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Recent experimental work has shown that the width of the intermediate phase varies considerably in chal-
cogenide glasses containing Ge/As/Se. As the chemical composition is varied within a series of glasses, three
phases are observed. As the mean coordination of the glass is increased, the floppy phase evolves through the
intermediate phase �rigid but unstressed� into the rigid and stressed phase. Here, using an extensive study of
computer-generated networks, we show that the intermediate phase is caused by self-organization. This is only
possible on networks where the single transition, from the floppy to the rigid and stressed phase, is second
order in the absence of self-organization, which leads the network to be responsive to self-organization. This
occurs when the structural variability—a measure of inhomogeneities within the glasses—exceeds a threshold
value. The width of the intermediate phase is associated with the local structural variability. Above the thresh-
old value, a large structural variability leads to a wider intermediate phase, which we refer to as the interme-
diate phase window.
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I. INTRODUCTION

The theoretical prediction1 and experimental discovery2

of the intermediate phase have opened up a new window on
glasses, both in terms of the fundamental properties of cova-
lent networks,3–5 and also on potential applications.2,6–14 The
intermediate phase is a range of compositions for which the
glass transition acquires a thermally reversing character,12

that is, the nonreversing enthalpy of the glass transition goes
to zero. The intermediate phase exists as a function of the
chemical composition and so is very demanding to study
experimentally as each data point requires a separate sample.

In chalcogenide glasses such as GexSe1−x, it is convenient
to describe the transition by the mean coordination �r�,
which in this case is given by �r�=4x+2�1−x�=2+2x, where
the Ge ion is fourfold coordinated and the Se ion is twofold
coordinated. In simulations of the rigidity of glassy
networks,1 three phases can be observed as �r� is increased:
an initial “floppy” phase without percolating rigidity, a
“rigid” phase in which a rigid cluster percolates across the
network, and a “stressed” phase in which portions of the
rigid structure become overconstrained. A “rigid cluster” is a
portion of the system with an exact balance of the degrees of
freedom and constraints, while a “stressed region” has more
constraints than degrees of freedom. The rigid phase is ob-
served, over a narrow range of values of the mean coordina-
tion �r�, only when the network is self-organized. By self-
organization, we mean that the network avoids creating
overconstrained, stressed regions unless there is no alterna-
tive. In this case, self-organization involved starting with the
floppy phase at low mean coordination, and then increasing
the mean coordination by adding bonds, in such a way as to
avoid stress for as long as possible.15 This leads us to iden-
tify the experimental intermediate phase with the rigid phase.
Without any self-organization,1 there is a single transition
from floppy to rigid and stressed �without any intermediate
phase� that occurs at close to a mean coordination �r�=2.4,
which corresponds to a chemical composition x=0.2
and GeSe4. For more complex glass series such as

GexAsySe1−x−y, the intermediate phase also occurs around a
mean coordination of �r�=2.4, which corresponds14 to 2.4
=4x+3y+2�1−x−y�=2+2x+y. We argued that the appear-
ance of the intermediate phase was linked to self-
organization in glasses in a quite general way.

Barré et al.16 have considered a thermodynamically
proper model with an energy cost associated with stress and
showed that in the canonical ensemble, the intermediate
phase still exists. In recent papers, Brière et al.17 and
Chubynsky et al.18 confirmed this result for the T=0 version
of the model of Barré et al., and also have shown that the
intermediate phase is entropically feasible in actual physical
systems. In both the models of Barré et al. and Chubynsky
et al., the intermediate phase has an unusual property: both
nonpercolating and percolating networks coexist in the en-
semble at all mean coordination numbers within the interme-
diate phase. Micoulaut19 has pointed out the significance of
local structure selection �speciation� in the development of
the intermediate phase. In a careful study on the nature of the
intermediate phase, Brière et al.17 have shown that the sys-
tem remains critical throughout the intermediate phase. This
means that at any point in the intermediate �rigid� phase, the
addition of a single constraint without self-organization can
make the system overconstrained �stressed�. This provides a
fascinating new insight.

