spin-dependent transport
phenomena. The spin-orbit Rashba interaction is a prime in-
stance. It arises out of the presence of structure inversion
asymmetry introduced by a heterojunction, surfaces, or ex-
ternal fields.1 The spin precession associated with the Rashba
coupling led Datta and Das to propose a spin field-effect
transistor in which the spin of the electron passing through
the device is controlled by the Rashba spin-orbit �SO�
interaction.2 Such a transistor generated great interest in me-
soscopic spin-polarized transport in the presence of structure
inversion asymmetry.

Subsequently, spin-dependent transport properties of fer-
romagnetic structures in nanometer scale and local magnetic
structures have attracted much interest recently. For instance,
contrary to bulk samples, it has been found out that the mag-
netoresistance associated with nanosize domain walls �DWs�
can be significantly large, even up to 2000%.3–8 Also, the
recent experiments suggest that the DW magnetoresistance
�MR� can be either positive or negative. Positive MR due to
the DW has been reported by Gregg et al. in striped domain
structures.3 Positive MR has also been observed in the Ni
wires,9 in single-layer ferromagnetic wires of Ni80Fe20,

10 and
in a junction of mesoscopic ferromagnetic NiFe wires.11

However, a number of experiments conducted on very nar-
row wires and thin films show negative DW MR.12–16

Theoretically, in weakly localized regime, quantum deco-
herence caused by the DW has been mentioned as a source

of reduction in the resistance �for example, see Ref. 17�.
Nevertheless, spin-dependent impurity scattering proposed
by Levy and Zhang was found responsible for mixing the
spin channels and positive DW MR.18 van Gorkom et al.19

described a semiclassical model in which the DW MR is
either positive or negative, depending on the difference be-
tween the spin-dependent scattering lifetimes. There are also
other reports in which some parameters such as thickness of
the DW in very thin layers or value of the magnetic field
applied to a quantum wire are responsible for a transition
from positive to negative DW MR.20,21

Recently, the effect of the Rashba SO interaction on the
MR has been calculated by Dugaev et al.,22 indicating that
spin-orbit interaction may result in an increase of the mag-
netoresistance of a semiconducting magnetic wire with a
DW of width d. Such calculations were carried out in the
limit of kF↑�↓�d�1, corresponding to the case of a sharp
DW—which can be realized in semiconductors. It should be
pointed out that inside a collinear ferromagnet, the wave vec-
tor k is a good quantum number for the Rashba Hamiltonian,
which commutes with the current operator. In this case, the
Rashba SO interaction couples two states with different spin
bands and the same k. Therefore, for a collinear ferromagnet,
the Rashba SO interaction cannot be taken responsible for
elastic scatterings at low temperatures, and regardless of
thermal spin-dependent scatterings, it may not contribute to
the resistivity of the sample. On the contrary, eigenstates of
the Rashba Hamiltonian for noncollinear magnetization of
incommensurate structures such as DW possess quite a dif-
ferent nature. In fact, the Rashba interaction can be consid-
ered as a scattering source with an effective order range of
the DW width in the elastic regime.

In this paper, the effect of the Rashba interaction on the
MR of a smooth DW identified by condition kF↑�↓�d�1 is
investigated for a two-dimensional ferromagnetic metal. In
this order, we consider a two-dimensional electron gas
�2DEG� system which includes a linear magnetic DW be-
tween two ferromagnetic regions in opposite directions. Be-
sides DW, the Rashba SO interaction corresponding to an
electric field, perpendicular to the plane of the system, mixes
different spin channels in the DW. Here, the problem of DW
MR for an ideal 2DEG system in the presence of SO inter-
action of Rashba type is treated at the analytical level within
the semiclassical approach at low temperatures. We study the
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spin-dependent transport through the DW for current-in-wall
�CIW� and current-perpendicular-to-wall �CPW� geometries.
We also investigate the effect of the chirality on the MR in
the presence of the Rashba interaction.

The paper is organized as follows: In Sec. II, we introduce
the Hamiltonian including the Rashba term used to describe
the DW MR. Section III describes the adiabaticity condition
for spin transport through the DW. In Sec. IV we will calcu-
late the scattering matrices. Section V will provide our de-
scriptions for the results and, finally, a brief summary of the
results concludes the paper.

II. MODEL

In the following investigation of a two-dimensional sys-
tem, z axis is considered as the direction of confinement and
the electric field is taken along such a direction. In accor-
dance with Fig. 1, a two-dimensional linear Néel-type DW is
assumed with two types of positive and negative chiralities
depending on whether the domain-wall rotation axis is either
parallel or antiparallel to the direction of the confining elec-
tric field, i.e., the z axis.

