Structural transition of Li₂BeH₄ under high pressure: A first-principles study

C. H. Hu,¹ D. M. Chen,¹ Y. M. Wang,^{2,*} D. S. Xu,² and K. Yang¹

¹National Engineering Research Center, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road,

Shenyang 110016, People's Republic of China

²Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, People's Republic of China

(Received 29 September 2006; revised manuscript received 23 January 2007; published 13 June 2007)

We present a systematic first-principles investigation of the high-pressure structural stability of Li₂BeH₄. Our total-energy calculations show that at ambient pressure, the structure of α -Li₂BeH₄ observed in experiments is more stable than the other proposed structures in this work and the structural transformation from α to β (Cs₂MgH₄ type; *Pnma*) occurs at 18.1 GPa, together with a volume reduction of 4.7%. A detailed study of their electronic structures under ambient pressure up to 30.0 GPa reveals that this behavior is closely related to the variation in the Be–H covalent bonding in the BeH₄ anionic subunits of Li₂BeH₄. Based on a colligated analysis of the covalent bond number per unit area (N_a) and the scaled bond overlap population (BOP^s), β -NaAlH₄ and β -Mg(AlH₄)₂ are expected to be the most promising candidates for hydrogen storage among the other investigated materials. However, the improvement of hydrogen absorption and/or desorption for Li₂BeH₄ is less significant.

DOI: 10.1103/PhysRevB.75.224108

PACS number(s): 31.15.Ew, 68.18.Jk

I. INTRODUCTION

Exploring a safe, cost-effective, and fully hydrogenationreversible hydrogen storage material with a higher gravimetric hydrogen density (GHD) in excess of 6.5 wt % is one of the targets for developing next-generation energy storage systems.^{1,2} It had been difficult for conventional hydrides such as LaNi₅-H and TiFe_{1.8}-H, and Laves phase systems to satisfy the requirement of a high GHD, although they have good cycling performance under ambient conditions. The complex hydrides are generally thought to be the most promising candidates because of their high GHD.^{3–7} For example, sodium alanate, NaAlH₄, and magnesium alanate, Mg(AlH₄)₂, have 7.5 and 9.6 wt % theoretical hydrogen capacities, respectively. Unfortunately, these hydrides have been considered to be intrinsically noncyclable energy storage materials due to their high desorption temperatures for a long time. Recently, they have attracted attention because Bogdanovic and Schnickardi³ found that NaAlH₄ can rapidly release 5.6 wt % H at moderate temperatures by adding transition-metal catalysts.

Apart from the two known hydrides, BeH₂ and LiBH₄, having higher hydrogen capacities (18.3 and 18.5 wt %, respectively), lithium beryllium hydride, Li₂BeH₄, is also a good candidate for hydrogen storage due to its high GHD (15.0 wt %). Although Bell and Coates⁸ were the first to synthesize experimentally the Li₂BeH₄ compound, they failed to determine its crystal structure. Based on a new interpretation of the powder-diffraction data given by Bell and Coates, Bastide⁹ further determined that Li₂BeH₄ has a monoclinic distorted perovskite-type structure. However, more crystallographic information on atomic positions was not given. Recently, Bulychev et al.¹⁰ characterized successfully its structure by means of x-ray and neutron powderdiffraction techniques. Shortly after, Lipinska-Kalita et al.¹¹ investigated its high-pressure behavior by a synchrotronradiation technique based on x-ray diffraction and highpressure Raman spectroscopy and declared that in the range from 10 to 20 GPa, the pressure-induced structural transformations would occur with increasing pressure. A more detailed structural information, however, was not given in their work. Although some researchers described theoretically the ground-state electronic structure of LiBeH₃ with a hypothetical crystal structure using first-principles methods,^{12–15} to our best knowledge, a systematic study on the electronic structure of Li₂BeH₄ has not been reported yet. In addition, as mentioned in the paper of Bulvchev *et al.*¹⁰ it was difficult to determine the precise positions of atoms with a low atomic number due to their poor scattering ability to neutrons in these compounds. It is much more difficult to describe their high-pressure behavior, governed by the intermolecular as well as intermolecular interactions, by experiments only, without the help of theoretical calculations.