The phase transition from floppy to rigid occurs when the
number of constraints exactly equals the number of degrees
of freedom. When this condition exactly holds, the system is
said to be isostatic. In the absence of self-organization, this
occurs at a single point when the mean coordination �r� is
2.4. However, with self-organization, we can maintain the
infinite percolating rigid cluster in the isostatic state over a
range of values of �r� by using the self-organization to in-
crease the number of sites in the infinite cluster, until the
whole system is isostatic. This is accomplished by filling in
the regions between the dendrites in the infinite cluster, thus
increasing its effective fractal dimensionality from below 3
at the flexible phase to intermediate phase transition to 3 at
the intermediate phase to stressed phase transition.
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In this paper, we take these ideas further by studying the
actual width of the intermediate phase as determined by the
self-organization of various kinds of network, and also the
nature of the two distinct phase transitions from floppy to
intermediate and from intermediate to stressed rigid. We find
that the determining factor is the structural variability v or
local �i.e., atomic level� inhomogeneity within the glass. We
define v in terms of constraints later; for now a qualitative
example will suffice. If GeSe4 glass showed no local struc-
tural variability, then each pair of neighboring Ge atoms
would be bridged by a chain consisting of exactly two Se
atoms. In practice, Ge sites can be connected by a homopolar
�Ge-Ge� bond, by chains of variable length, or by a shared
tetrahedral edge �Fig. 1�; this variation in bonding patterns is
what we mean by structural variability.

For self-organized systems with small structural variabil-
ity, we find no intermediate phase. As a threshold value of
the structural variability v is passed, the width of the inter-
mediate phase increases from zero. The upper phase transi-

tion from intermediate to rigid is found to be pinned at a
mean coordination of �r�=2.4 and to be always first order for
any value of v. The key to understanding this behavior is the
magnitude of the structural variability in the network without
self-organization. If the structural variability is below the
threshold value, the single transition is first order and there is
no intermediate phase when self-organization is introduced.
On the other hand, if the structural variability is above this
threshold value, the phase transition is second order, and
self-organization produces an intermediate phase, whose
width increases with the magnitude of the structural variabil-
ity. We refer to this as the intermediate phase window.

Our approach to introducing self-organization and struc-
tural variance is described in Sec. II. In Sec. III, we describe
our results for non-self-organized �III A� and for self-
organized �III B� networks. In Sec. IV, we look at the impli-
cations of these results for real glasses and try to interpret the
observed widths of the intermediate phase in terms of the
structural variance v.

II. METHOD

We model the Ge/Se glass system starting with a three-
dimensional model of four-coordinated atoms in an amor-
phous, glassy network. We use this as a model for the topol-
ogy of links between Ge atoms. We took glassy models from
Ref. 20 containing 216, 512, and 4096 Ge atoms. From these
models, we created supercells so as to have networks with
periodic boundary conditions containing different numbers
of atoms. From the 216 atom model, we created supercells
with 1728, 5832, 13 824, 27 000, and 46 656 Ge atoms; from
the 512 atom model, we created supercells with 512, 4096,
13 824, 32 768, and 64 000 Ge atoms; and from the 4096
model, we created 4096 and 32 768 Ge atoms.

Each Ge-Ge link is then decorated with a chain of Se
atoms of length l. The value of l is chosen for each Ge-Ge
link from a user-defined probability distribution, for ex-
ample, a roughly flat distribution between a minimum and a
maximum length. We used a variety of different distributions
when decorating the networks, so that the initial nominal
composition of networks varied from GeSe2.5 to GeSe5. The
rigidity transition always happens near the composition of
GeSe4. In Fig. 1, we show two examples of decoration, one
with uniform chain lengths and one with variable chain
lengths. This decoration is purely topological, and the rigid-
ity analysis depends only on the constraints defined by the
bonds between atoms and not on the exact atomic positions.
In this decoration, we do not introduce edge-sharing tetrahe-
dra; however, the effect of this structural motif can be intro-
duced by a renormalization argument, as discussed later in
Sec. IV.

The rigidity analysis is carried out using the PEBBLE GAME

�Refs. 21 and 22� implemented in FIRST �Ref. 7� and a body-
bar representation of the network.23 In this representation, an
atom is an orientable rigid body with six degrees of freedom
�DOFs�. Bonds between atoms are considered as “bars”
where each bar removes one DOF from the system. We keep
bond lengths and angles fixed, while dihedral angles are a
priori variable. In general, a rotatable bond between two at-

FIG. 1. �Color online� Two possible variations of the Se chain
lengths for the composition GeSe4. Light blue, �four-coordinated�
Ge atoms; pink, �twofold coordinated� Se atoms. �a� Se chain
lengths all equal 2. �b� Se chain lengths ranging in length between
0 and 4.

