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The scattering of a surface wave by a pinned edge dislocation in a semi-infinite, homogeneous, isotropic,
three-dimensional elastic solid is investigated analytically and numerically. An incident wave excites the
dislocation that responds by oscillating as a string endowed with mass, line tension, and damping. The oscil-
lations of the stringlike dislocation generate secondary �“scattered”� elastic waves that are the primary object
of interest in this study. The back reaction of the re-emitted waves on the dislocation dynamics is neglected, but
the wavelength of the radiation is allowed to be large, comparable, or small compared to the length of the
dislocation. In view of recent experimental visualizations of these phenomena, we focus particularly on the
field behavior at the free surface near the dislocation, and not just on the far field. For the same reason, it is the
vertical component of displacement at the free surface that is studied in detail. An efficient numerical procedure
for the computation of the appropriate components of the Green’s function, using a Filon quadrature for the
integration of rapidly oscillating functions, is developed. The numerics is validated with known analytical
expressions. The secondary radiation generated by the response of the dislocation to the incident wave is also
calculated numerically, and the results are also validated by comparing them with the analytical expressions
that can be obtained when the radiation wavelength is very long compared to dislocation length. The interfer-
ence pattern between incident wave and secondary wave that is generated at the free surface is studied in detail
and found to depend strongly not only on wavelength and dislocation geometry �length and orientation� but
also on dislocation depth, with the response of the dislocation being a particularly sensitive function of such
depth. Results are compared with recent experiments of Shilo and Zolotoyabko �Phys. Rev. Lett. 91, 115506
�2003�� that report visualizations of the surface-wave–dislocation interaction using stroboscopic x-ray imaging.
A satisfactory agreement is found. Dislocation velocities of a few percent of the speed of sound and viscosity
coefficients of about 10−5 Pa s are inferred.

DOI: 10.1103/PhysRevB.75.224112 PACS number�s�: 61.72.Lk, 72.10.Fk, 11.80.La, 81.70.Cv

I. INTRODUCTION

Dislocations lie at the heart of the mechanical behavior of
crystalline materials, and yet they are extremely difficult to
probe. Transmission electron microscopy has long been the
tool of choice for their experimental study, and impressive
results, for example, concerning core structure, have recently
been obtained in conjunction with progress in instrumenta-
tion and computational capabilities �see, for example, Ref. 1
and references therein�. The fact remains, however, that
transmission electron microscopy needs the special prepara-
tion of samples and that the development of nonintrusive
probes, for example, involving acoustic or electromagnetic
waves, would be a welcome development.

The interaction of phonons with dislocations is a problem
that has been studied for decades in connection with acoustic
attenuation and thermal conductivity. For a long time, acous-
tics results appeared to be satisfactorily explained by quan-
titative modeling developed in the 1950s and subsequent
elaborations.2 That modeling, based on a scalar coherent
wave propagating through a medium with many dislocations,
has become unable to explain recent experiments, such as the
different attenuations observed for acoustic and shear
waves.3 Being an effective medium approximation, it only
describes the coherent behavior of a wave propagating in a

medium full of dislocations and is unable to describe the
interaction of an incident wave with a single dislocation. The
situation concerning thermal conductivity is even less satis-
factory, with results going back 20 years4 that still defy
quantitative understanding.

In light of the above, we decided to revisit the basic phys-
ics of the wave-dislocation interaction5–10 succeeding, for ex-
ample, in explaining the results of Ref. 3.

Recently, Zolotoyabko et al.11 Shilo and Zolotoyabko12,13

have conducted a series of experiments where they study the
interaction of surface elastic waves with dislocations in
LiNbO3 using stroboscopic x-ray topography. They have
shown that the effect of a single dislocation on the surface
acoustic wave is strong enough to produce a scattered wave
that forms, with the incident wave, an observable interfer-
ence pattern. Also, Hurley et al.14 have also performed a
similar study, using an optical technique, of the interference
patterns in the case of the interaction of an elastic wave with
grain boundaries. These experiments illustrate the potential
that acoustic diagnostics has as a nonintrusive tool to char-
acterize defects in materials, and they offer an experimental
benchmark that can be used to examine the theoretical mod-
els for the interaction of isolated dislocations with elastic
waves.

The present paper studies the problem of the interaction
of a surface Rayleigh wave propagating in a semi-infinite
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elastic medium, with subsurface dislocation lines. Following
our previous work5–10 that studied the interaction of bulk
acoustic waves with dislocations, we examine the experi-
mental configuration presented in Ref. 13 and illustrated in
Fig. 5: a Rayleigh wave propagates on the surface of an
elastic material containing in its bulk an edge dislocation
line. To do that, the Green’s tensor of the half space with free
surface has to be numerically calculated, a task known to be
tedious. Although many studies can be found on this problem
�see, for instance, Refs. 15–21 and references therein�, a part
of this paper is devoted to its implementation for fast calcu-
lations suited to the configuration at hand.

The paper is organized as follows. Section II presents the
results on the Green’s function for the half space, notably the
numerical method �with technical details relegated to the Ap-
pendices�. These results are validated by comparing them
with the analytical results of Achenbach21 in the far field. In
Sec. III A, we present the model used to describe the scatter-
ing of a surface acoustic wave by a subsurface dislocation
line. In this model, the scattered wave is written in the form
of an integral representation that needs the dislocation mo-
tion due to the incident wave to be determined. This is done
using the equation of motion for a dislocation loaded by an
external stress �, which in the present case is the stress pro-
duced by the incident wave. The case of a dislocation small
compared to wavelength is calculated analytically in Sec.
III B and used to validate the numerical results of Sec. III A.
Sections III C and III D present results on the scattered
fields, notably in comparison with Ref. 13, and present a
discussion on the scattering strength. The paper ends with
some concluding remarks.

II. GREEN’S FUNCTION OF THE HALF SPACE

We consider a semi-infinite isotropic homogeneous elastic
medium characterized by its Lamé coefficients �� ,�� and
density �, occupying a half space with a free surface. Bulk
longitudinal and shear waves have speeds of propagation
cL=���+2�� /� and cT=�� /�, respectively, with their ratio
denoted by ��cL /cT. Waves with angular frequency � have
a time dependence e−i�t and propagate in the bulk with wave
vectors kL,T�� /cL,T. Surface Rayleigh waves propagate
with wave vector kR�� / ��cT�, with � the zero of P���=�6

−8�4+8�2�3−2/�2�−16�1−1/�2� �see, e.g., Ref. 22�. The
corresponding wavelength will be denoted as �R=2� /kR.