The Hamiltonian of the system can be written as

H = H0 + Hex + Him + HR. �1�

H0 and the exchange between the conduction electrons and
the localized magnetic moments, Hex, can be expressed as

H0 = −
�2

2m
�2 + V�r� , �2a�

Hex = − ��̂ · M̂�r� , �2b�

in which V�r� is the lattice periodic potential, � is the ex-
change interaction strength, �̂ denotes the spin operator in

terms of the Pauli spin matrices, M̂ is the unit vector along
the direction of local magnetization, and r=xx̂+yŷ denotes
the position of the electron in the two-dimensional space.
The interaction of the localized magnetic impurities with the
electrons takes the form

Him = �
j

�vim − �im�̂ · M̂�r����r − r j� , �3�

where the summation is over all impurities. �im and �im are
the exchange interaction strength and on-site electrical po-
tential of the localized impurities, respectively. The last term
in �1� for the Rashba interaction is

HR =
�

�
�̂ 	 P · ẑ = i���̂y

�

�x
− �̂x

�

�y
� , �4�

where P is the momentum operator and � is the Rashba
parameter characterizing the strength of the SO coupling.

Using the approach of Ref. 18, one can find the eigen-
states of the H0+Hex. According to this approach, for a linear
DW and up to any order of approximation, the exchange
interaction cannot produce any mixing between different k
states. This is due to the position-independence perturbation
potential which is introduced by the exchange interaction for
linear DW. As mentioned earlier, the complexity of the mag-
netic structures has a significant effect on the transport char-
acteristics. However, in this work we assume a linear func-
tionality for the DW such as 
�x�= ± �� /d�x, where the
positive and negative signs correspond to the positive and
negative chiralities, respectively.

If we choose the DW width d as a unit of length and � /d
as a unit of wave number, it will be convenient to express
position r and wave number k in terms of dimensionless
quantities r→r /d and k→k / �� /d�. Then, the eigenstates of
H0+Hex for the two-dimensional system may be formulated
as follows:18

��k
↑	 = �̃�kx�

ei��kxx+kyy�


LxLy

R
�x��1 + ikx

1 − ikx
� , �5a�

��k
↓	 = �̃�kx�

ei��kxx+kyy�


LxLy

R
�x�� 1 + ikx

− 1 + ikx
� , �5b�

where Lx=d and Ly are DW dimensions along the x and y
axes; �̃�kx�= �2�1+kx

22��−1/2 is the normalization coefficient;
R
=exp�−i�
 /2��̂ · n̂� is the rotation operator for spin of elec-
trons; n̂ is the direction of DW rotation axis, which in this
case, because of the shape anisotropy, is assumed to be per-
pendicular to the plane of the system, i.e., along the z axis;
and finally, = ±�2�2 / �8m�d2� is the perturbation parameter
for each chirality. This parameter characterizes the deviation
of the eigenstates from their local minimum-energy states,
i.e., the -independent terms of Eq. �5�, which are the eigen-
states of the local direction of magnetization. The eigenstates
of Eq. �5� are not pure spin states and correspond to energy
eigenvalues �k

�= �2�2k2

2md2 −�� ��= ±1�.

III. NONADIABATIC TRANSPORT INSIDE THE
DISORDERED DOMAIN WALL

Berger23 describes wall crossing by electrons as “purely
adiabatic” for their spin and notes that the DW represents a
very smooth and gradual disturbance which cannot be re-
sponsible for an appreciable electron scattering. This view is

x

y

(a)

(b)

FIG. 1. �a� Positive chirality in which the DW rotation axis is
parallel to the confinement electric field. �b� Negative chirality in
which the DW rotation axis is antiparallel to the confinement elec-
tric field.
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based on size considerations of the DW width, which is
much greater than the Fermi wavelength. However, the
-dependent parts of Eq. �5� go beyond such an adiabatic
approximation.18

Although the size of the DW width is introduced as the
main factor for adiabatic transport, nonadiabatic transport in-
side the DW can be attributed to the weak magnitude of the
exchange interaction, which reduces the effect of the DW
width on the adiabatic transport. This interaction in the ab-
sence of the magnetic field and other magnetic interactions is
a unique interaction in the imposing magnetic order, and the
size argumentation itself cannot describe the whole physical
problem. Nevertheless, for very wide DWs, the spin follows
adiabatically the local magnetization orientation and also
low-energy electrons are transmitted adiabatically.24

If DW configuration is assumed to be a nonhomogeneous
effective magnetic field experienced by electrons as a result
of exchange interaction, only in the limit of a high exchange
coupling strength, i.e., when �→�, can the electron spin
adiabatically follow the spatially varying magnetization di-
rection, and the spin wave function acquires a geometrical or
Berry phase.25 The limit of this high magnetic interaction for
adiabatic transport in one-dimensional ballistic �disorder-
free� systems for CPW geometry can be characterized by the
condition of �P /�L�1, in which �P=2� /� is the frequency
of spin precession around a local direction of magnetization
and �L=�F /d=�kF /md the frequency of orbital motion,26–28

where the DW width is considered as length scale over
which the effective field changes. On the other hand, since
the mean free paths of the electrons are small compared with
the DW width, the simple picture of ballistic transport inside
the DW needs some modifications.29 Some corrections are
required for adiabatic spin transport through the disordered
systems.30 The condition for adiabaticity in the two-
dimensional disordered systems reads �P /�L� �1/1.4�
	�d / l�0.95, in which l is the elastic mean free path.30 This
condition cannot be satisfied even for a metallic ferromagnet
in the semiclassical regime, which is the framework of the
present paper.