In fact, first-principles methods have been successfully applied to predict the pressure-induced structural transition of MgH₂,¹⁶ LiAlH₄,¹⁷ NaAlH₄,¹⁸ and NaBH₄,¹⁹ in which their phase transitions have also been reproduced by highpressure experiments.^{19–22} Our first-principles total-energy calculations for the pressure-induced phase transitions in the $Mg(AlH_4)_2$ system have been completed,²³ in which we predicted that with compressing the volume, the two structural transitions take place from a prototype α structure to a β structure [δ -Zr(MoO₄)₂ type], and then to a γ structure [Ca(BF₄)₂ type] at 0.67 and 10.3 GPa, respectively. The above success makes us confident that the density-functional theory (DFT) approach is a powerful tool for investigating the phase transitions of such materials and could provide some useful information for experiments. The main aim of the present work is to study the phase transitions of Li₂BeH₄ under high-pressure conditions using first-principles calculations.

The paper is organized as follows: First, computational details are described in Sec. II. Then, in Sec. III, we present the detailed calculation results and then discuss the intrinsic

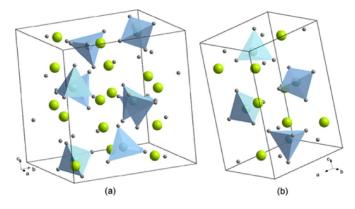


FIG. 1. (Color online) Crystal structure of (a) α -Li₂BeH₄ (monoclinic; $P2_1/c$) and (b) β -Li₂BeH₄ (Cs₂MgH₄ type; orthorhombic; *Pnma*). The tetrahedra represent BeH₄ subunits, where the Be atom is located in the center and the four H atoms at the vertices of each.

relations between the mechanical properties and electronic structures in Li_2BeH_4 . Finally, the conclusions are summarized in Sec. IV.

II. COMPUTATIONAL DETAILS

All the electronic structure calculations in this work were performed within DFT, using the PW91 generalized gradient approximation (GGA) functional.²⁴ A plane-wave ultrasoft pseudopotential method as implemented in the CASTEP code²⁵ was employed. The geometric optimization of a computational cell was carried out with the BFGS minimization algorithm²⁶ provided in this code. The main advantage of the BFGS is that cell optimizations in the mixed space of both internal and cell degrees of freedom, including the optimization at fixed external stress, can be performed. The Pulay density mixing scheme²⁷ was used to generate a new starting charge density during the self-consistent-field (SCF) totalenergy calculations. The SCF calculations were converged when the energy threshold was lower than 10^{-6} eV/atom. In order to decrease the error resulting from the choice of the plane-wave basis sets and k points, as well as to guarantee comparable computational precision, the cut-off energy was set to 300 eV in all calculations. Moreover, a k-point spacing smaller than 0.03 Å⁻¹ was individually adjusted in reciprocal space, not only to the size of each computational cell of the nine crystallographic structures of Li₂BeH₄ given below but also to its variation at a given compressed volume.

III. RESULTS AND DISCUSSION

Recent x-ray powder-diffraction experiments¹⁰ have established the structure of α -Li₂BeH₄, shown in Fig. 1(a), in which BeH₄ forms an almost regular tetrahedral subunit with the Be atom at its center and four H atoms at its vertices, and Li atoms are located in the interstices of the structure composed of those BeH₄ subunits. In our total-energy calculations, the nine closely related potential crystallographic structures are considered. They are, namely, α -Li₂BeH₄ (monoclinic; $P2_1/c$),¹⁰ Cs₂MgH₄ (orthorhombic; *Pnma*),²⁸

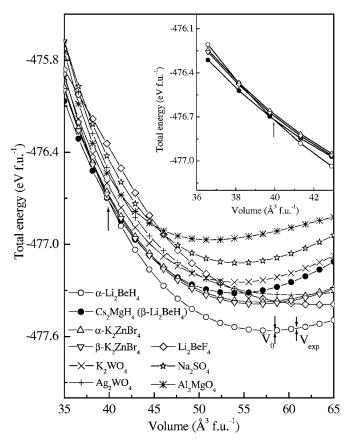


FIG. 2. Total energy (in eV f.u.⁻¹) versus the atomic volume (in Å³ f.u.⁻¹) for α -Li₂BeH₄ and other proposed structures. For clarity, the part near the transition point is enlarged and shown in the inset. The experimental volume (V_{expt} =61.315 Å³ f.u.⁻¹) and optimized equilibrium volume (V_0 =57.658 Å³ f.u.⁻¹) for α -Li₂BeH₄ are marked by the inverse arrows. The $\alpha \rightarrow \beta$ structural transition point is indicated by an arrow.