The literature on the Green’s tensor of the half space with
free surface is vast, and various derivations of the elastic
displacement due to a subsurface point force or other excita-
tion sources can be found.15–21 We give in this section the
result for the vertical displacement that is of interest in our
study. Indeed, experiments of surface acoustic wave detec-
tion are sensitive to the vertical displacement only. In this
case, an easy way to derive it, as written in Eq. �2.1� below,
is presented in Appendix A. The main goal of this section is
the numerical implementation of the Eq. �2.1� using a Filon-
quadrature-type method.

A. Vertical displacement due to a subsurface point force

As shown in Appendix A, the vertical displacement in the
frequency domain uz�x�, with x= �r cos 	 ,r sin 	 ,0
z
z0�,

due to a subsurface point force f= �f1 ,0 , f3���x−X�, with
X= �0,0 ,z0� �see Fig. 1�, is

uz�x� =
1

2����cos 	�f1�
0

�

dkk2J1�kr�f�k;z,z0�

+ f3�
0

�

dkk
LJ0�kr�g�k;z,z0�	 , �2.1�

where 
L,T��k2−kL,T
2 and where

2kT
2 f�k;z,z0� � �G�k�e
Lz0 + 4
L
T�kT

2 − 2k2�e
Tz0�
e
Lz

F�k�

+ �4k2�kT
2 − 2k2�e
Lz0 + G�k�e
Tz0�

e
Tz

F�k�

+ e−
L�z−z0� − e−
T�z−z0�,
�2.2�

2kT
2g�k;z,z0� � �G�k�e
Lz0 + 4k2�kT

2 − 2k2�e
Tz0�
e
Lz

F�k�

+ �4k2�kT
2 − 2k2�e
Lz0 +

k2


L
T
G�k�e
Tz0	 e
Tz

F�k�

+ e−
L�z−z0� −
k2


L
T
e−
T�z−z0�,

with G�k���kT
2 −2k2�2+4k2
L
T and F�k���kT

2 −2k2�2

−4k2
L
T. Jn denotes the Bessel function of the first kind of
order n. For f1=0, z=0, we recover the result given in Ref.
15.

B. Numerical calculation

The expression for the displacement in Eq. �2.1� is known
to be difficult to evaluate numerically because of the pres-
ence of singularities on the real axis �notably, the Rayleigh
pole kR that makes F�k� to vanish�. A possible way to over-
come this difficulty is to consider a viscoelastic case as in
Ref. 18, since the singularities then move off the real axis
and the numerical integration is possible. There is a second

FIG. 1. A subsurface point force f= �f1 ,0 , f3���x−X� at X
= �0,0 ,z0� creates a displacement uz�x� at x= �r cos 	 ,r sin 	 ,z� po-
sition. Equation �2.1� gives the vertical displacement at x for 0
�z�z0.
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difficulty that must be overcome for an efficient numerical
integration: because of the terms in Jn�kr�, the integrands
oscillate with a periodicity of 1 /r that gets smaller and
smaller as r increases. This can be tackled using a Filon
quadrature23–25 that makes the integration independent of r,
as described in Appendix B.

In light of the above, the results presented in this paper
are calculated as follows: the singularities are moved off the
real axis by introducing a small imaginary part to the fre-
quency ��1+ i��, with � positive in order to ensure causality
�with the convention e−i�t�. Practically, �=10−10, a value
which appears in the numerics to be small enough to ensure
that all the integrals are independent of this particular value
of �. The numerical integration on the real axis �0, �� is split
into a first interval �0,k0�, where a classical Runge-Kutta
scheme with adaptative step size is used �typically, we have
used k0=1.5kR�, and a second interval �k0 ,kmax�, where a
Filon quadrature is used. kmax is controlled by the decreasing
exponential e
L,Tz0, and we have used kmax=k0+10/ 
z0
 �alter-
natively, when kRz0�1, we used kmax=50kR�. The use of the
Filon quadratures makes the integration typically ten times
faster than a Runge-Kutta method for kRr�1.

Achenbach21 derived analytically the contribution of the
Rayleigh pole that is expected to be the dominant contribu-
tion in the in-plane far field. Figure 2 shows the results we
have obtained numerically in comparison with the analytical

results of Achenbach.21 As expected, the Rayleigh contribu-
tion becomes dominant in the far field, and it is more and
more dominant for small r when z0 is closer and closer to the
free surface.

C. Green’s tensor

The Green’s tensor G3k
0 is deduced from the vertical dis-

placement calculated in the previous section through uz
�G3j

0 Fj, where F is a subsurface point force expressed in a
basis �x1 ,x2 ,z� that is obtained by a rotation through �0

around the vertical axis with respect to the horizontal com-
ponent of the force f1, see Fig. 3: F1= f1 cos �0, F2
= f1 sin �0, and F3= f3. We thus get G31

0 = 
uz
�f1=1,�0=0,f3=0�,
G32

0 = 
uz
�f1=1,�0=�/2,f3=0�, and G33
0 = 
uz
�f1=0,f3=1�. Letting X

= �X1 ,X2 ,z0�, we define the in-plane polar coordinates as x
= �X1+r cos � ,X2+r sin � ,z� �thus, 	=�−�0�. With these no-
tations, the Green’s tensor relevant for the computation of
vertical displacements is

G31
0 �x,X;�� =

1

2��
cos ��

0

�

dkk2J1�kr�f�k;z,z0� ,

G32
0 �x,X;�� =

1

2��
sin ��

0

�

dkk2J1�kr�f�k;z,z0� , �2.3�

FIG. 2. Comparison of numerical and analytical expressions for the vertical displacement uz�x� observed at the free surface for a vertical
point force f3 located at depth z0. Because of axial symmetry, it depends only on the in-plane radial distance r. Full lines give the numerical
integration of uz from Eq. �2.1� calculated with �=10−10, and dashed lines give the analytical solution of Ref. 21 that accounts for the
contribution of the Rayleigh pole only. In both cases, calculations are performed using �= �2���580�106� s−1, cT=3758 m/s, cL=2cT, �
=4.6 103 kg m−3, and �a� z0=−�R /1000, �b� z0=−�R /2, �c� z0=−3�R /2, and �d� z0=−2�R.
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G33
0 �x,X;�� =

1

2��
�

0

�

dkk
LJ0�kr�g�k;z,z0� .

Figure 4 shows typical patterns of the Green’s tensor
components G3k

0 �k=1,2 ,3� visualized on the free surface,
z=0.