SARTBAEVA et al. PHYSICAL REVIEW B 75, 224204 �2007�

224204-2



oms is represented by five bars, as is clear from the following
argument. Initially, we have two atoms each with six DOFs;
by introducing a rotatable bond between them, we produce a
two-atom body �with six rigid-body DOFs� with one internal
degree of freedom �rotation about the bond�, giving a total of
seven DOFs. The bond has thus removed five DOFs from the
system. The importance of �r�=2.4 is now clear; if each atom
in the system has 2.4 bonds on average, then the system
contains an average of �2.4�5� /2=6 constraints per atom.

For computational efficiency, we have performed the ri-
gidity analysis with only the fourfold �Ge� atoms present,
which we refer to as “nodal” atoms. The twofold coordinated
�Se� atoms are not represented explicitly; instead, each chain
of Se atoms is renormalized to give an effective number of
constraints between the two Ge atoms at the ends of the Se
chain. This renormalization proceeds as follows. Consider
two Ge atoms covalently bonded together; the bond between
them is represented as five bars. We can consider this as a
chain of length zero �no Se atoms between the Ge atoms�. If
we now introduce one Se atom between the Ge atoms, mak-
ing a chain of length 1, then we have removed a Ge-Ge bond
�five bars� and added a Se atom �six degrees of freedom�, so
the system gains 5+6=11 DOFs, and we have added two
new rotatable bonds �Ge-Se-Ge�, so the system loses 5+5
=10 DOFs. The effect of increasing the chain length by 1
was thus to increase the DOF of the system by 11−10=1.
We can thus represent the connection of two Ge atoms by a
chain of length 1 as a Ge-Ge bond with four bars instead of
five. In general, a chain of l Se atoms is represented as a
Ge-Ge bond with �5− l� bars when l is less than 5. When l is
greater than or equal to 5, then the constraint between the Ge
atoms is effectively absent �from a rigidity viewpoint� as the
number of bars has dropped to zero. In the rigidity analysis,
it is as if there were no Ge-Ge connection at all when the Se
chain length is 5 or higher.

We must also renormalize the counting of the mean coor-
dination of the system to reflect our treatment of the chains.
When a Se chain has length 4 or less, then the Se atoms in
that chain are considered present in the system and are
counted as two-coordinated atoms. If, however, a chain has
length equal to 5 or greater, then the count changes. Firstly,
the Se atoms in the chain are effectively not present in the
system for rigidity purposes, so they do not count toward
either the total number of atoms or the number of twofold
atoms. Secondly, the coordination of the Ge atoms at the
ends of the chain is reduced by 1; for example, if two Ge
atoms are each connected to three chains of length 4 or less,
but they are linked together by a chain of length 5 or greater,
then those two Ge atoms count not as fourfold coordinated
but as threefold, since the chain between them is absent in
the rigidity analysis.

If all chain lengths in the system are 4 or less, then this
renormalization has no effect on the count and the mean
coordination will be the same as that calculated based only
on the chemical composition. If, however, any chain length
is 5 or greater, then the renormalized mean coordination will
differ from the chemical mean coordination. The discussions
of mean coordination below refer to the renormalized form.
In practice, we find that the effect of this renormalization is
very small and is outweighed by the effect of other structural

motifs such as edge sharing, as discussed below.
We wish to observe the variation of the rigidity of the

system as its composition varies. We start with a defined
topology of Ge-Ge connections and decorate it with Se
chains of variable length �note that if the average chain
length is �l�, then the chemical formula of the system will be
GeSe2�l��. We perform a rigidity analysis on the system using
the PEBBLE GAME; this step is fast even for the large systems
used here. We then vary the composition by selecting a can-
didate Se atom to remove. This selection can be made either
by choosing any Se atom with equal probability or by choos-
ing any chain with equal probability and then removing an
atom from that chain. The principal difference between the
two approaches is that selection by atom tends to remove
atoms from the longer chains preferentially and thus reduces
the variability of chain lengths. It proved essential to use
selection by chain to produce large variability. A trial move
is to eliminate the chosen Se atom from the system �reducing
the length of that chain by 1� and recalculate the rigidity of
the system.

Each time the rigidity of the system is checked, we obtain
information on the size of the largest rigid cluster �group of
mutually rigid Ge atoms� and the largest stressed cluster. We
also perform a percolation test to determine whether the larg-
est rigid cluster has percolated across the cell or not. This test
requires that the largest rigid cluster spans the cell in all
three Cartesian directions. The removal of Se atoms from the
system can be performed in either a completely random or a
self-organized fashion. If the removals are completely ran-
dom, then every trial move is accepted. If, on the other hand,
we enforce self-organization, then trial moves are rejected if
they would create a stressed region in the system. If a move
is rejected, then the Se atom is removed from the list of
candidates, as are all Se atoms in the same chain, as we now
know that shortening that chain will cause stress in the sys-
tem. Eventually, the list of candidates becomes empty when
all atoms that can be removed without causing stress have
been removed. At this stage, we must allow moves that cause
stress, and the transition from the intermediate phase to the
rigid and stressed phase occurs precisely at �r�=2.4, as there
are no redundant constraints.