Li₂BeF₄ (trigonal; *R*-3),²⁹ Na₂SO₄ (trigonal; *P*-3*m*1),³⁰ K₂WO₄ (monoclinic; *C*2/*m*),³¹ Ag₂WO₄ (orthorhombic; *Pnn*2),³² Al₂MgO₄ (cubic; *Fd*-3*m*),³³ α -K₂ZnBr₄ (monoclinic; *P*2₁/*m*),³⁴ and β -K₂ZnBr₄ (monoclinic; *P*2₁).³⁴

In order to show how the structure of Li₂BeH₄ varies under pressure, for each proposed structure, the equilibrium geometry and zero-temperature Gibbs free energy (total energy plus PV or enthalpy) at more than nine pressure points in the range from 0 to 30.0 GPa are obtained by the complete optimization of the structural parameters, as mentioned above. The calculated total energy (Gibbs free energy minus PV) versus the compressed volume (E-V) curves for 1 f.u. of these proposed structures are obtained by fitting the Vinet equation of state (V-EOS),³⁵ the Murnaghan EOS,³⁶ and the Birch EOS,³⁷ respectively. There is no significant difference in these curves. But the curves from V-EOS are in better agreement with the experimental data in the high-pressure range.³⁵ Thus, in this paper, we restrict ourselves to the V-EOS results, as shown in Fig. 2. Figure 2 evaluates the energy and stability of each of the proposed structures. It can be found from this figure that at ambient conditions, α -Li₂BeH₄ with the lowest energy is more stable than the other structures considered in the present study. Furthermore,

TABLE I. Optimized structural parameters: Lattice constants (in Å), internal atomic positions (in fractional coordinates), bulk modulus B_0 (in GPa), and its pressure derivative B'_0 for α -Li₂BeH₄ and β -Li₂BeH₄ (Cs₂MgH₄ type). For comparison, the experimental values of α -Li₂BeH₄ are given in parentheses.

Structure	Lattice constants (Å)		Internal atomic positions	B_0 (GPa)	B_0'
α -Li ₂ BeH ₄	a=7.017 (7.062)	Li1:	0.6827, 0.0745, 0.4450 (0.6879, 0.0777, 0.4405)	28.4	3.21
$(P2_{1}/c)$	b=8.178 (8.338)	Li2:	0.1109, 0.2152, 0.4171 (0.1219, 0.2136, 0.4176)		
	c=8.259 (8.347)	Li3:	0.8306, 0.0855, 0.0943 (0.8461, 0.0776, 0.0923)		
	$\beta = 93.593 (93.577)$	Li4:	0.4119, 0.9318, 0.2080 (0.4128, 0.9263, 0.2073)		
		Be1:	0.9641, 0.0690, 0.6992 (0.9652, 0.0681, 0.7018)		
		Be2:	0.4831, 0.2072, 0.0640 (0.4859, 0.2090, 0.0630)		
		H1:	0.2155, 0.0029, 0.3505 (0.2122, 0.0046, 0.3508)		
		H2:	0.9701, 0.0918, 0.8715 (0.9714, 0.0947, 0.8671)		
		H3:	0.6437, 0.2009, 0.9660 (0.6432, 0.2002, 0.9656)		
		H4:	0.4556, 0.1223, 0.5926 (0.4379, 0.1277, 0.5920)		
		H5:	0.0020, 0.2183, 0.6191 (0.0018, 0.2137, 0.6197)		
		H6:	0.5453, 0.1281, 0.2118 (0.5421, 0.1331, 0.2102)		
		H7:	0.8978, 0.0542, 0.3270 (0.9030, 0.0585, 0.3311)		
		H8:	0.3233, 0.1317, 0.9806 (0.3326, 0.1255, 0.9808)		
β -Li ₂ BeH ₄	<i>a</i> =5.642	Li1:	0.1401, 0.2500, 0.4538	37.2	2.41
(Pnma)	<i>b</i> =4.691	Li2:	0.4802, 0.2500, 0.6899		
	c=8.372	Be:	0.2110, 0.2500, 0.0700		
		H1:	0.7940, 0.2500, 0.5916		
		H2:	-0.0345, 0.2500, 0.0773		
		H3:	0.3146, 0.0034, 0.1423		