III. INTERACTION OF A SURFACE ACOUSTIC WAVE
WITH A DISLOCATION

We now consider the interaction of a surface acoustic
wave with a subsurface dislocation line. In the following
sections, the expression of the scattered wave is given ana-
lytically and discussed further on the basis on numerical cal-
culations. The results will be presented for configurations
close to those of the experiments of Refs. 11–13, hereafter
referred to as C1: the incident wave has a frequency of
580 MHz and propagates in an elastic medium �LiNbO3�
with cT�3758 m s−1, �=2, and �=4.6�103 kg m−3. The
Rayleigh wave has a 6 �m wavelength at this frequency. The
subsurface dislocation line has a Burgers vector b=0.55 nm,
a damping coefficient B=10−5 Pa s, and length 2L. Usual
estimates for the drag coefficient B fall around 10−5 Pa s at
room temperature, in rough agreement with various esti-
mates B�10−2 �b /cT �Refs. 26–28� �this estimation comes
from the expression of B above the Debye temperature: B
�kT�D

2 /�3cT
3, with k the Boltzmann constant, �D�cT� /b

the Debye frequency, and T the temperature, and taking
�b3�1 eV, an estimate valid for most materials�. We shall
use m=�b2 �the dislocation mass per unit length� and �
=mcT

2 �the dislocation line tension�. These expressions are
expected to be valid in the subsonic regime �see, for in-
stance, Ref. 29 in deriving the equation of motion for dislo-
cation submitted to an external stress�.

A. Theoretical calculations

The configuration we are interested in is illustrated in Fig.
5. An incident Rayleigh wave, with angular frequency �, is
generated at the free surface of a semi-infinite elastic me-
dium. The medium contains in its bulk an isolated edge dis-

location line. The line can have any direction, but we assume
it does not touch the free surface.

A qualitative model for the interaction of an acoustic
wave with many dislocations in an infinite medium has been
known, in terms of a coherent wave description, since the

FIG. 3. Configuration for the calculation of the Green’s tensor:
the horizontal force f1 is along the x1� direction, which forms an
angle �0 with the x1 direction. The vertical force f3 is along the z
direction. The inset shows the position of �x1� ,x2� ,z� with respect to
�x1 ,x2 ,z�, the independent variables for the Green’s tensor in Eq.
�2.3�.

FIG. 4. Components of the Green’s tensor G3k
0 �x ,X ;�� for x on

the free surface �z=0� and z0=−�R: �a� G31
0 , �b� G32

0 , and �c� G33
0 .

Calculations are performed with the same values of �, cT, cL, and �
as in Fig. 2.
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work of Granato and Lücke �see, e.g., Ref. 2�, and the litera-
ture on the subject is vast. The quantitative modeling of the
interaction with a single dislocation is, however, more
recent6,7 and the mechanism of this interaction can be viewed
as a two-step process: the incident wave produces an external
stress on the dislocation that oscillates in response. The os-
cillating dislocation emits an outgoing, scattered wave that
superposes with the incident wave. The basic equations to
treat the problem are the following. The equation

mẌk�s,t� + BẊk�s,t� − �Xk��s,t� = Fk�t� �3.1�

describes the equation of motion for the dislocation line,
where X�s , t� is the position vector along the line, m��b2 is
the dislocation mass per unit length, ���b2cT

2 its line ten-
sion, B the drag coefficient, and Fk=�kjm�mbi�ij the Peach-
Koehler force ��ijk denotes the usual completely antisymmet-
ric tensor� that accounts for the external loading. We
consider a dislocation line that is pinned at its ends, so the
appropriate boundary conditions are Xk�±L , t�=0. The dislo-
cation is assumed to be a gliding edge dislocation, so its
motion X occurs along the direction of the Burgers vector.
We denote t this direction, with b=bt, � the unit tangent
along the dislocation line, and n��� t.

The wave is described by a displacement vector u that is
a solution of the wave equation

��ttui�x,t� − cijkl�xi
�xl

uk�x,t� = 0,

with two boundary conditions: �1� Displacement is multival-
ued with a discontinuity equal to the Burgers vector when
crossing a time-dependent surface S�t� that abuts at the
�moving� dislocation line L�t�: �ui�S�t�=bi, while stress is
single valued: �cijkl��ul /�xk�nj�S�t�=0; and �2� normal stress
vanishes at the free surface S, defined by z=0:
�cijkl��ul /�xk�nj�S=0.

The solution for the time derivative of the wave displace-
ment v= u̇, the particle velocity, can be written in the form of
a convolution with a source localized along the loop, an ex-
pression first given in Ref. 30, see also Ref. 9,

vz
s�x,t� = � jnhcijkl�

L
� dt�dsbiẊn�s,t���h

�
�

�Xl
G3k

0 �x,X�s�;t − t�� , �3.2�

where G0 is the Green’s function of the half space with a free

surface. We shall call vz
s the scattered wave when Ẋ is given

by the response of the dislocation to the incident Rayleigh
wave. That is, when X is the solution of Eq. �3.1� with a
right-hand side given by the stress associated with the inci-
dent surface wave. We neglect the back reaction of the scat-
tered wave on the dislocation dynamics.

In the expression above, it has been assumed that the
dislocation oscillates with amplitude small compared to
wavelength, so that its time-dependent position can be re-
placed by the static, equilibrium position X�s , t��X�s�, with

X�s�= �0,0 ,z0�+s� �−L
s
L�. Also, since Ẋn�s�= Ẋ�s�tn

for a gliding motion, we have � jnhtn�h=−nj. In the frequency
domain, Eq. �3.2� becomes

vz
s�x,�� = − �b�

L
dsẊ�s,��Mlk

�

�Xl
G3k

0 �x,X�s�;�� ,

�3.3�

where we have defined M�n tt+ t tn and we have used
cijkltinj =�Mlk. The next step in the calculation of vz

s in Eq.

�3.3� is the determination of Ẋ�s ,�� and of �Xl
G3k

0 �x ,X ;��.
This is done in the next two sections.

1. Motion of the dislocation line: Ẋ„s ,�…

The response of the dislocation depends on the incident
wave. The displacements associated with an incident surface
acoustic wave propagating along the x1 direction are

u1
inc�x,�� = �kRAe�Lz + �Te�Tz�eikRx1,

�3.4�
uz

inc�x,�� = − i��LAe�Lz + kRe�Tz�eikRx1,

where A�−2�1−�2 / �2−�2�, � is the zero of the Rayleigh
polynomial P���=�6−8�4+8�2�3−2/�2�−16�1−1/�2�, and
�L,T��kR

2 −kL,T
2 �0.