The problem of adiabaticity will become more compli-
cated if a realistic band-dependent effective mass of elec-
trons is taken into account. However, when some of the geo-
metrical distortions of the DW such as DW bulging for an
ideal DW are ignored, the CIW geometry �kx=0 in Eqs. �5��
shows spin transport in a purely homogeneous effective mag-
netic field. This is because there is no variation in magneti-
zation along the DW �y axis� and a charge moving in this
direction may not experience any nonhomogeneous effective
magnetic field and thus flows in its local minimum-energy
state with a spin along the local magnetization until it expe-
riences a scattering.

IV. SCATTERING MATRICES AND DOMAIN-WALL
MAGNETORESISTANCE

The scattering matrices of the Rashba interaction read

�HR�k,k�
�,�� =

�

�
��k

����̂yPx − �̂xPy���k�
��	 =

�

�
�̃�kx��̃�kx��

	�k��R
�x�
−1 ��̂yPx − �̂xPy�R
�x��k���	 , �6�

in which we have defined

��k
�	 = �̃�kx�R
�x��k�	, � = ↑�↓� , �7a�

�↑	 = �1 + ikx

1 − ikx
� , �7b�

�↓	 = � 1 + ikx

− 1 + ikx
� , �7c�

by using the following relations:

R
�x� = I cos�
�x�/2� − i�̂z sin�
�x�/2� , �8a�

R
�x�
−1 HRR
�x� = R
�x�

−1 �HR,R
�x�� + HR, �8b�

where I is the identity operator. As a result, the scattering
matrices can be obtained as follows:

�HR�k,k�
�,�� = −

��

4d
�̃�kx��̃�kx����̃k,k�

�−� �1
�,���k�� + �̃k,k�

�+� �2
�,���k��

+
��

d
�̃�kx��̃�kx���k,k��3

�,���k�� , �9�

in which �̃k,k�
�±� and �i

�,���k�� are defined as

�̃k,k�
�±� = �ky,ky�

��kx−1,kx�
± �kx+1,kx�

� , �10a�

�1
�,���k�� = �i�����̂x�̂z���	 − 2ikx�����̂x���	� + 2iky�����̂y���	� ,

�10b�

�2
�,���k�� = �����̂y�̂z���	 + 2ikx�����̂x�̂z���	

+ 2iky�����̂y�̂z���	� , �10c�

�3
�,���k�� = i�kx�����̂z�̂x���	 − ky�����̂z�̂y���	� + kx�����̂y���	

− ky�����̂x���	 . �10d�

From the transport point of view, it can be easily shown that
the last term of Eq. �9�, which includes �k,k�, cannot contrib-
ute to the scatterings. The Rashba SO coupling in homoge-
neous ferromagnets cannot make couplings of different k
states, but inside the DW this interaction results in momen-
tum transfer of the order of �k�1 �in the unit of � /d�.

The other type of SO interaction is the so-called Elliott-
Yafet SO coupling,31,32 which is given by

Vso =
�

4m2c2 � Vsc 	 P · �̂ , �11�

where Vsc is the periodic lattice potential. This type of SO
interaction cannot couple spin bands of a DW obtained while
considering the periodic nature of the lattice. The order of
transitions which can be made by this interaction is about
�k�d /a �in the unit of � /d�, in which a is the lattice con-
stant. This is because of the translational symmetry of Vsc.
This value cannot satisfy the conditions of elastic scatterings
for a simple two-band model and typical acceptable ex-
change interaction strength, �, which defines the gap be-
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tween the two spin bands. The magnitude of the Elliott-Yafet
SO interaction is very small �about Vsc��2�2 / �16ma2�� /mc2

�10−5 or 10−4 eV�. However, in some magnetic modulated
structures such as rare-earth manganese oxides, this type of
SO interaction can contribute to the elastic scattering if the
length of the translational magnetic symmetry of the system
is comparable with the lattice constant a.

Scattering matrices of impurities are calculated by

�Him�k,k�
�,�� = 2Ck,k��̃�kx��̃�kx��M�,��, �12�

where we have defined

M = � vim − �im + kxkx�
2�vim + �im�  �− ikx�vim + �im� + ikx��vim − �im��

 �ikx�vim + �im� − ikx��vim − �im�� vim + �im + kxkx�
2�vim − �im�

� , �13�

and Ck,k� has the following form:

Ck,k� = �
j

ei��k−k��·rj , �14�

in which the summation is over the impurities inside the DW.

If we define �Vk,k�
�,���2= �HR

�,���k ,k��+Him
�,���k ,k���2 as the

total scattering matrix, then in the dimensionless k space the
transport relaxation times are given by

����k��−1 =
Ly

d

�

2�
�
��

I���, �15�

in which I��� is as follows:

I��� =� d2k��Vk,k�
�,���2�1 − cos�k,k������k

� − �k�
��� . �16�

To drive Eq. �16�, the electron velocity is taken to be parallel
to its wave vector for spherical Fermi surfaces of up- and
down-spin bands. Therefore, one can write �1−vk · ê /vk� · ê�
= �1−cos�k ,k���, where ê is a unit vector along the electric
field of a given current.33

Random nature of the impurity distribution results in de-

coupling of impurity and the Rashba interactions as �Vk,k�
�,���2

= �Him
�,���k ,k���2+ �HR

�,���k ,k���2 �Appendix A�. The follow-
ing relations:

���k
� − �k�

� � =
1

8���k
���k� − k� + ��k� + k� , �17a�

���k
↑ − �k�

↓ � =
1

8���k−
���k� − k−� + ��k� + k−� , �17b�

���k
↓ − �k�

↑ � =
1

8���k+
���k� − k+� + ��k� + k+� , �17c�

in which k±=
k2±1/ �2 � � �, k= �k�, and k�= �k�� indicate that
the Rashba interaction cannot contribute to scatterings not

corresponding to a spin band change in the elastic regime.