among all E-V curves, the curves for the α -Li₂BeH₄- and Cs_2MgH_4 -type structures depicted in Fig. 1(b) (hereafter β -Li₂BeH₄) intersect at a volume of 39.8 Å³, as marked by the arrow in Fig. 2. This implies that the structural transition would be from the α - to the β -Li₂BeH₄ ($\alpha \rightarrow \beta$). With further compression of the volume, however, no other point of intersection with the *E*-*V* curve for the β phase is found, demonstrating that only one phase transition occurs at a certain pressure, in agreement with the previous report given by Lipinska-Kalita et al.¹¹ The optimized lattice parameters and atomic coordinates of α - and β -Li₂BeH₄ are compiled in Table I. As shown in this table, for α -Li₂BeH₄, the deviations between our calculated results and the experimental findings for the lattice constants and the internal parameters are not larger than 2%, which means that our calculations are reliable. By fitting the *E-V* curves for α - and β -Li₂BeH₄ using the V-EOS, their bulk moduli B_0 and corresponding pressure derivatives B'_0 are listed in the same table. Unfortunately, to the best of our knowledge, the experimental values for these are not yet available for comparison. Although β -Li₂BeH₄ is theoretically a harder phase than α -Li₂BeH₄, for which the main reason is that β has a lower equilibrium volume than α , it is still an easily compressible material compared with classical hydrides, for example, the B_0 values of MgH₂,¹⁶ TiH₂,³⁸ and LaNi₅H₇ (Ref. 39) are 51.0, 135.3, and 140.0 GPa, respectively.

Although the phase-transition pressure P_T can be deduced from the common tangent between the total energy versus volume curves corresponding to the α - and β -Li₂BeH₄ phases, it can be reliably and readily obtained by evaluating the enthalpy as a function of pressure for α - and β -Li₂BeH₄. In order to give a clear picture of the P_T , the calculated curve of enthalpy difference $(H_{\beta}-H_{\alpha})$ versus pressure (P), together with the volume-pressure (V-P) curve, is obtained using the V-EOS, as shown in Fig. 3. In this figure, $H_{\beta}-H_{\alpha}$ becomes negative once the external pressure is beyond 18.1 GPa, at which the transition pressure (P_T) from the α to the β phase is established and also comparable to the experimental results between 10 and 20 GPa given in the report of Lipinska-Kalita et al.¹¹ At this pressure, the corresponding volume reduction $\Delta V/V$ is about 4.7%, as marked in the V-P curve. Such a large volume reduction at a transition point has been indeed observed in many high-pressure x-ray powderdiffraction experiments.^{40,41} Except for this, our calculated value for Li₂BeH₄ is also comparable to the volume contraction accompanying the $\alpha \rightarrow \beta$ transition in LiAlH₄ (Ref. 17) and NaAlH₄ (Ref. 18) previously obtained, which is 17%and 4%, respectively. A large volume contraction is useful for increasing the volumetric hydrogen density of Li₂BeH₄ if one can find a chemical means of stabilizing the highpressure phases. This may be possible because of the small energy difference of 283.6 meV/f.u. between the α and β phases at their equilibrium volumes. Therefore, the observation of the high-pressure phase in Li₂BeH₄ may have technological importance. Additionally, the transformation from a monoclinic structure to an orthorhombic structure is popular for some A_2BX_4 compounds such as Cs_2MoS_4 and Cs₂HgCl₄ with decreasing temperatures or increasing pressures.42,43

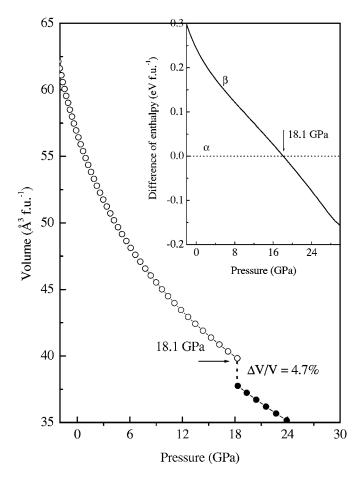


FIG. 3. Volume versus pressure curves of α - and β -Li₂BeH₄. The curve of the enthalpy difference between α - and β -Li₂BeH₄ versus pressure is shown in the inset.