We tried a number of parameters associated with the
structure in order to better understand and characterize the
nature of the phase transitions and, in particular, the width of
the intermediate phase. We first define the number of con-
straints associated with each nodal site, which are the Ge
atoms. As noted previously, there are 5− l constraints associ-
ated with each Se bridge with l atoms, as long as l�5, oth-
erwise 0. These are summed over the four neighbors of the
nodal atom �and divided by 2 as each Se bridge is shared by
two nodal Ge atoms� to give the number of constraints asso-
ciated with each nodal atom i which we will call vi. The
variability v in the number of constraints per nodal Ge atom
is then given by

v2 =
1

N
�
i=1

N

vi
2 − � 1

N
�
i=1

N

vi�2

. �1�
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During the process of removing Se atoms from the sys-
tem, we track the mean coordination, the structural variabil-
ity v, and the fraction of Ge atoms in the percolating rigid
cluster. For the self-organized case, we also monitor the frac-
tion of Ge atoms in the stressed cluster once stress begins to
be created. Self-organization allows for the formation of a
window between the onset and percolation of rigidity and the
onset of stress. When percolation of rigidity or stress occurs,
the fraction of atoms in the percolating cluster goes from 0 to
a nonzero value; we will refer to this change from zero as a
jump. The behavior of the jump as a function of system size
indicates whether the rigidity transition is first order �jump
tends to a nonzero value as system size increases� or second
order �jump tends to zero as system size increases�.

III. RESULTS

A. Network properties

We begin by carrying out random �non-self-organized�
elimination of Se atoms from the system.

In Fig. 2, we present the results for two systems with
different initial variations in Se chain lengths. In the first
case, we performed chain dilution on a 4096 Ge atom net-
work with a roughly flat distribution of chain lengths be-
tween 2 and 4 �Fig. 2�a�	, as shown in inset 1. The rigid
cluster percolates very close to a mean coordination number
�r�=2.4. This occurs because here there are no redundant
bonds, by construction, and so the Maxwell count is exact.
When rigidity percolates, the fraction of Ge atoms in the

percolating rigid cluster jumps to almost 1 �Fig. 2�a�	 in a
first-order transition. In inset 2 �Fig. 2�a�	, we show the dis-
tribution of Se chains at the rigidity percolation transition. It
is interesting to note that even though in the initial system we
did not introduce any chains of length zero �corresponding to
a Ge-Ge bond�, in the subsequent distribution, some ho-
mopolar bonds do appear. Also, despite starting from a
roughly flat distribution, the system adopted a peaked distri-
bution with an average around 2.

In the second case with a larger variability in chain
lengths �Fig. 2�b�	, we see a totally different picture. We
started with a roughly flat distribution of Se chain lengths
between 1 and 10, as shown in inset 1, Fig. 2�b�. At the
rigidity percolation transition, the system has developed a
large amount of homopolar Ge bonds �l=0� and the distribu-
tion is decaying with a long tail, i.e., there are still some long
chains present �Fig. 2�b�, inset 2	. The prominent feature in
this case is that the jump decreases and the transition be-
comes more second-order like. We noticed a strong depen-
dence of the jump on the size of the system, when the vari-
ability is large. In this case, the larger the system, the smaller
the size of the jump �for example, for the system with 4096
Ge atoms, the average jump=0.5; for the system with 32 768
Ge atoms, the average jump=0.23; and for the system with
64 000 Ge atoms, the average jump=0.11�. Figure 3 shows
the jump against inverse system size �where N is the number
of Ge atoms�. Clearly for an initial chain distribution with
lengths from 2 to 4, the transition is first order in the limit of
infinite system size. On the other hand, for chain lengths
initially from 1 to 10, the jump tends to zero in the limit, and

FIG. 2. Fraction of sites in the percolating
rigid cluster plotted against mean coordination
number �r� for a network with 4096 Ge atoms. �a�
Se chain lengths, in the initial distribution in the
floppy phase, are between 2 and 4, shown in inset
1. Inset 2 shows the distribution of Se chains at
the rigidity percolation transition, where struc-
tural variability v=1.19. �b� Se chain lengths, in
the initial distribution in the floppy phase, be-
tween 1 and 10, as shown in inset 1. Inset 2
shows the distribution of Se chains at the rigidity
percolation transition, where structural variability
v=2.05.
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the transition from floppy to rigid is second order.
In both of these cases, percolation of stress �not shown�

occurs immediately after percolation of rigidity. In the ab-
sence of self-organization, there is no intermediate phase, of
course.