This is because �̃k,k�
�±�

���k
�−�k�

� ��0. Therefore, the Rashba in-
teraction contributes only in the I�,−�. Neverthless, using the

definition of the �̃k,k�
�±� , one can write

��̃k,k�
�+� �2 = �̃k,k�

�+� , �18a�

��̃k,k�
�−� �2 = �̃k,k�

�+� , �18b�

�̃k,k�
�−� �̃k,k�

�+� = �̃k,k�
�−� , �18c�

�a1�̃k,k�
�−� + a2�̃k,k�

�+� �2 = ��a1�2 + �a2�2��̃k,k�
�+� + �a1

*a2 + a1a2
*��̃k,k�

�−� .

�18d�

The relations in Eq. �18� result in the following expressions
for I�,��:

I↑,↑ =
�̃2�kx�

16���k
�1�kx,ky� , �19a�

I↓,↓ =
�̃2�kx�

16���k
�2�kx,ky� , �19b�

I↑,↓ =
1

16���� �̃2�kx�
k

�1��kx,ky� + �̃2�− �1��1�kx,ky��kx,−�1

+ �̃2��1��2�kx,ky��kx,�1� , �19c�

I↓,↑ =
1

16���� �̃2�kx�
k

�2��kx,ky� + �̃2�− �2��3�kx,ky��kx,−�2

+ �̃2��2��4�kx,ky��kx,�2� , �19d�
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in which �1= 1
2

�1+ 1
2��

� and �2= 1
2

�1− 1
2��

�. By direct integra-
tion over dimensionless k space in polar coordinates, the im-
purity dependent parts are given by

�1�kx,ky� =
8k�ci�vim − �im�2


1 + k22
+

8�

k �1 −
1


1 + k22�
	cikx

2�vim + �im���− 2 + k22�vim

+ �2 + k22��im� , �20a�

�2�kx,ky� =
8k�ci�vim + �im�2


1 + k22
+

8�

k �1 −
1


1 + k22�
	cikx

2�vim − �im���− 2 + k22�vim

− �2 + k22��im� , �20b�

�1��kx,ky� =
8k�2cikx

2�vim + �im�2


1 + 2k−
2

+
8�

k−
�1 −

1


1 + 2k−
2�ci�vim − �im�

	�kk−�vim − �im� + 2kx
2�vim + �im�� ,

�20c�

�2��kx,ky� =
8k�2cikx

2�vim + �im�2


1 + 2k+
2

+
8�

k+
�1 −

1


1 + 2k+
2�ci�vim − �im�

	�kk+�vim − �im� + 2kx
2�vim + �im�� ,

�20d�

where �1 and �2 represent the contribution of impurity in-
teractions in the relaxation times during non-spin-flip pro-
cesses, while �1� and �2� represent the same contribution dur-
ing spin-flip processes in which ci is the impurity
concentration �see Appendix A�. In addition, the Rashba-
dependent terms are given by �see Appendix B�

�1�kx,ky� =
��1

↑↓�k�� − �2
↑↓�k���2

�1 + 2kx�
2�
 − 1

2��
+ kx

2

�k,k��kx�,−�1+1�ky�,ky
,

�21a�

�2�kx,ky� =
��1

↑↓�k�� + �2
↑↓�k���2

�1 + 2kx�
2�
 − 1

2��
+ kx

2

�k,k��kx�,�1−1�ky�,ky
,

�21b�

�3�kx,ky� =
��1

↓↑�k�� − �2
↓↑�k���2

�1 + 2kx�
2�
 + 1

2��
+ kx

2

�k,k��kx�,−�2+1�ky�,ky
,

�21c�

�4�kx,ky� =
��1

↓↑�k�� + �2
↓↑�k���2

�1 + 2kx�
2�
 + 1

2��
+ kx

2

�k,k��kx�,�2−1�ky�,ky
,

�21d�

where

�k,k� = ���

4d
�2�1 −

kx�kx + ky�ky


�kx�
2 + ky�

2��kx
2 + ky

2�
� . �22�

�i functions correspond to the contribution of the Rashba
coupling in the relaxation times through the spin-flip scatter-
ings at a given momentum transfer identified by Eqs. �19c�
and �19d�.