The calculated electronic densities of states (DOS) for α -(at equilibrium) and β -Li₂BeH₄ (at transition point; 18.1 GPa) are presented in Fig. 4. From this figure, some common features can be drawn. First, Li₂BeH₄ exhibits a nonmetallic character with a finite energy gap (E_g) between the valence band (VB) and conduction band even at pressures up to 30.0 GPa, which can be considered as a representative feature of complex hydrides such as NaAlH₄,¹⁸ NaBH₄,¹⁹ and Mg(AlH₄)₂.²³ Second, in the VB region, the DOS is mainly dominated by H s, Be s, p, and Li p states and the contribution of Li s states is small. In addition, the Be s, p and H s states are energetically degenerate in the VB region. This facilitates the Be-H hybridization and thus the formation of directionally covalently bonded BeH₄ tetrahedron subunits in their crystal structures.

However, some marked differences can also be found from these DOS figures. First, the width of the VB is broadened from 6.05 eV in α -Li₂BeH₄ to 8.52 eV in β -Li₂BeH₄, which is mainly due to the reduction of the interatomic distance as listed in Table II when applying pressure. Second, with the $\alpha \rightarrow \beta$ structural transition, the initial split of the VB disappears due to the hybridization of the Be *s*, *p* and H *s* states of the BeH₄ subunits. However, comparing with other complex hydrides such as LiAlH₄,¹⁷ NaAlH₄,¹⁸ and Mg(AlH₄)₂,²³ the decrease in the E_g resulting from the vol-

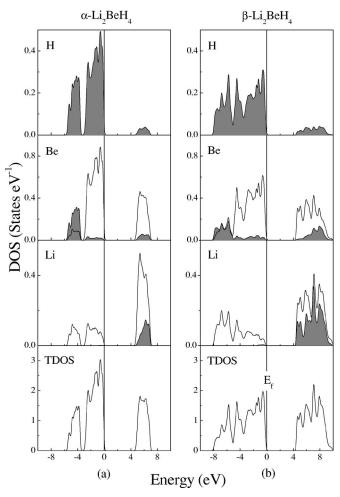


FIG. 4. Calculated total and partial electronic densities of states (DOS and PDOS) for (a) α - (at equilibrium) and (b) β -Li₂BeH₄ (at transition pressure; 18.1 GPa). The Fermi level is set to zero and marked by a vertical line; *s* states are depicted as shaded-gray curves.

ume reduction is much less. The detailed discussion of this issue will be given below.

To get a better understanding of the bonding effects between H, Be, and Li atoms, the bond overlap population (BOP) values are calculated on the basis of the Mulliken population. In general, the positive or negative BOP value indicates a bonding or an antibonding state. Here, we define а scaled BOP (BOP^s) as BOP^s_{Be(Li)-H} $=BOP_{Be(Li)-H}/BL_{Be(Li)-H}$; $BL_{Be(Li)-H}$ represents the average bond length of Be-H (or Li-H). The calculated BL and BOP^s between H, Be, and Li atoms for α -Li₂BeH₄ at ambient pressure and β -Li₂BeH₄ at its transition point are listed in Table II. In this table, the BOP^s_{Be-H} are always positive, which can be attributed to the covalent bonding between Be and H in the BeH₄ subunits of Li₂BeH₄. On the other hand, the BOP_{Li-H}^{s} are close to zero or negative, reflecting the ionic interactions between Li and H atoms (exactly speaking, between Li⁺ and $[BeH_4]^-$). For a quantitative comparison of their bonding strengths with those of other metallic alanates, such as LiAlH₄, NaAlH₄, and Mg(AlH₄)₂, the BOP^s between M-H (M=Al, Li, Na, and Mg) for these complex hydrides

TABLE II. The average bond length (BL) and the scaled bond overlap population (BOP^s) between H, Li, and Be atoms in α - (at equilibrium states) and β -Li₂BeH₄ (at transition points; 18.1 GPa). BL and BOP^s for LiAlH₄, NaAlH₄, and Mg(AlH₄)₂ are given for comparison. All calculated results for their high-pressure phases are given in parentheses.