By setting up systems with different initial distributions of
chain lengths, we can observe the rigidity transition taking
place at different values of structural variability. In Fig. 4, we
show the jump at the rigidity transition extrapolated to the
large N limit. At low structural variabilities �less than 1.5�,
the transition is clearly first order, while at high structural
variabilities �above 1.7�, it is clearly second order. In the
region of the change between first- and second-order behav-
iors, it is difficult to extract the precise infinite-size limit due
to large fluctuations; note the large error bars on this portion
of the graph. However, it would seem that there is a tricritical
point around v=1.55.

The variability in the Se chain lengths, which leads to the
structural variability, appears to be the parameter that con-
trols the width of the intermediate phase window. We have
also checked the skewness and kurtosis �Figs. 5�a� and 5�b�	,

as possible alternative parameters, but there appears to be no
correlation between those parameters and the jump of the
percolating rigid cluster.

B. Self-organized networks

In Fig. 6, we present the results for two systems with
different initial variations in Se chain lengths, as before. This
time, however, we eliminate Se atoms using self-
organization, that is, rejecting choices that would introduce
stress into the system, until it becomes inevitable. We present
results on the percolation of the rigid and stressed clusters
separately, as they are now distinguishable by different per-
colation thresholds.

In the first case, we performed chain dilution on a 4096
Ge atom network with an initial roughly flat distribution of
chain lengths from 2 to 4 �Fig. 6�a�	, as shown in inset 1.
Both rigid and stressed clusters percolate very close to a
mean coordination number �r�=2.4. When rigidity perco-
lates, the fraction of Ge atoms in the percolating rigid cluster
jumps to almost 1 �Fig. 6�a�	 in a first-order transition. Stress
percolation is similarly first order, and there is no intermedi-
ate phase. In inset 2 �Fig. 6�a�	, we show the distribution of
Se chains at the rigidity percolation transition and in inset 3
the distribution of Se chains at the stress percolation transi-
tion. These distributions appear identical to that for rigidity
percolation in the non-self-organized case �Fig. 2�a�	. The
small difference in the locations of the two jumps in Fig. 6�a�
does not signify an intermediate phase, as the difference only
involves a very small, O�1�, number of Se atoms and so
would be insignificant in the limit of infinite size.

In the second case with a larger variability in chain
lengths �Fig. 6�b�	, we see a very different picture. We

FIG. 3. �Color online� Jump in the fraction of Ge atoms in the
percolating cluster plotted against the inverse linear system size,
1 /N1/3, where N is the number of Ge atoms, for the initial chain
distribution with lengths from 2 to 4 �circles� and from 1 to 10
�triangles�. See the upper right insets 1 in Figs. 2�a� and 2�b�. Sys-
tems with initial chain lengths 2–4 extrapolate to 1 in the limit of
infinite N, while systems with initial chain lengths 1–10 extrapolate
to zero.

FIG. 4. Jump in the fraction of Ge atoms at the transition in the
percolating cluster plotted against the structural variability in the
number of constraints per nodal Ge site for non-self-organized
networks.

FIG. 5. Jump in the fraction of Ge atoms in the percolating
cluster versus �a� skewness and �b� kurtosis for non-self-organized
networks, showing no clear correlation.
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started with a roughly flat distribution of Se chain lengths
between 1 and 10, as shown in inset 1, Fig. 6�b�. At the
rigidity percolation transition, the system has developed a
large amount of homopolar bonds �l=0� and the distribution
is decaying with a long tail, i.e., there are still some long
chains present �Fig. 6�b�, inset 2	, as in the non-self-
organized case shown in Fig. 2. The jump at the rigidity
percolation transition is smaller than 1 and the transition ap-
pears more second order. At the stress percolation transition,
the system has lost all chains longer than 5. This indicates
that those long chains were a “reservoir” of flexibility, which
allowed the system to have an intermediate phase. Rigidity
percolation takes place at �r�
2.35, while stress percolation
occurs at the critical value of 2.4 and the intermediate phase
window exists in the 2.35� �r��2.4.