In Eq. �3.1�, the Peach-Koehler force F=Ft is written
considering the external resolved shear stress � generated by
the incident wave at the dislocation position X�s�: F=�b,
where � can be written in a gliding motion �=Mlk�xl

uk
inc

=2n1t1�x1
u1

inc+2n3t3�zuz
inc+ �n1t3+n3t1���x1uz

inc+�zu1
inc�. This

means that the problem is solved in a first Born approxima-
tion, implying small scattering strength. In the frequency do-
main, we have to solve

X��s,�� + K2X�s,�� = −
1

�
F�s,��

= − �CL���e�Ls + CT���e�Ts� ,

�3.5�

with K���m�2+ iB�� /�,

CL � 2
�b

�
Ae�Lz�i�n1t1kR

2 − n3t3�L
2� + �n1t3 + n3t1�kR�L� ,

�3.6�

FIG. 5. An incident surface wave interacts with a subsurface
dislocation line.
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CT �
�b

�
e�Tz�2i�n1t1 − n3t3�kR�T + �n1t3 + n3t1��kR

2 + �T
2�� ,

and �L,T��L,T�3+ ikR�1. Also, in Eq. �3.6�, z means z0+s�3,
the depth of the dislocation point whose parameter is s. The
solution is

X�s,�� =
CL

�L
2 + K2�e�Ls −

cosh �LL

cos KL
cos Ks

−
sinh �LL

sin KL
sin Ks	

+
CT

�T
2 + K2�e�Ts −

cosh �TL

cos KL
cos Ks

−
sinh �TL

sin KL
sin Ks	 , �3.7�

and the dislocation velocity is Ẋ�s ,��=−i�X�s ,��.

2. Gradient of the Green’s tensor

The spatial derivatives of the Green’s tensor that we need
for our application to dislocation and/or sound interaction are
given here with the same notation used in Sec. II C, and they
are evaluated for x on the free surface �z=0�. We simply use
�X1

=−�cos ���r+ ��sin �� /r��� and �X2
=−�sin ���r

− ��cos �� /r��� to get, from Eq. �2.3�, �Xj
G3i

0 �1
 i , j
3�

�X.G3.�x,X;�� =
1

4��
− If0
�r� + �cos 2��If2

�r� �sin 2��If2
�r� �2 cos ��Ifz1

�r�

�sin 2��If2
�r� − If0

�r� − �cos 2��If2
�r� �2 sin ��Ifz1

�r�

�2 cos ��Ig1
�r� �2 sin ��Ig1

�r� 2Igz0
�r� � , �3.8�

where

If0
�r� � � dkk3J0�kr�f�k� ,

If2
�r� � � dkk3J2�kr�f�k� ,

Ig1
�r� � � dkk2
LJ1�kr�g�k� ,

Ifz1
�r� � � dkk2J1�kr��z0

f�k� , �3.9�

Igz0
�r� � � dkk
LJ0�kr��z0

g�k� ,

f�k� = ��kT
2 − 2k2�e
Lz0 + 2
L
Te
Tz0�/F�k� ,

g�k� = ��kT
2 − 2k2�e
Lz0 + 2k2e
Tz0�/F�k� ,

and where �z0
denotes the derivative with respect to z0. The

spatial derivatives �Xj
G3i

0 are numerically calculated as de-
scribed in Sec. II B, and we simply evaluate then

Mlk�Xl
G3k

0 = �
i,j

nitj��Xj
G3i

0 + �Xi
G3j

0 � �3.10�

for X�s�= �s�1 ,s�2 ,z0+s�3�, with −L
s
L and x
= �x1 ,x2 ,0� on the free surface.

B. Simplified expression in the case of a short dislocation line
parallel to the free surface

In order to obtain a second validation of our numerical
procedure, we now use it to compute a simple situation that
is also amenable to analytical treatment, and compare both.
The simplified situation is characterized by the following: �1�
the dislocation line and the Burgers vector are parallel to the
free surface. This implies n= �0,0 ,1� and �� , t� is deduced
from �x1 ,x2� by a rotation of angle �, see Fig. 6 below, with

=0. �2� The length of the dislocation line L is small com-
pared to the wavelength: kRL�1. �3� Far-field radiation is
considered, where the contribution of the Rayleigh wave is
expected to be dominant: kRr�1. Under these conditions,
the expressions for vs�x ,�� simplify to

vz
s�x,�� = − 2�b2 sin � sin�� − ��f1���f2�z0�f3�L�

�H1
�2��− kRr� , �3.11�

where f1�����kR
2�L�kT

2 −2kR
2� / �F��kR��m�2+ i�B��, with

F��kR�=−8kR�kT
2 −2kR

2�−4kR�2�L
2�T

2 +kR
2��L

2 +�T
2�� / ��L�T�,

FIG. 6. Configuration of a dislocation line parallel to the free
surface. The dislocation line is 2L long, at depth z0, and is at an
angle � with the x1 direction.
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f2�z0���2kR
2 −kT

2��e�Lz0 −e�Tz0�2 �where we have used
2�LkRA=kT

2 −2kR
2�, and f3�L��L�1−tan�KL� / �KL��. H1

�2� de-
notes the Hankel function of second kind and of order 1. This
expression is a priori valid only in the far field but, as seen
previously for the Green’s function, when 
kRz0
 is small
enough, that is, when the dislocation line is near the free
surface, it gives a reasonable approximation of the field, as
illustrated in Fig. 7.

C. Scattered waves and interference pattern on the free
surface

We give here some pictures of the fields that are produced
by dislocation line scattering in a configuration C1 described
at the beginning of this section: The dislocation line is par-
allel to the free surface, with � the angle that it forms with
the x1 direction, the direction of incidence �Fig. 6�. The Bur-
gers vector is perpendicular to the dislocation line and the
angle 
 gives its direction with the horizontal.

In order to facilitate a comparison with the experiments of
Refs. 11–13, we plot the displacement uz

s=vz
s / �−i�� rather

than the velocity vz
s. Figure 8 shows the wave uz

s�r ,z=0�
scattered by a short edge dislocation line L=�R /10 with a
Burgers vector parallel or perpendicular to the free surface,
visualized on the free surface. The expression for a Burgers
vector parallel to the free surface is given in the “far field” by

Eq. �3.11� and, as expected, extinctions are observed in the
direction �=� and �=�+� �i.e., here, �=� /2 and �
=3� /2�.

Figure 9 shows the scattered fields for long dislocation
lines �L=10�R� parallel to the free surface with Burgers vec-
tor parallel to the free surface for three different line orien-
tations � with respect to the incident wave direction �along
the horizontal axis on the figures�. The amplitudes of the
scattered wave and of the dislocation motion are indicated. It
can be seen that the dislocation motion has an increasing
amplitude when the line lies perpendicular to the incident
direction, resulting in an increase of the scattering strength.
This is also the case for a short dislocation line, with a sin �
dependence as shown in Eq. �3.11�. For short lines, the pat-
tern of the scattered wave rotates with � and its amplitude
scales as sin �. This is because the response of the disloca-
tion keeps the same form, given by its fundamental mode of
oscillation, with an amplitude that depends on the incident
wave direction. For long dislocation lines, the response of
the dislocation is more complex. When the line is parallel to
the incident wave direction, the dislocation line oscillates
with the periodicity of the incident wavelength. Conversely,
when the line is perpendicular to the direction of the incident
wave, all points of the line receive an excitation with the
same phase. In any case, whatever the length of the disloca-

FIG. 7. Comparison between the forward-scattered elastic velocity calculated numerically vz
s�r ,�=0� with the �simplified� analytical

expression in Eq. �3.11�. Full lines correspond to the numerical calculation and dashed lines to the analytical expression. Calculations are
performed in the configuration C1 with �=� /7 and with �upper panels�, L=�R /100 for �a� z0=−�R /10 and �b� z0=−�R and with �lower
panels�, L=�R /10 for �c� z0=−�R /10 and �d� z0=−�R.
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tion line, the amplitude of the line motion increases from �
=0 to �=� /2.