	Be–H		Li–H		
	BL	BOP ^s	BL	BOPs	
Li ₂ BeH ₄	1.425 (1.343)	0.584 (0.718)	1.966 (1.929)	-0.002 (-0.004)	
	Al	-H	Li (Na, Mg)–H		
	BL	BOP ^s	BL	BOPs	
LiAlH ₄	1.620 (1.592)	0.512 (0.521)	2.064 (1.919)	-0.015 (-0.012)	
NaAlH ₄	1.613 (1.688)	0.532 (0.432)	2.427 (2.150)) -0.021 (-0.023)	
$Mg(AlH_4)_2$	1.583 (1.709)	0.483 (0.412)	1.909 (1.953)	-0.304 (-0.148)	

are also calculated and listed in the same table. We can conclude from these results that with comparing other metallic alanates, Li_2BeH_4 exhibits more remarkable covalent bonding characteristic due to the stronger hybridization of the Be *s*, *p* and H *s* states resulting from the shorter bond length between Be and H atoms.

According to our aforementioned analysis and other theoretical calculations, Li₂BeH₄ (or other complex hydrides) can be thought of as a class of covalent compounds. Gao et al.⁴⁴ have pointed out that the hardness (H_D) of covalent crystals is closely related to the energy gap E_g and the covalent bond number per unit area (N_a) . They have deduced that $H_D = AN_a E_g$, where A is a constant. Generally, the bulk modulus (B_0) , as a measure of the resistance to compressibility of volume, is frequently used as a proxy of H_D , since materials with a high B_0 are typically very hard.⁴⁵ Hence, we could consider roughly $N_a \propto B_0/E_g$. The calculated B_0 , E_g , and B_0/E_g for α - and β -Li₂BeH₄, LiAlH₄, NaAlH₄, and $Mg(AlH_4)_2$ are listed in Table III. It may be predicted that the larger the N_a is, the stronger is the hydrogen absorption ability (or probability), but the larger the BOP^s is, the lower is the hydrogen desorption ability. From this point of view, β -Mg(AlH₄)₂ (B_0/E_g =28.7, BOP^s=0.412) and β -NaAlH₄ $(B_0/E_g=15.5, \text{ BOP}^s=0.432)$ are expected to be the most promising candidates for hydrogen storage among the eight ones listed in Table III due to their good hydrogen absorption and/or desorption properties. As described in our previous work,²³ the increase in B_0/E_g at the α - to β -Mg(AlH₄)₂ transition at 10.3 GPa originates from an increased coordination number of Al from four to six H atoms. In contrast, the B_0/E_{ρ} is increased from 6.70 to 9.39 at the α - to β -Li₂BeH₄ transition at 18.1 GPa, but the BOPs raises from 0.584 to 0.718. Therefore, the improvement of the hydrogen absorption and/or desorption properties for Li₂BeH₄ is less significant. At this point, we must stress that for discussing the properties involved in the band gap E_g , the most appropriate choice is to perform the *ab initio* calculations of quasiparticle states within Hedin's GW approximation,⁴⁶ by which the E_{o} in well agreement with experimental data can be obtained. However, the DFT calculations within GGA or local-density approximation (LDA) generally give rise to the well-known "band-gap problem" for semiconductors and insulators. For example, the predicted LDA band gap is typically 30%-50% (or even 100% in Ref. 47) smaller than that observed in experiments. Unfortunately, the GW module is still not

TABLE III. Calculated bulk modulus B_0 (in GPa) and energy gap E_g (in eV) for α - and β -Li₂BeH₄. The other theoretical values for α - and β -LiAlH₄, NaAlH₄, and Mg(AlH₄)₂ are also listed for comparison. The corresponding transition pressures P_T (in GPa) are given in the last column.

	α	α (at equilibrium)			β (at P_T)		
	B_0^{lpha}	E_g^{lpha}	B_0^{lpha}/E_g^{lpha}	$B_0^{m eta}$	$E_g^{oldsymbol{eta}}$	B_0^{eta}/E_g^{eta}	P_T
Li ₂ BeH ₄ ^a	28.4	4.24	6.70	37.2	3.96	9.39	18.1
LiAlH4 ^b	12.9	4.71	2.74	25.6	4.25	6.02	2.7
NaAlH ₄ ^c	19.3	5.04	3.83	36.5	2.35	15.5	6.4
$Mg(AlH_4)_2^d$	9.2	3.72	2.47	34.7	1.21	28.7	10.3

^aThis work.

^bCalculated values from Ref. 17.

^cCalculated values from Ref. 18.