For each distribution, we have simulated the systems with
different sizes, so as to differentiate between the first- and
second-order transitions. In Fig. 7, we show the jump at the
rigidity transition for self-organized systems in the limit of
infinite system size. At low structural variabilities �less than

1.5�, the transition is clearly first order, while at high struc-
tural variabilities �above 1.7�, it is clearly second order. In
the region of the change between first- and second-order be-
haviors, it is difficult to extract the precise limit due to large
fluctuations; note the large error bars on this portion of the
graph. However, it would seem that there is a tricritical point
around v=1.55, where the character of the transition changes
from first order to second order. For v�1.55, self-
organization is irrelevant and cannot produce an intermediate
phase. This is because the transition is first order and there

are no critical fluctuations. For v�1.55, self-organization
can work with the inherent fluctuations associated with the
second-order transition to produce an intermediate phase
window. Note the similarity of Figs. 4 and 7.

IV. DISCUSSION

In the self-organized network, there is a window between
the percolation of rigidity and the onset of stress �see Fig. 6�.
The onset of stress always occurs at a mean coordination of
2.4; however, the percolation of rigidity occurs at a lower
mean coordination, with the difference between this value

FIG. 6. �Color online� Fraction of sites in the
rigid and stressed percolating clusters plotted
against the coordination number �r� for network
with 4096 Ge atoms. �a� Se chain lengths, in the
initial distribution in the floppy phase, are be-
tween 2 and 4, shown in inset 1. Inset 2 shows
the distribution of Se chains at the rigidity perco-
lation transition, where structural variability v
=1.19. Inset 3 shows the distribution of Se chains
at the stress percolation transition. There is no
intermediate phase here. �b� Se chain lengths, in
the initial distribution in the floppy phase, be-
tween 1 and 10. Inset 1 shows the initial distribu-
tion of Se chains. Inset 2 shows the distribution
of Se chains at the rigidity percolation transition,
where structural variability v=2.05. Inset 3
shows the distribution of Se chains at the stress
percolation transition. The intermediate phase
window, which is rigid but unstressed, exists for
2.35� �r��2.4.

FIG. 7. Jump in the fraction of Ge atoms in the percolating
cluster at the lower transition plotted against the structural variabil-
ity of the number of constraints per nodal Ge site for self-organized
network.
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and 2.4 defining the width of the intermediate phase window
�Fig. 8�.

In Fig. 8, we plot the width of the intermediate phase
window against the structural variability v. At low values of
the structural variability, the width is close to zero. At higher
structural variabilities, the width grows roughly linearly with
the variability. These results are all from extrapolated values
in the limit of infinite system size, using the procedure in
Fig. 3. The error bars are quite significant although the gen-
eral trend is clear. Although we cannot say with certainty that
the intermediate phase is absent for v�1.55, we will assume
this to be so. The linear fit to the width W through the points
in Fig. 5 is given by

W = �v − 1.55�/10. �2�

This allows us to construct a phase diagram in terms of
the structural variability v and coordination number �r�
shown in Fig. 9. The width of the intermediate phase in-
creases with an increase in structural variability v. This can
be easily seen from following lines a and b along the mean
coordination �r� axis at a “fixed” structural variability v. At
low structural variability �line a�, the transition happens
close to �r�=2.4 and has a first-order behavior. There is no
intermediate phase and the rigid and stressed phase transi-
tions happen simultaneously. When structural variability is
high �line b�, there is a gradual second-order transition from
floppy to rigid phase and the intermediate phase is present.
This is followed by a first-order transition from rigid to
stressed phase at �r�=2.4.

A. Bonding chemistry

An important question is whether such a degree of varia-
tion in the constraints per nodal site is physically reasonable
in terms of the bonding chemistry of the GeSe system. This
is a difficult question to answer as the bonding in GeSe
glasses is not well understood, in terms of the lengths of the
Se chains that link pairs of Ge atoms. It does, however, ap-

pear that bonding in GeSe systems is quite heterogeneous.
NMR data indicate that Se chains of length 1 and length 3 or
more are present24 in roughly equal numbers in GeSe6, al-
though this result is strange as it would seem that there
should also be a significant number of Se chains of length 2.