Because of the small magnitude of the Rashba and impu-
rity interaction strengths, the condition for applicability of

Born approximation for fast electrons given by �Vk,k�
�,�� �

��2kF /md can be satisfied.34 Therefore, within the two-band
model, semiclassical approach is applicable and we can find
a solution for the distribution function for each eigenstate of
the H0+Hex within the relaxation time approximation as

f��k� = f0��k� −
�

m

�

d
ek · E���k�

�f0��k�
��

, �23�

where f0 is the equilibrium distribution function. The last
term in Eq. �23� represents the deviation from the equilib-
rium distribution function due to the external electric field E,
which is responsible for the current flow and relaxation
mechanisms Him and HR, which are included in ��. Then, the
conductivity of the sample is given as

�n̂e
= � ��e

2md2�2

�
�

Ĩn̂e

� , �24�

Ĩn̂e

� =� �k · n̂e�2���k����k
� − �F�d2k , �25�

in which n̂e=E /E is the unit vector along the electric field,
which, according to Fig. 1, identifies two transport geom-
etries CPW �n̂e= x̂� and CIW �n̂e= ŷ�.

Using the discrete form of integration and the relation

lim
Li→�

��ki − ki���k = lim
Li→�

��ki − ki��
2�

Li
= �ki,ki�

, �26�

Eqs. �15�, �20�, and �21� result in
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Ĩ x
↑ =

2d�

�Ly
�� 16���k

�̃2�kx�
kx

2 ���k
↑ − �F�

�1�kx,ky� + �1��kx,ky�
d2k

+
2�1

2

�̃2��1�kF
↑ ��↑��1,k�1

↑ � + �↑��1,− k�1

↑ ��� , �27�

where

�↑�kx,ky� = �−
2

�kF
↑�−1��1 + �1��

+
1

�kF
↑�−1��1 + �1�� + �1

+
1

�kF
↑�−1��1 + �1�� + �2

� . �28�

For the sake of simplicity, we have dropped the �kx ,ky� de-
pendence of �1, �1�, �1, and �2 and have defined kF

�

=
kF
2 +� / �4 � � � ��= +1,−1 for up- and down-spin bands,

respectively�, kF=�F / �4����, and k�
� =
�kF

��2− ��2�. To
evaluate the first term of Eq. �27�, one can divide
�1�kx ,ky�+�1��kx ,ky� as

�1�kx,ky� + �1��kx,ky� = �11�k� + �12�k�kx
2, �29�

where �11�k� and �12�k� have been defined as

�11�k� =
8k�ci�vim − �im�2�− �k + �k−

+ �k�k−
�

�k�k−

�30�

and

�12�k� =
8�ci�vim + �im�

kk−�k�k−

�vim�2k�k�− 1 + �k−
�

+ k−�− 2�− 1 + �k��k−
+ k22��k − �k−

+ �k�k−
��

+ �im�− 2k�k�− 1 + �k−
� + k−�2�− 1 + �k��k−

+ k22��k − �k−
+ �k�k−

��� , �31�

in which �k=
1+k22 and �k±
=
1+k±

22. Then, using the
relation

���F − �k
�� =

1

8���kF
� ���k − kF

�� + ��k + kF
�� , �32�

we can evaluate the first term of Eq. �27� in the polar coor-
dinate as

� 16���k
�̃2�kx�

kx
2 ���k

↑ − �F�
�1�kx,ky� + �1��kx,ky�

d2k

= 4�kF
↑�3�2��1 −


�11


�11 + �kF
↑�2�12

�
	

1

�kF
↑�2�12

+ �2 1

�kF
↑�2�12

2

	�− 2�11 + �kF
↑�2�12 +

2�11
3/2


�11 + �kF
↑�2�12

�� , �33�

where �11 and �12 are evaluated at k=kF
↑ , i.e., �11=�11�kF

↑�
and �12=�12�kF

↑�.

Similarly, if we define

�↓�kx,ky� = �−
2

�kF
↓�−1��2 + �2��

+
1

�kF
↓�−1��2 + �2�� + �3

+
1

�kF
↓�−1��2 + �2�� + �4

� �34�

and

�2�kx,ky� + �2��kx,ky� = �21�k� + �22�k�kx
2, �35�

in which

�21�k� = 8k�ci�vim
2�1 +

1

�k
−

1

�k+

� + �im
2�1 +

1

�k
−

1

�k+

�
+ 2vim�im�− 1 +

1

�k
+

1

�k+

�� �36�

and

�22�k� =
8�ci

kk+�k�k+

�2k22k+vim�im��k + �k+
− �k�k+

�

+ vim
2�2k�k�− 1 + �k+

� + k+�− 2�− 1 + �k��k+

+ k22��k − �k+
+ �k�k+

�� + �im
2�− 2k�k�− 1 + �k+

�

+ k+�2�− 1 + �k��k+
+ k22��k − �k+

+ �k�k+
��� .