^dCalculated values from Ref. 23.

implemented in the CASTEP code and the computational cost with the *GW* approach is also expensive for large cells. The calculated *GW* band gaps for NaAlH₄ (Ref. 48) and Mg(AlH₄)₂ (Ref. 49) are 40% larger than the GGA band gaps. Accordingly, it can be assumed that the absolute values of the E_g in Table III are underestimated by roughly 40% compared to the experimental finding. The relative comparison of the E_g (or B_0/E_g) in Table III, however, would give a qualitative indication of the improvement of the hydrogen absorption and/or desorption abilities for these complex hydrides with a similar electronic structure, since their E_g in this table may be underestimated to the same extent.

IV. CONCLUSIONS

In conclusion, a detailed study on a high-pressure structural transition in Li_2BeH_4 has been performed by DFT. The α -Li_2BeH_4 monoclinic structure observed in experiments and the other eight closely related structures with different space groups have been considered in the present work. Our calculations show that the α -Li₂BeH₄ is more stable than these proposed structures at their equilibrium states and its optimized structural parameters are in well agreement with the experimental data. On application of pressure, the structural transformation from α - to β -Li₂BeH₄ (Cs₂MgH₄ type; *Pnma*) occurs at 18.1 GPa, associated with a volume reduction of approximately 4.7%. This comes mainly from the increase in the hybridization of the Be *s*, *p* with the H *s* states in the BeH₄ subunits. The electronic density of states demonstrates that α - and β -Li₂BeH₄ exhibit a nonmetallic character even at pressures up to 30.0 GPa. On the basis of a rough criterion of N_a -BOP^s, it would be expected that the high-pressure phases of β -NaAlH₄ and β -Mg(AlH₄)₂ are the most promising candidates among the hydrogen storage materials listed in Table III.

ACKNOWLEDGMENT

We acknowledge the support from Grant No. 10474102 through the National Natural Science Foundation of China.

- *Corresponding author. FAX: 862 42389 1320. Electronic address: ymwang@imr.ac.cn
- ¹L. Schlapbach and A. Züttel, Nature (London) **414**, 353 (2001).
- ²Hydrogen Storage Challenges, Fuel Cells and Infrastructure Technologies Program-Hydrogen Storage, Energy Efficiency and Renewable Energy, U.S. Department of Energy (http://www.eere.energy.gov/hydrogenandfuelcells/storage/ storage_challenges.html).
- ³B. Bogdanovic and M. Schwickardi, J. Alloys Compd. **253-254**, 1 (1997).
- ⁴A. Zaluska, L. Zaluski, and J. O. Ström-Olsen, J. Alloys Compd. 298, 125 (2000).
- ⁵K. J. Gross, E. H. Majzoub, and S. W. Spangler, J. Alloys Compd. 356-357, 423 (2003).
- ⁶S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, S. Towata, and A. Züttel, J. Alloys Compd. **404-406**, 427 (2005).
- ⁷M. Schwarz, A. Haidue, H. Stil, P. Paulus, and H. Geerlings, J. Alloys Compd. **404-406**, 762 (2005).
- ⁸A. Bell and G. E. Coates, J. Chem. Soc. A **1968**, 628 (1968).
- ⁹J. P. Bastide, Solid State Commun. 74, 355 (1990).
- ¹⁰B. M. Bulychev, R. V. Shapanchenko, E. V. Antipov, D. V. Sheptyakov, S. N. Bushmeleva, and A. M. Balagurov, Inorg. Chem. 43, 6371 (2004).
- ¹¹K. E. Lipinska-Kalita, Y. Ding, Y. Song, J. Lin, M. Somayazulu, P. Dera, J. Yarger, H. K. Mao, and R. J. Hemley, First Annual SSAAP Symposium, Albuquerque, NM, 2004 (unpublished).
- ¹²R. Yu and P. K. Lam, Phys. Rev. B **38**, 3576 (1988).
- ¹³J. L. Martins, Phys. Rev. B **38**, 12776 (1988).
- ¹⁴B. K. Rao and P. Jena, J. Phys. C **19**, 5167 (1986).
- ¹⁵M. Seel, A. B. Kunz, and S. Hill, Phys. Rev. B **39**, 7949 (1989).
- ¹⁶P. Vajeeston, P. Ravindran, A. Kjekshus, and H. Fjellvåg, Phys. Rev. Lett. **89**, 175506 (2002).
- ¹⁷ P. Vajeeston, P. Ravindran, R. Vidya, H. Fjellvåg, and A. Kjekshus, Phys. Rev. B 68, 212101 (2003).
- ¹⁸P. Vajeeston, P. Ravindran, R. Vidya, H. Fjellvåg, and A. Kjek-