Chains of lengths 1, 2, and 3 only are not sufficient for the
structural variability needed to produce a window. Let us
consider a network of composition close to GeSe4, with an
average chain length of 2; suppose that a fraction �1−r� of
chains have length 2, while fractions r /2 have length 1 and
length 3. A chain of length 1 introduces four constraints to
the system, which we count as 2 constraints per chain per
atom. A chain of length 2 introduces 3/2 constraints per
chain per atom, and a chain of length 3 introduces 1 con-
straint per chain per atom. The mean number of constraints
per chain per atom is c=3/2, while the root-mean-square
deviation �rmsd� is given by the square root of the quantity
��r /2��2−3/2�2+ �1−r��0�+ �r /2��1−2/3�2	, that is, ��r /2�.
Each atom is connected to four chains, so that if the lengths
of the chains are not correlated, the rmsd on the number of
constraints per atom—that is, the structural variability v—is
just ��4���r� /2, which is �r. So even in the extreme case
where r=1, v=1, this is not sufficient for a window.

Raman scattering2 indicates the presence of a wide variety
of structural motifs including edge- and corner-sharing GeSe
tetrahedra, Se chains of length 2 and greater, direct Ge–Ge
bonding, and pseudotetrahedral bonding �Ge–Se with a one-
coordinated Se atom�; the last, where the Se is terminal
rather than bridging, corresponds to 0 bonding constraints as
it does not link to another nodal site, in terms of rigidity.
Neutron-scattering data on GeSe2 �Refs. 25–27� still indicate
considerable breaking of chemical ordering, with up to 25%
of Ge and 20% of Se atoms being involved in homopolar
bonds rather than a network of corner-sharing GeSe tetrahe-
dra. It therefore does seem quite reasonable that the con-
straints per nodal site in real GeSe systems can vary consid-
erably, as required to allow a nonzero width of the
intermediate phase.

FIG. 8. Width of the intermediate phase window shown against
the structural variability v. At low values of the variability, where
the transition is first order, the width is zero, within numerical error.
At higher variabilities, the width grows roughly linearly with the
structural variability, as given by Eq. �2�.

FIG. 9. �Color online� Schematic representation for the phase
diagram of glassy networks in terms of structural variability v and
mean coordination �r�. The fraction axis refers to rigid percolating
cluster and stressed percolating cluster. The solid line represents
second-order transition from floppy to rigid phase. The dashed line
represents first-order transition from rigid to stressed phase. Lines a
and b represent schematic pathways at different “fixed” structural
variabilities.
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B. Effect of edge-sharing tetrahedra

Probably the most important structural motif, present in
the chemistry of the GeSe system but not in our model, is the
edge-sharing tetrahedral motif. In this case, two Ge atoms
are connected by two chains of length 1. This has an impor-
tant consequence for rigidity analysis; although in general a
chain of length 1 introduces four constraints between Ge
atoms, and two such chains introduce eight constraints, the
net effect of the edge-sharing motif is to rigidify the two
adjacent tetrahedra involved, which corresponds to the re-
moval of only six constraints total. Thus, even though the
edge-sharing tetrahedral motif is locally rigid, its effect on
the system is �paradoxically� to make the system less con-
strained than the chemical composition would indicate. This
suggests a resolution to a puzzling issue in comparing ex-
perimental and theoretical results; in our simulations, the
floppy to rigid transition always occurs below �r�=2.4, while
the rigid to stressed transition occurs at �r�=2.4. Experimen-
tally, however, the GeSe system displays a window between
�r��=2.4 and �r��=2.52 �Refs. 2 and 3� �according to the
chemical composition�, that is, the window is displaced to a
higher �r�� than the theoretically expected position. We may
describe the window in terms of a center and a width, noting
that the width of the experimental window is larger and the
position of the center is higher than our theoretical results.

Although we did not explicitly include any edge-sharing
tetrahedral bonding when constructing our model, we can
introduce them into our analysis by the following
renormalization-type argument. Let us consider a single Ge
site with four links to other Ge sites. We can, without affect-
ing the rigidity of the network, replace this Ge site by two Ge
sites and two Se bridges, representing edge-sharing tetrahe-
dral bonding. Each of the newly introduced Ge takes up a
pair of the incoming links; the Ge2Se2 cluster is a single rigid
body, and so the rigidity of the network is unaffected. Thus,
any of our models of a Ge/Se system, in fact, represents a
whole series of models with a variable proportion of edge-
sharing motifs added.

Let us say that we have a network of composition
GexSe1−x containing no edge-sharing motifs, representing
one of the networks in our rigidity analysis. We replace a
fraction f of Ge sites with Ge2Se2 edge-sharing motifs. Each
such motif introduces an additional GeSe2 unit into our sys-
tem, changing the composition to Ge�1+f�xSe2fx+�1−x�. The sys-
tem now has the same rigidity properties and a new compo-
sition GeySe1−y, where �with some rearrangement� y is given
by

y = �1 + f�x/�3fx + 1� . �3�

We can also express x as a function of y and f as follows:

x = y/�1 + f�1 − 3y�	 . �4�

We note that the limit f =0 corresponds to x=y, while the
limit f =1 �all nodal sites are edge-sharing clusters� corre-
sponds to x=y / �2−3y�.