Finally, Fig. 10 shows the interference pattern uz
inc�x�

+uz
s�x� on the free surface in the configuration described in

Ref. 13: three dislocation lines are parallel to the free surface
�we assume the Burgers vector is parallel to the free surface
too, as in Ref. 13� and they form a rather small angle �
�20° with the direction of the incident wave. A zoom near
one line is given to visualized the near field. Both pictures
are qualitatively in good agreement with those of the experi-
ments. In order to advance on quantitative aspects, there are
a number of experimental questions whose answers would be
of value in order to enhance x-ray imaging as a nonintrusive
tool to study the wave-dislocation interaction.

(1) Dependence on the line length. The dislocation lines
that are visualized in the experiments are quite long. At the
working frequency, it is probably not possible to visualize
the scattering by short dislocation lines since the scattering
strength will be much smaller. Is it possible to check if a
threshold is experimentally detected depending on the line
length?

(2) Dependence on the dislocation line orientation. The
interference pattern is here given for small angle �, while the
present theory predicts an increasing scattering strength for
increasing �. Is it possible to experimentally observe this
dependence?

(3) Dependence on line depth. The scattering strength is
expected to be strongly dependent on the depth z0 of the
subsurface dislocation line, as will be discussed in the forth-
coming section. Briefly speaking, scattering at a given fre-
quency is particularly strong at a given depth. Thus, the dis-
location lines responsible for the scattering observed by
Zolotoyabko et al.11 and Shilo and Zolotoyabko12,13 must be
at the depth corresponding to their working frequency. Is it
possible to check this point by a change of frequency and/or
line depth?

In this configuration, we obtain amplitudes of the motion
of the dislocation lines typically of order X�500uz

inc �this is
also the order of magnitude observed in Figs. 8�c� and 9�d��.
In the experiments of Ref. 13, uz

inc�0.05 nm �deduced from
the incident strain experimentally measured�, and we thus
evaluate the amplitude of the dislocation motion to be X
�25 nm. Note that this is very small compared to the wave-
length ��6 �m of the Rayleigh wave, thus validating the
assumption made in Sec. III A. This also gives the disloca-
tion velocity around 90 m s−1, well below the speed of
sound. This is further discussed in the following section.

1. Comment on the calculation of Ref. 13

The interference pattern observed in Ref. 13 was inter-
preted by Shilo and Zolotoyabko using a calculation that
certainly captures the essence of the interaction between the
incident wave and the dislocation, and it is of interest to
compare their approach to ours. Their approach is as follows:
the vertical displacement field is assumed to follow the
movement of the dislocation, with the latter movement being
induced, as in our approach, by the presence of the incident
wave. The displacement field is thus written as Uz�x−X�,
where X is the time-dependent position of the dislocation

FIG. 8. Scattered displacement fields uz
s for a dislocation line

�with 2L=�R /5� parallel to the free surface ��=� /2� at depth z0

=−2/kR. The box is a square 10�R on each side. The Burgers vector
is �a� parallel to the free surface, 
=0 �we get 
uz

s
 / 
uz
inc
�10−1�, and

�b� perpendicular to the free surface, 
=� /2 �we get 
uz
s
 / 
uz

inc

�9.10−2�. �c� Full line, corresponding motions of the dislocation
line X�s�; dotted line, the motion of the dislocation line for 
=0 and
�=� /9 �the amplitude of motion would be zero for �=0�. 
 de-
notes the angle between the incident wave direction �x1 direction�
and the Burgers vector. See Sec. III D for the definition of scattering
strength 
uz

s
 / 
uz
inc
.
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and Uz�x� is the static displacement around the dislocation
�in Ref. 13, the two-dimensional case is considered, a sim-
plification that may be valid close enough to the dislocation
line�. The scattered field is then defined as the difference
between the static field induced by the moving dislocation
and the static field induced by the dislocation at rest and for
a dislocation motion along the x2 direction �the line is infinite
along the x1 direction with the Burgers vector along x2�:

uz
s�x1,x2,z;t� = Uz„x2 − X�x1,t�,z… − Uz�x2,z� , �3.12�

with

Uz�x2,z� = −
b

8��1 − ����1 − 2��log�x2
2 + z2� +

x2
2 − z2

x2
2 + z2	 ,

�3.13�

with ��� / �2��+��� the Poisson ratio. Note that the expres-
sion of Uz used in Ref. 13 coming from Nabarro31 differs
from the expression given by Landau and Lifshitz22 by an
additive constant that does not affect our calculations. For
small amplitude of the dislocation motion, uz

s simplifies to
uz

s�x2 ,z ; t�=X�x1 , t��x2
Uz�x2 ,z�, from which we deduced the

scattered velocity field vz
s= u̇z

s as a function of Ẋ �dot means
time derivative� in the frequency domain:

vz
s�x1,x2,z;�� = Ẋ�x1,��

�

�x2
Uz�x2,z� . �3.14�

This expression of vz
s has to be compared with the expression

given by our theory under the same approximations. This
means that �1� the line is assumed to be infinite and the
presence of the free surface is omitted, and �2� the static field
can be used if the frequency goes to zero or, equivalently, in
the near-field approximation: k�,�r�1. In this case, the inte-
gral representation in Eq. �3.3� becomes

vz
s�x1,x2,z;�� = �bẊ�x1,��� �

�x2
g33

0 �x2,z, ;��

+
�

�z
g32

0 �x2,z;��	 , �3.15�

where we have denoted g0�x2 ,z ;����dsG0�s ,x2 ,z ;�� the
two-dimensional Green’s tensor in infinite space and where
we have used Mlk=�l2�k3+�l3�k2. Note that the origin is here
at the dislocation position �at rest�. Note also that it has been

assumed that the dislocation velocity Ẋ can be taken out of
the integral, a simplification that may be valid close enough
to the dislocation line.