�37�

Then, by the same approach adopted above, we can find all

components of the Ĩn̂e

� , summarized as

Ĩ x
↑ =

2d�

�Ly
�4�kF

↑�3�2��1 −

�11


�11 + �kF
↑�2�12

� 1

�kF
↑�2�12

+ �2 1

�kF
↑�2�12

2�− 2�11 + �kF
↑�2�12 +

2�11
3/2


�11 + �kF
↑�2�12

��
+

2�1
2

�̃2��1�kF
↑ ��↑��1,k�1

↑ � + �↑��1,− k�1

↑ ��� , �38�

Ĩ x
↓ =

2d�

�Ly
�4�kF

↓�3�2��1 −

�21


�21 + �kF
↓�2�22

� 1

�kF
↓�2�22

+ �2 1

�kF
↓�2�22

2�− 2�21 + �kF
↓�2�22 +

2�21
3/2


�21 + �kF
↓�2�22

��
+

2�2
2

�̃2��2�kF
↓ ��↓��2,k�2

↓ � + �↓��2,− k�2

↓ ��� �39�

for CPW geometry and
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Ĩ y
↑ =

2d�

�Ly
�4�kF

↑�3�2���11 + �kF
↑�2�12 − 
�11


�11 + �kF
↑�2�12�

�kF
↑�2
�11�12


�11 + �kF
↑�2�12

+
�2�− 2
�11��11 + �kF

↑�2�12� + 
�11 + �kF
↑�2�12�2�11 + �kF

↑�2�12�

�kF
↑�2�12

2
�11 + �kF
↑�2�12

� +
2�k�1

↑ �2

�̃2��1�kF
↑ ��↑��1,k�1

↑ � + �↑��1,− k�1

↑ ��� , �40�

Ĩ y
↓ =

2d�

�Ly
�4�kF

↓�3�2���21 + �kF
↓�2�22 − 
�21


�21 + �kF
↓�2�22�

�kF
↓�2
�21�22


�21 + �kF
↓�2�22

+
�2�− 2
�21��21 + �kF

↓�2�22� + 
�21 + �kF
↓�2�22�2�21 + �kF

↓�2�22�

�kF
↓�2�22

2
�21 + �kF
↓�2�22

� +
2�k�2

↓ �2

�̃2��2�kF
↓ ��↓��2,k�2

↓ � + �↓��2,− k�2

↓ ��� �41�

for CIW geometry, where �ij parameters are given by �11
=�11�kF

↑�, �12=�12�kF
↑�, �21=�21�kF

↓�, and �22=�22�kF
↓�. Sub-

sequently, the CPW and CIW resistivities can be determined
using relations RCPW= ��x�−1 and RCIW= ��y�−1.

If we replace the DW with a ferromagnet, the eigenstates
of the H0+Hex will be pure spin states given by

��k
↑	 =

1

2

ei��kxx+kyy�


LxLy

�1

1
� , �42a�

��k
↓	 =

1

2

ei��kxx+kyy�


LxLy

� 1

− 1
� . �42b�

As mentioned before, the Rashba interaction cannot contrib-
ute to the elastic scatterings inside a ferromagnet �neglecting
very small change of Fermi energy due to this interaction�.
Therefore, in the face of the present problem, the only relax-
ation mechanism which should be taken into account for the
ferromagnetic reign is the impurity scattering. Since this re-
laxation cannot produce any spin-flip transition between the
pure spin eigenstates introduced in Eqs. �42� �which is con-
trary to the case of the presence of DW �Ref. 18��, the scat-
tering matrix of impurities inside a ferromagnet and in the
spin space can be expressed as

�Vim
ferr�k,k���2 = ci��vim − �im�2 0

0 �vim + �im�2 � . �43�

Similarly, one can show that, inside a ferromagnet, the
relaxation times associated with impurity scatterings are

� ferr
↑ =

16d�

Ly�
2

���
ci�vim − �im�2 , �44a�

� ferr
↓ =

16d�

Ly�
2

���
ci�vim + �im�2 . �44b�

As a result, the resistivity of the ferromagnet is found to be

Rferr = ci�� ��e

2md2�2�2d�

�Ly
��−1� �kF

↑�2

�vim − �im�2

+
�kF

↓�2

�vim + �im�2�−1

. �45�

Finally, the magnetoresistance amounts of CIW and CPW
geometries are given by

��CPW = �RCPW

Rferr
− 1� , �46a�

��CIW = �RCIW

Rferr
− 1� . �46b�

V. RESULTS AND DISCUSSION

The DW MR as a function of the Rashba coupling
strength is shown in Fig. 2 for CPW and CIW geometries
and different chiralities. The typical acceptable parameters
have been chosen to be �F=10 eV, d=10 nm, m=me, �
=0.1 eV, �im /�=0.8, and vim=1 eV. As can be seen, the
DW MR for the mentioned smooth DW is found to be rela-
tively small, which is in agreement with the results of some
other papers. This is in contrast to Dugaev et al., who
showed that the DW MR in the case of sharp DW can be
considerably large especially at low Fermi energies.22

According to Fig. 2, CIW MR is very sensitive to the
impurity density. For low impurity concentrations, the
Rashba interaction is more effective and, according to Fig.
2�a�, one can find both positive and negative CIW magne-
toresistance types depending on the Rashba coupling
strength. However, since for the CPW geometry, RCPW

= ���e /2md2�−2�Ĩx
↑+ Ĩx

↓�−1�Rferr, CPW MR is always posi-
tive for all values of the Rashba coupling strengths and im-
purity concentrations.