The mean coordination of our simulated system is given
by

�r� = 2 + 2x , �5�

while the mean coordination of the system including edge-
sharing units is given by

�r�� = 2 + 2y . �6�

The widest window produced in our theoretical simula-
tions extends from approximately �r�=2.34 to �r�=2.4.
These points correspond to x=0.17 and x=0.2. The maxi-
mum shift achievable by this introduction of edge-sharing
motifs �f =1� would make these equivalent to y=0.225 and
y=0.25, giving �r��=2.45 and �r��=2.5.

The presence of the edge-sharing tetrahedral motif means
that �r�� is an overestimate of the constraints on the system.
The main effect of edge-sharing tetrahedra is to move the
center of the window to larger values of �r��, accompanied
by a slight narrowing of the window. The direction of the
shift ��r�� �r��� helps us bring theory and experiment into
closer agreement, with the center of our window being
shifted upward in apparent mean coordination by fully 0.1.

It is not only the edge-sharing motif that can be intro-
duced to the system by this approach. Any cluster which is
internally rigid and which can accept four links to other Ge
sites can be substituted for a single Ge. An example would
be a tetrahedron of four Ge atoms �the corners of the tetra-
hedron� linked internally by six Se atoms �lying on the edges
of the tetrahedron�; this is an internally rigid unit, with the
effect of adding three GeSe2 units to the system. Substitution
of such units at a fraction f of Ge sites would give us a
composition y= �1+3f�x / �9fx+1�, which has an even more
dramatic effect on �r�� than the edge-sharing unit. Our widest
theoretical window �x=0.17 to x=0.2�, on introducing this
motif with f =1, is shifted to y=0.269−y=0.286, giving
�r��=2.54 and �r��=2.57. The window is shifted upward in
mean coordination by fully 0.2, while the width decreases by
a factor of 2.

We may conclude that the inclusion of internally rigid
units such as the edge-sharing motif can account for the cen-
ter of the experimentally measured window; however, such
units cannot account for the wider experimental window, for
which some other explanation must be found.

C. Steric interactions

The most important aspect of the physics of rigidity that is
absent from our model is jamming due to steric interactions.
Our simulated networks are purely topological models, and
the decoration and dilution proceed without regard to the
steric feasibility of building the network. The development
of jammed states in purely steric models has been
studied.28,29 However, there is a fundamental divide between
theoretical approaches to steric jamming and to the percola-
tion of rigidity in framework structure. Jamming involves
nonholonomic, contact interactions between objects; it re-
quires a model specifying the positions of all objects in the
system; it requires consideration of the potential motions of
the objects, as jamming occurs when bodies in contact are
unable to move apart and relieve the contact; and it is depen-
dent on the boundary conditions of the system, as jamming
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requires confinement. The percolation of rigidity, however,
involves holonomic constraints describing bonding; it de-
pends on the topology of bonding rather than the exact ge-
ometry of the system and does not require exploration of
potential motions. Rigidity and stress can occur within a sys-
tem regardless of whether its boundaries are confined, free,
or periodic. It is far from clear what theoretical framework
would allow us to investigate rigidity and jamming simulta-
neously. It is possible that studies on sticky disk systems30,31

may provide some insight.
Qualitatively, however, we should expect the inclusion of

steric interactions to shift both the rigidity and stress transi-
tions to smaller values of �r�, as we are introducing addi-
tional constraints into the system. If the rigidity transition
were shifted further than the stress transition, this would of-
fer a mechanism for widening the window.

D. Phase diagram

In Fig. 10, we show the experimentally determined widths
of intermediate phases for various glasses, arranged in order
of the magnitude of the window and plotted schematically
against the structural variability as suggested by the results in
this paper by Eq. �2�. The x axis is arbitrary, as we lack
sufficient information from experiment to establish the scale,
but the general scheme is clear. To establish such an absolute
scale for the structural variability, it would be necessary to
determine the local chemistry and the distribution of lengths
of the chains of twofold coordinated atoms from 0 up to 5.
This has not been done to date and would be extremely de-
manding, but could be accomplished by combining NMR,
Raman, and measurements of the pair distribution function

using isotopes. This presents a major experimental challenge.
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