The assumption that the static field can be used is now
taken into account by using the static Green’s function

FIG. 9. Scattered fields for L
=10�R, 
=0, the line is parallel to
the free surface at depth z0=
−2/kR �the box is 10�R on each
side� and �a� �=� /9 �we get

uz

s
 / 
uz
inc
�0.6�, �b� �=� /4 �we

get 
uz
s
 / 
uz

inc
�1�, and �c� �
=� /2 �we get 
uz

s
 / 
uz
inc
�1.5�. �d�

Corresponding motion of the dis-
location line X�s�: full line, �
=� /2; dashed line, �=� /4; and
dotted line, �=� /9. See Sec.
III D for the definition of scatter-
ing strength 
uz

s
 / 
uz
inc
.
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gab
0 �x2 ,z� �a ,b=2,3� instead of the dynamic one,32

gab
0 �x2,z� =

1

4��
��ab

� + 3�

� + 2�
�log x + D� −

� + �

� + 2�

xaxb

x2 	 ,

�3.16�

where D is a constant expressed as a function of a cutoff
distance; it takes care of the divergence of the integral that
defines the Green’s function. To compare the expression of
the scattered fields in Eqs. �3.14� and �3.15�, it is sufficient to
compare �x2

Uz with �b��x2
g33

0 +�zg32
0 �. It is easy to see that

the two terms are equal, from which we deduce that the two
approaches indeed focus on the same mechanism. Actually,
the calculation of Ref. 13 can be recovered from our calcu-
lation.

The main improvement in our theory is to account for the
presence of the free surface. In addition, we also account for
the finite length of the dislocation line, and our dynamical
calculation holds in the whole half space, not just in the near
field. All these modifications lead to an increase in the inten-
sity of the emitted field with respect to the static field used in
Ref. 13. In the experimental configuration that we mimic in
the previous section, we found a 2 orders of magnitude in-
crease. Thus, we obtain similar interference pattern with a
ratio X /�R 2 orders of magnitude smaller than in Ref. 13.
This has two important consequences: �1� The drag coeffi-

cient B falls in the usual range B�10−5 Pa s and �2� the

dislocation moves in a subsonic motion with Ẋ /c�10−2.
Had this ratio been higher, the equation of motion would
have had to be modified to take into account the Lorenz force
�see, for instance, Ref. 29�.

We conclude that the unexpectedly high value of the dis-
location velocity and the unusual low value of the drag co-
efficient B announced in Ref. 13 are artifacts of the approxi-
mations in the model therein.

D. Discussion on the scattering strength

The scattering strength can be measured as 
uz
s
 / 
uz

inc
,
where 
us
 denotes a typical amplitude, to be defined, of the

FIG. 11. Scattering strength 
uz
s
 / 
uz

inc
 as a function of the length
2L of the dislocation line. The configuration is C1 with a line par-
allel to the free surface �the Burgers vector also� forming an angle
�=� /9 with the direction of the incident wave and z0=−1.5/kR0.
Full lines, analytical �simplified� expressions in Eq. �3.11�; dashed
lines, numerical calculations.

FIG. 12. Scattering strength 
uz
s
 / 
uinc
 �gray scales correspond to

logarithm values� as a function of z0 and � deduced from the ana-
lytical expression in Eq. �3.11�. The configuration is C1 with the
line and Burgers vector both parallel to the free surface. The line is
at an angle �=� /9 with the direction of the incident wave and has
a length 2L=�R0 /5. The solid curve is a plot of the function
z0kR0=1.7�� /�0�−1, indicating the position of the maximum scat-
tering strength as z0 varies for fixed frequency �vertical profiles�.

FIG. 10. Interference patterns calculated in a configuration simi-
lar to those described in Ref. 13: an incident wave at frequency �
= �2���580�106� rad s−1 propagates in a medium �configuration
C1� containing in its bulk three dislocation lines �dotted line on the
figure�, forming a rather small angle with the direction of the inci-
dent wave. The characteristics of the dislocations lines are, from left
to right, 2L1=9�R, �1=58° �that is, 13° with −x1 axis�; 2L2=�R;
�2=13°; and 2L3=7�R, �3=−20°. All dislocations are assumed to
be at z0=−3/kR. �a� Interference pattern calculated in a box 26�R

�12�R �to be compared with Fig. 1�a� in Ref. 13�. �b� Wave dis-
tortion in the vicinity of the vibrating dislocation. The box is 8�R

�4�R �the direction of the dislocation line is indicated by dashed
line and the direction of the incident wave by dotted line�, to be
compared with Fig. 3 in Ref. 13.
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secondary wave re-emitted by the dislocation and 
uinc
 the
amplitude of the incident wave, both measured at the free
surface. In this section, most of the results are calculated
using the simplified expression in Eq. �3.11�, and we define

us
 as the amplitude A of the Rayleigh wave in the far field
AeikRr /�kRr. For the results coming from numerical calcula-
tions, 
us
 is taken as the mean value of the norm of us in a
square box of 2�R large. This is an arbitrary definition but it
has the advantage to consider the scattered amplitudes both
in the near and in the far field. It has an adjustable scale
factor, the size of the box. Of course, with decreasing z0
values, it is expected that 
us
 numerically loses physical
meaning since the Born approximation diverges for z0=0, r
=0.

The scattering strength depends on the characteristics of
the dislocation, notably b and B, but this dependence is not
discussed here since most dislocation lines have b�0.5 nm
and B�10−5 Pa s. It also depends on the dislocation length
2L, the depth of the dislocation z0 and the frequency � of the
incident surface wave. These dependencies are discussed be-
low. To do that, we use the frequency �0= �2���580
�106� rad s−1 as a reference frequency and the Rayleigh
wavelength �R0 �associated with the Rayleigh wave number
kR0��0 / �cT��� as a reference length. We explore L and z0

around �R0 and � around �0.
Figure 11 shows the scattering strength as a function of

the dislocation length L at �0 and �0 /10 frequencies. As
previously seen, the scattering strength increases with in-
creasing L. For small L, this dependence is as L3 predicted in
Eq. �3.11� by the function f3�L� and departs from this behav-
ior for large L.

Figure 12 shows the scattering strength as a function of z0
and � using the simplified expression in Eq. �3.11�. For each
frequency �, there is a maximum at z0kR�−1.7. This is the
maximum of the function f2�z0�, and it corresponds to the
maximum reached by the incident stress � that appears in the
Peach-Koehler force as the force acting on the dislocation
line. Such a maximum on the incident stress produces a
maximum response of the dislocation line and thus of the
amplitude of the scattered wave. This is illustrated further in

Fig. 13 that shows vertical cuts of the previous representa-
tion in Fig. 12, in agreement with numerical calculations. As
expected, the numerical evaluation of the scattering strength
is higher than the analytical one since the scattered amplitude
is higher in the near field. For the readability of the figure,
the values obtained from the numerical evaluation have been
scaled by a constant factor.

Figure 14�a� shows the scattering strength as a function of
� �horizontal profiles of the previous representation in Fig.
12� and the comparison with numerical results for small L. It
can be seen that, for a given depth of the dislocation line z0,
the scattering strength has a bandpass centered at a frequency
satisfying kR�−5/z0. This law, however, is only valid for z0
deeper than around −2/kR0. Numerical results for large L are
shown in Fig. 14�b� and exhibit the same trend.