High impurity densities suppress the effect of the Rashba
interaction contribution to CPW and CIW resistivities. The
reason is that the Rashba coupling-dependent part of the re-
laxations, ��, vanishes at high impurity concentrations. It
can be shown that in the limit of ci→� and at the Fermi
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level, �kF
��−1��i�kx ,ky�+�i��kx ,ky���� j�kx ,ky� �i.e., when the

impurity-dependent scattering contribution is much higher
than the Rashba contribution�; therefore, �↑�kx ,ky�→0 and
�↓�kx ,ky�→0. It can also be demonstrated that in the case of

CIW geometry, RCIW= ���e /2md2�−2�Ĩy
↑+ Ĩy

↓�−1�Rferr; there-
fore, CIW MR is nearly −1. Consequently, it can easily be
deduced that the DW MR is not a monotonic function of
impurity concentration since the increasing rates of the DW
resistivity and Rferr as a function of impurity concentration
are not the same.

The negative MR for CIW geometry is obtained when
Rferr�RCIW. To understand the negative CIW MR in the case
of a 2DEG, the key feature is the concept of electron motion
in its local minimum of the magnetic energy. For two-
dimensional systems, in addition to the two-dimensional
confinement, electron experiences a weak confinement due
to the DW in CIW geometry as seen schematically in Fig.
3�a�. In this case, spin-flip scatterings can only take place
when the electron undergoes a nonadiabatic transition �Fig.
3�a��. Because of the nonadiabatic nature of spin-flip scatter-
ings, the magnetic moment of electron cannot immediately
adapt itself to the new local direction of magnetization; as a
result, the electron experiences a higher effective magnetic

potential during a scattering to the states with nonzero kx.
From the physical point of view, these confinements reduce
the final states of a single scattering relative to the possible
final states of a homogeneous two-dimensional ferromag-
netic system �Fig. 3�b��, especially at low temperatures
where thermal scatterings can be ignored. However, scatter-
ing potentials can effectively increase the possible number of
scatterings. For example, as the Rashba coupling strength
increases, the negative CIW MR increases and gradually be-
comes positive �Fig. 2�a��. This is due to the enhancement of
spin-flip scattering rate by the Rashba interaction in the DW.
Meanwhile, it cannot contribute to the elastic scatterings in
the ferromagnetic region. As a result, as the Rashba coupling
strength increases, the DW MR grows monotonically.

According to some theoretical and experimental reports
on thin layers, it seems that there is a critical thickness where
the total rate of scatterings due to the DW becomes less than
the total rate in a ferromagnet, which results in negative DW
MR.13,15,20 It should be pointed out that, to be realistic, we
have to consider the dependence of the DW width on the
thickness of the sample.35,36 Moreover, because of some al-
ternative effects such as DW bulging or the presence of zig-
zag DWs,20 the current experiences a mixture of these two
types of geometries and the prediction of the sign of MR
becomes more complicated.

Results of the present work qualitatively confirm the idea
of some experiments in which CPW resistivity has been re-
ported to be greater than that of CIW.23,35 This may be ex-
plained by considering electron transport across DW as elec-
tron tunneling through a spin-dependent potential barrier in
CPW geometry, while in the case of CIW geometry, the elec-
tron adapts its magnetic moment to the local magnetization
which is homogeneous along the y axis.35 Other reasons for
RCPW�RCIW not included in the present approach are the
Hall effect of the effective magnetic field of DW �Ref. 23�
and spin accumulation, which can effectively increase CPW
resistivity.5,37

(a)

(b)

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.056

1.057

1.058

1.059

1.060

1.061

1.062

1.063

1.064

M
a
g
n
e
to

re
si

st
a
n
ce

���d

c
i
= 4x10

6
cm

-2

c
i
= 4x10

7
cm

-2

c
i
= 4x10

8
cm

-2

-0.008

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008
M

a
g
n
e
to

re
si

st
a
n
ce

c
i
= 3.17x10

6
cm

-2

c
i
= 3.18x10

6
cm

-2

FIG. 2. Domain-wall magnetoresistance as a function of the
Rashba coupling strength for �a� CIW geometry and �b� CPW
geometry.

Charge

Injection

(a)

(b)

FIG. 3. �a� Effective magnetic potential for an electron in CIW
geometry for possible directions of scatterings due to the nonadia-
batic nature of the transport in states with kx�0. Darker regions
correspond to higher magnetic potentials. �b� Effective magnetic
potential for an electron in a homogeneous ferromagnetic
conductor.
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We have also determined the chirality dependence of the
DW MR, which is induced by the Rashba coupling. As can
be seen in Fig. 4, in the presence of the Rashba interaction,
the anisotropy induced by the confining electric field results
in chirality dependence of the DW MR. The deference of
MRs for the two types of chiralities vanishes at zero Rashba
coupling strength. The chirality-dependent parts of MR are
those terms of the relaxation times which are not even func-
tions of . Therefore, it can be seen that the Rashba-

dependent terms of Ĩn̂e

� , i.e., �↑�↓��kx ,ky�, are responsible for
the chirality dependence of MR. However, because the
impurity-dependent parts of the scattering matrices are even
functions of  �Eqs. �20��, there is no chirality dependence
owing to this interaction.