- shus, Appl. Phys. Lett. 82, 2257 (2003).
- ¹⁹C. M. Araújo, R. Ahuja, A. V. Talyzin, and B. Sundqvist, Phys. Rev. B **72**, 054125 (2005).
- ²⁰J. P. Bastide, B. Bonnetot, J. M. Letoffe, and P. Claudy, Mater. Res. Bull. **15**, 1215 (1980).
- ²¹A. V. Talyzin and B. Sundqvist, Phys. Rev. B 70, 180101(R) (2004).
- ²²M. P. Pitt, D. Blanchard, B. C. Hauback, H. Fjellvåg, and W. G. Marshall, Phys. Rev. B **72**, 214113 (2005).
- ²³C. H. Hu, D. M. Chen, Y. M. Wang, D. S. Xu, and K. Yang, J. Phys.: Condens. Matter **19**, 176205 (2007).
- ²⁴J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
- ²⁵M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002).
- ²⁶T. H. Fischer and J. Almlof, J. Phys. Chem. **96**, 9768 (1992).
- ²⁷G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
- ²⁸B. Bertheville, P. Fischer, and K. Yvon, J. Alloys Compd. **302**, L12 (2000).
- ²⁹P. Seiler, Acta Crystallogr., Sect. B: Struct. Sci. 14, 223 (1993).
- ³⁰W. Eysel, H. H. Höfer, K. L. Keester, and Th. Hahn, Acta Crystallogr., Sect. B: Struct. Sci. 41, 5 (1985).
- ³¹A. S. Koster, F. X. N. M. Kools, and G. D. Rieck, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 25, 1704 (1969).
- ³²P. M. Skarstad and S. Geller, Mater. Res. Bull. **10**, 791 (1975).
- ³³F. S. Galasso, Structure and Properties of Inorganic Solids (Pergamon, New York, 1970).
- ³⁴J. Fabry, T. Breczewski, F. J. Zuniga, and A. R. Arnaiz, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 49, 946 (1993).
- ³⁵P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, J. Phys.: Condens. Matter 1, 1941 (1989).
- ³⁶F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. **30**, 8244 (1944).
- ³⁷F. Birch, Phys. Rev. **71**, 809 (1947).

- ³⁸D. Setoyama, J. Matsunaga, H. Muta, M. Uno, and S. Yamanaka, J. Alloys Compd. **381**, 215 (2004).
- ³⁹K. Tatsumi, I. Tanaka, K. Tanaka, H. Inui, M. Yamaguchi, H. Adachi, and M. Mizuno, J. Phys.: Condens. Matter **15**, 6549 (2003).
- ⁴⁰J. D. Jorgensen, Z. Hu, S. Teslic, D. N. Argyriou, S. Short, J. S. O. Evans, and A. W. Sleight, Phys. Rev. B **59**, 215 (1999).
- ⁴¹S. Carlson and Annie Marie Krogh Andersen, Phys. Rev. B 61, 11209 (2000).
- ⁴²B. Lorenz, I. Orgzall, P. K. Dorhout, C. C. Raymond, K. Brister, K. Weishaupt, R. D'Adamo, and H. D. Hochheimer, Phys. Rev. B 55, 2800 (1997).

- ⁴³B. Bagautdinov, A. Jobst, J. Ludecke, and S. van Smaalen, Acta Crystallogr., Sect. B: Struct. Sci. 57, 231 (2001).
- ⁴⁴F. M. Gao, J. L. He, E. D. Wu, S. M. Liu, D. L. Yu, D. C. Li, S. Y. Zhang, and Y. J. Tian, Phys. Rev. Lett. **91**, 015502 (2003).
- ⁴⁵M. L. Cohen, Solid State Commun. **92**, 45 (1994).
- ⁴⁶L. Hedin, Phys. Rev. **139**, A796 (1965).
- ⁴⁷W. D. Luo, S. Ismail-Beigi, M. L. Cohen, and S. G. Louie, Phys. Rev. B 66, 195215 (2002).
- ⁴⁸A. Peles, J. A. Alford, Z. Ma, L. Yang, and M. Y. Chou, Phys. Rev. B **70**, 165105 (2004).
- ⁴⁹M. J. van Setten, G. A. de Wijs, V. A. Popa, and G. Brocks, Phys. Rev. B **72**, 073107 (2005).