IV. CONCLUDING REMARKS

We have studied the interaction of a subsurface edge dis-
location line of finite length with an incident surface acoustic

FIG. 13. Scattering strength 
uz
s
 / 
uz

inc
 as a function of z0 at
difference frequencies � �vertical cuts of Fig. 12�. Full lines corre-
spond to the analytical �simplified� expression, and dashed lines
correspond to the numerical calculations with an adjusted scale.

FIG. 14. Scattering strength 
uz
s
 / 
uz

inc
 as a function of � at dif-
ferent dislocation depths z0. �a� Horizontal cuts of Fig. 12 for L
=�R0 /10: Full lines correspond to the analytical �simplified� expres-
sion and dashed lines correspond to the numerical calculations with
an adjusted scale. �b� The curves correspond to numerical calcula-
tions for L=10�R0.
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wave using a full three-dimensional vector approach. As an
intermediate step, an efficient method for the numerical cal-
culation of the Green’s function for an elastic half space is
developed. The main lesson we learn from this study is that,
in order to get a quantitative appraisal of recent experiments
that visualize vibrating dislocations, this full approach is a
must. Further, having a powerful formalism at hand, a num-
ber of questions suggest themselves for experimental work
that may lead to significant advances in the understanding of
dislocation dynamics, a phenomenon that is at the root of
many material properties.

The main approximation in our theory is the neglect of the
secondary elastic waves on the dislocation dynamics, but we
have relaxed the restrictions �R�L of our previous work.6,7

The derivations have been performed for an arbitrary orien-
tation of the dislocation line, but results have been illustrated
in the case of a line parallel to the free surface. The main
motivation for this study was in the experiments of Shilo and
Zolotoyabko, who are able to visualize the interference pat-
tern between the incident wave and the scattered wave11–13

and a part of the paper has been devoted to the comparison
with Ref. 13. In cases close to the experimental configuration
of Ref. 13, where L�10�R and depth z0�−�R /�, we find a
scattering amplitude 
uz

s
 / 
uz
inc
�0.5 and thus an observable

interference pattern.
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APPENDIX A: DERIVATION OF THE VERTICAL
DISPLACEMENT DUE TO A SUBSURFACE POINT FORCE

IN A SEMI-INFINITE ELASTIC MEDIUM

We have to solve

��2ui�x� + cijkl� j�luk�x� = − �f1�i1 + f3�i3���x − X� ,

�A1�

for x= �x1 ,x2 ,z
0�, with the boundary condition at the free
surface, z=0, that the normal stress must vanish,
ci3kl�luk�x�
z=0
=0, and the radiation condition for z→−�.

The system is solved using a two-dimensional Fourier
transform on the horizontal coordinates, with u= �u1 ,u2 ,uz�
and k= �k1 ,k2�. Denoting U� ik1u1+ ik2u2, we get

0 � z � z0����z2 + ��2 − �� + 2��k2�U�k,z� − �� + ��k2�zuz�k,z� = 0,

�� + ���zU�k,z���� + 2���z2 + ��2 − �k2�uz�k,z� = 0, � �A2�

with the following conditions at z=z0: �U�k ,z0��= �uz�k ,z0��=0, ���zU�k ,z0��=−ik1f1, ��+2����zuz�k ,z0��=−f3, where
��H�z0��� lim�→0H�z0+��−H�z0−���, the free-surface boundary condition at z=0 that becomes �U�k ,0�+ ��+2���zuz�k ,0�
=0, �zU�k ,0�−k2uz�k ,0�=0, and the radiation condition for z→−�. A solution �U ,uz� of the following form is sought:

0 � z � z0� U�k,z� = a1e
L�z−z0� + a2e−
L�z−z0� + b1e
T�z−z0� + b2e−
T�z−z0�,

uz�k,z� = A1e
L�z−z0� + A2e−
L�z−z0� + B1e
T�z−z0� + B2e−
T�z−z0�,
�

�A3�

z 
 z0�U�k,z� = ae
L�z−z0� + be
T�z−z0�,

uz�k,z� = Ae
L�z−z0� + Be
T�z−z0�.
�

Since in this paper we only need the vertical displacement
for z�z0 because the interest is in the surface displacement,
we only have to determine �
L ,
T� and �A1 ,A2 ,B1 ,B2�. The
resolution is straightforward and we get


L,T = �k2 − kL,T
2 , �A4�

A1 =
1

2i�kT
2 �k1f1�G�k�e
Lz0 + 4
L
T�kT

2 − 2k2�e
Tz0�

+ i
Lf3�G�k�e
Lz0 + 4k2�kT
2 − 2k2�e
Tz0��

e
Lz0

F�k�
,

A2 =
1

2i�kT
2 �k1f1 + i
Lf3� ,

�A5�
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B1 =
1

2i�kT
2�k1f1�4k2�kT

2 − 2k2�e
Lz0 + G�k�e
Tz0�

+ i
Lf3�4k2�kT
2 − 2k2�e
Lz0 + G�k�

k2


L
T
e
Tz0	� e
Tz0

F�k�
,

B2 = −
1

2i�kT
2�k1f1 + i

k2


T
f3	 ,

where G�k���kT
2 −2k2�2+4k2
L
T and F�k���kT

2 −2k2�2

−4k2
L
T. Letting r= �x1 ,x2�, 	��X1 ,r�, and r�
r
,
uz�r ,	 ,0
z
z0�, we obtain

uz�x� =
1

2��
��cos 	�f1� dkk2J1�kr�f�k,z�

+ f3� dkk
LJ0�kr�g�k,z�	 , �A6�

with

2kT
2 f�k,z� � �G�k�e
Lz0 + 4
L
T�kT

2 − 2k2�e
Tz0�
e
Lz

F�k�
+ �4k2�kT

2

− 2k2�e
Lz0 + G�k�e
Tz0�
e
Tz

F�k�
+ e−
L�z−z0�

− e−
T�z−z0�,
�A7�

2kT
2g�k,z� � �G�k�e
Lz0 + 4k2�kT

2 − 2k2�e
Tz0�
e
Lz

F�k�
+ �4k2�kT

2

− 2k2�e
Lz0 +
k2


L
T
G�k�e
Tz0	 e
Tz

F�k�
+ e−
L�z−z0�

−
k2


L
T
e−
T�z−z0�,

which is Eq. �2.1�.

APPENDIX B: DETAILS ON THE NUMERICAL
INTEGRATION

The numerical integration of the integrals in the Eq. �A6�
presents several difficulties.