VI. CONCLUSION

Using the semiclassical approach, we have studied the
effect of Rashba SO interaction on the MR of a linear
smooth DW. Although the magnitude of this interaction is
small, it mixes different spin channels and plays a significant

role in spin-dependent scatterings. MR calculations for two
types of CPW and CIW geometries show that the MR of the
sample increases as the strength of the Rashba coupling in-
creases. Especially in the case of the low concentrations of
impurities, its contribution to the MR of DW becomes more
evident, while the increment of impurity density suppresses
the effect of the Rashba interaction contribution to MR. The
results also show that CPW resistivity is generally greater
than CIW resistivity. This approach also results in negative
MR for CIW geometry in some ranges of impurity concen-
trations for ideal two-dimensional systems and at low tem-
peratures, which might be due to the confinement introduced
by the DW for this special geometry. There is also some
evidence indicating that the DW MR is chirality dependent
owing to the induced anisotropy introduced by the confining
electric field.

APPENDIX A

Using the relations �9� and �12�, one can write

�Vk,k�
�,���2 = �̃2�kx��̃2�kx���4ci�Mk,k�

�,���2

−
��

2d
�Ck,k�

* Mk,k�
*,�,����̃k,k�

�−� �1
�,���k�� + �̃k,k�

�+� �2
�,���k���

+ Ck,k�Mk,k�
�,����̃k,k�

�−� �1
*,�,���k�� + �̃k,k�

�+� �2
*,�,���k���

+ ���

4d
�2

���̃k,k�
�−� �1

�,���k�� + �̃k,k�
�+� �2

�,���k����2� ,

�A1�

where we have used the following approximation for a ho-
mogeneous impurity distribution:

ci = Ck,k�Ck,k�
* = �

j,j�

ei��k−k��·rje−i��k−k��·rj�

= �
j

1 + �
j�j�

ei��k−k��·�rj−rj�� � �
j

1. �A2�

ci is the number of impurities inside the DW, i.e., the con-
centration of impurities in the unit surface defined by DW
dimensions. Since the nondiagonal terms of Ck,k� are oscil-
lating and very small, these terms can be canceled out in

averaging for different impurity configurations. �̃k,k�
�±� selects

the nondiagonal elements of Ck,k� in second and third terms
of Eq. �A1�; therefore, keeping the nonoscillating terms im-
mediately results in reduction of Eq. �A1� to

�Vk,k�
�,���2 = 4ci�̃

2�kx��̃2�kx���Mk,k�
�,���2 + �̃2�kx��̃2�kx��

	���

4d
�2

���̃k,k�
�−� �1

�,���k�� + �̃k,k�
�+� �2

�,���k����2,

�A3�

which is identical to �Vk,k�
�,���2= �Him

�,���k ,k���2+ �HR
�,���k ,k���2.
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FIG. 4. Chirality dependence of the domain-wall magnetoresis-
tance for �a� CIW geometry and �b� CPW geometry, where �0
and �0 correspond to positive and negative chiralities,
respectively.
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APPENDIX B

The Rashba coupling-dependent terms of the scattering
matrix are

�HR
�,���k,k���2 = �̃2�kx��̃2�kx�����

4d
�2

���̃k,k�
�−� �1

�,���k��

+ �̃k,k�
�+� �2

�,���k����2. �B1�

Then Eq. �18d� results in

���̃k,k�
�−� �1

�,���k�� + �̃k,k�
�+� �2

�,���k����2

= ���1
�,���k���2 + ��2

�,���k���2��̃k,k�
�+�

+ ���1
�,���k���*�2

�,���k� + �1
�,���k����2

�,���k��*�̃k,k�
�−� .

�B2�

Using Eq. �17� and assuming �k
�=4��k2�−��, we can then

easily show that

�̃k,k�
�±� ���k

↓ − �k�
↑ �d2k� =

�̃k,k�
�±�

8���k+
���kx� − kx+� + ��kx� + kx+�d2k�

=
�ky,ky�

8���k+
��kx,�2

�kx�,�2−1 ± �kx,−�2
�kx�,−�2+1 ,

�B3�

and similarly,

�̃k,k�
�±� ���k

↑ − �k�
↓ �d2k�

=
�ky,ky�

8���k−
��kx,�1

�kx�,�1−1 ± �kx,−�1
�kx�,−�1+1 , �B4�

in which kx±=
kx
2± 1

2�� . Therefore, it can be demonstrated
that for Rashba induced up-down transitions, the following
relations can be satisfied:

���̃k,k�
�−� �1

↑↓�k�� + �̃k,k�
�+� �2

↑↓�k����2���k
↑ − �k�

↓ ��1 − cos�k,k���

= �k,k�

�ky,ky�

8���k−
����1

↑↓�k�� − �2
↑↓�k���2��kx,−�1

�kx�,−�1+1

+ ���1
↑↓�k�� − �2

↑↓�k���2��kx,�1
�kx�,�1−1 . �B5�

Repeating the same procedure for ���̃k,k�
�−�

�1
↓↑�k��

+ �̃k,k�
�+�

�2
↓↑�k����2���k

↓−�k�
↑ ��1−cos�k ,k��� results in Eqs. �21�.
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