�1� Singularities are present on the real axis. As men-
tioned in the body of the text, this difficulty can be avoided
by considering the elastic case as the limit of the viscoelastic
case for small viscosity, adding a small imaginary part to the
frequency. This moves the singularities off the real axis, so
that the integration is possible. In practice, we have per-
formed the numerical integration with ��1+ i��, �=10−10. A
Runge-Kutta method with adaptative step size has been used
�Fig. 15� in a first interval �0,k0=1.5kR� that contains the
singularities �kT ,kL ,kR�, while the rest of the integral is
treated as described below.

�2� Integrands oscillate because of the Bessel functions
Jn�kr�. These functions are known to be difficult to integrate
numerically for large r. References 23–25, 33, and 34 have
proposed a Filon quadrature method to overcome this diffi-

culty. The essentials of the method, as adapted to our expres-
sions, are presented in Appendix C.

�3� The last point is not a difficulty, but a criterion is
needed to cut the upper limit of the integral and to choose the
step size dk for the Filon quadrature method. When the
Bessel terms are omitted, the form of the curves to be inte-
grated is governed by the terms e�L,Tz0. Thus, we fix the step
size for the Filon quadrature dk=1/ �10
z0
� and the upper
limit of the integrals kmax=k0+10/ 
z0
.

APPENDIX C: THE INTEGRATION USING FILON AND/
OR TRAPEZOIDAL SCHEME

1. Method

The Filon quadrature method has been developed in Refs.
23–25, 33, and 34. We remind here the basic ideas and for-
mulas that we use and that to be found in those papers. The
aim is to calculate integrals of the form H�r�
��a

bh�k�Jn�kr�dk for large r and smooth behavior of h�k�.
The idea is to calculate by quadrature the integral using a
discretization of h�k� instead of a discretization on
h�k�Jn�kr�, with the latter needing much more discretization
points than the former. With a=k1, b=kN, and kj =a+ �j
−1�� ���1/ �N−1��, the discretized values of h�k� are hj

�h�kj�. The idea is to develop h in a polynomial form on the
interval �kj ,kj+1�, since it is possible to derive and analyti-
cally evaluate the integrals �kj

kj+1kmJn�kr�dk.
For our application in the calculations in Eq. �3.8�, we

need H�r� for n=0,1 ,2 �the case n=2 is deduced from
n=0,1 using J2�kr�=2J1�kr� / �kr�−J0�kr��,

FIG. 15. Example of a curve to be integrated here in the integral
that defines uz in Eq. �A6� for f1=0, �=10−10, z0=�R /100, and r
=10�R. Otherwise, �= �2���580�s−1, cT=3758 m s−1, and �=2. In
the interval k /kR= �0,1.5�, a usual Runge-Kutta method with ad-
aptative step size is used. In the interval k /kR= �1.5,10kR
z0
�, a
Filon quadrature method is used that avoids resolving the oscilla-
tion. The figure has been reduced: on the horizontal axis, the inte-
gration goes until kmax/kR=160, and on the vertical axis, near the
singularity k=kR, the curve has a maximum close to 300.
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�
k1

kN

dkkh�k�J0�rk� =
1

r
�kNhNJ1�rkN� − k1h1J1�rk1��

−
1

�r3 �
j=1

N−1

�hj+1 − hj��S0�rkj+1� − S0�rkj�� ,

�
k1

kN

dkh�k�J1�rk� = −
1

r
�hNJ0�rkN� − h1J0�rk1��

+
1

�r2 �
j=1

N−1

�hj+1 − hj��R0�rkj+1� − R0�rkj�� ,

�C1�

�
k1

kN

dkkh�k�J2�rk� = −
1

r2 �hN�2J0�rkN� + rkNJ1�rkN��

− h1�2J0�rk1� + rk1J1�rk1���

+
1

�r3 �
j=1

N−1

�hj+1 − hj��Q0�rkj+1�

− Q0�rkj�� ,

where the functions Hn are the Struve functions �see the next
section� and where

S0�x� � �
0

x

dyyJ1�y� =
�

2
x�J1�x�H0�x� − J0�x�H1�x�� ,

R0�x� � �
0

x

dyJ0�y� = xJ0�x� + S0�x� , �C2�

Q0�x� � 3S0�x� + 2xJ0�x� .

In the evaluations of these integrals we used the approxi-
mations for the Struve functions H0 and H1 of the following
section.

2. Approximation of the Struve function H0„x…

As underlined by Aarts and Janssen in a recent paper,35

the Struve functions are not available in most usual software
�for example, MATLAB that is used in the present investiga-
tion� and the expansions or approximations available need
separate expressions for small or large argument. The authors
of Ref. 35 develop an effective and simple approximation for
H1�z� valid for all z, that is,

H1�x� �
2

�
− J0�x� + �16

�
− 5� sin x

x
+ 12�1 −

3

�
�1 − cos x

x2 ,

�C3�

with a maximum absolute error of 0.005 �see also Ref. 36�.
In the same manner, it is possible to derive an equivalent for
the Struve function H0�x�. The function H0�x� is defined by

H0�x� �
2

�
�

0

1

dt
sin xt
�1 − t2

, �C4�

and we use the definition of the Bessel function,

J1�x� �
2x

�
�

0

1

dt�1 − t2 cos xt . �C5�

The preceding integral is integrated by parts, with f =�1− t2

and g�=cos xt. We get

J1�x� =
2

�
�

0

1

dt
t sin xt
�1 − t2

. �C6�

The identity t /�1− t2=−1/�1− t2+��1− t� / �1+ t� gives

J1�x� =
2

�
�

0

1

dt
sin xt
�1 − t2

+
2

�
�

0

1

dt�1 − t

1 + t
sin xt . �C7�

We use now the result of Aarts and Janssen:35 on the interval
�0, 1�, the function ��1− t� / �1+ t� can be approximated by a

linear function ĉ+ d̂t, with ĉ=7� /2−10 and d̂=18−6� are
the values of C and D that minimize �0

1dt
��1− t� / �1+ t�
− �C+Dt�
2, from which we get the equivalent for H0�x�,

H0�x� � J1�x� + �16

�
− 5�1 − cos x

x
+ 12� 3

�
− 1� sin x − x

x2 .

�C8�

FIG. 16. Full line: absolute error in the approximation of H0�x�
given by Eq. �C8�. Dotted line: absolute error in the approximation
of H1�x� given in Ref. 35.
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The absolute approximation error in Eq. �C8� is plotted in
Fig. 16. For the calculation of H0�x�, the computer program
MATLAB has been used �the program is a direct conversion of
the corresponding FORTRAN program in Ref. 37 by
Barrowes38�. The program uses the power series expansion39

H0�x� =
2

�
�x −

x3

32 +
x5

3252 − ¯ 	 . �C9�

As for the H1 approximation of Aarts and Janssen, the error
is small �the maximum value is 0.0056� and vanishes for
large x.
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