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We study the electronic structure in the vicinity of a vortex in a two-band superconductor in which the
quasiparticle motion is ballistic in one band and diffusive in the other. This study is based on a model
appropriate for such a case, that we have introduced recently �Tanaka et al., Phys. Rev. B 73, 220501�R�
�2006��. We argue that in the two-band superconductor MgB2, such a case is realized. Motivated by the
experimental findings on MgB2, we assume that superconductivity in the diffusive band is “weak,” i.e., mostly
induced. We examine intriguing features of the order parameter, the current density, and the vortex core
spectrum in the “strong” ballistic band under the influence of hybridization with the “weak” diffusive band.
Although the order parameter in the diffusive band is induced, the characteristic length scales in the two bands
differ due to Coulomb interactions. The current density in the vortex core is dominated by the contribution
from the ballistic band, while outside the core the contribution from the diffusive band can be substantial, or
even dominating. The current density in the diffusive band has strong temperature dependence, exhibiting the
Kramer-Pesch effect when hybridization is strong. A particularly interesting feature of our model is the pos-
sibility of additional bound states near the gap edge in the ballistic band, that are prominent in the vortex center
spectra. This contrasts with the single band case, where there is no gap-edge bound state in the vortex center.
We find the above-mentioned unique features for parameter values relevant for MgB2.
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I. INTRODUCTION

One can learn a great deal about the pairing mechanism of
a superconductor from the electronic properties in the pres-
ence of inhomogeneity, such as vortices and impurities. Al-
though multiple-band superconductivity was first studied al-
most 50 years ago,2 the structure of a vortex in multiband
superconductors has not been well understood, especially
when impurities are present. The best material that has been
discovered so far for studying multiband superconductivity is
MgB2.3 The consensus is that superconductivity is driven by
electron-phonon interactions, and that it can be well de-
scribed by a two-band model, with the “strong” � band �en-
ergy gap ���7.2 meV� and the “weak” � band ���

�2.3 meV�.4–13 The two energy gaps vanish at a common
transition temperature Tc �Refs. 14–16� and there is evidence
of induced superconductivity in the � band.7,17–19

The one unusual aspect of this material as a multiband
superconductor is the effect of impurities. The standard
theory2,20,21 tells us that interband scattering by nonmagnetic
impurities should reduce Tc and the gap ratio. Mazin and
co-workers,22,23 however, have shown theoretically that this
does not apply to MgB2, due to different symmetries of the �
and � orbitals, and hence negligible interband scattering.
Moreover, impurities or defects, in particular those at Mg
sites which tend to occur more easily than at B sites, affect
only the � band strongly. Indeed, many experiments have
shown that the � and � bands are essentially in the ballistic
and diffusive limit, respectively.22–31 Even in samples in
which the � band is influenced by impurities substantially,
two-gap superconductivity is retained.16,31–41 The question of
whether or not the two gaps merge in dirty samples has not
yet been settled.40–43

Due to induced superconductivity and possibly also ow-
ing to these peculiar effects of impurities, the electronic
structure around a vortex in MgB2 has been found to exhibit
intriguing properties. Eskildsen et al.,17 by tunneling along
the c axis, have probed the vortex core structure in the �
band. The local density of states �LDOS� was found to be
completely flat as a function of energy at the vortex core,
showing no sign of bound states. Also the core size
��50 nm� as measured by a decay length of the zero-bias
LDOS turned out to be much longer than expected from Hc2
��10 nm�.17,44 Moreover, the existence of two effective co-
herence lengths in MgB2 has been suggested by the �SR
measurement of a vortex lattice.45 There has been, however,
no experiment directly probing the � band in the vortex state,
and the electronic structure around a vortex in the � band is
yet to be determined.

Theoretically, the vortex structure in a two-band super-
conductor has been studied in terms of two clean bands46 and
two dirty bands.47 Neither of these models, however, applies
to many MgB2 samples, which have the clean � and dirty �
bands. Recently, we have formulated a unique model for a
multiband superconductor with both a clean and a dirty
band.1 We have studied the effects of induced superconduc-
tivity and impurities in the weak diffusive band on the elec-
tronic properties in the strong ballistic band around a vortex.
A particularly intriguing feature found in this model is the
possibility of bound states near the gap edge in the ballistic
band in the vortex core, in addition to the well-known
Caroli–de Gennes–Matricon bound states.48 Such bound
states do not exist in a single ballistic band, and they arise
solely from coupling to the diffusive band. Our model has
also been applied to study the Kramer-Pesch effect49 in
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coupled clean and dirty bands.50 It has been found that the
Kramer-Pesch effect is induced in the dirty band, which is
absent when there is no coupling with the clean band. Thus,
hybridization of ballistic and diffusive bands can lead to un-
usual properties of a multiband superconductor, and the vor-
tex core structure is an example in which the effects of in-
duced superconductivity and impurities manifest clearly.

In this work, we make an extensive study of the electronic
structure in the vicinity of a vortex in a strong ballistic band,
under the influence of hybridization with a weak diffusive
band. Our model is based on coupled Eilenberger and Usadel
equations, which are solved directly and numerically. We
assume that interband scattering by impurities is negligible
and that the two bands are coupled only by the pairing inter-
action, as justified for typical MgB2 samples. Unique fea-
tures of the order parameter, the current density, and the
vortex core spectrum are examined in detail. In particular, we
study the development of the gap-edge bound states as vari-
ous physical parameters are varied. Although this work has
been motivated by the impurity effects16,22–41 and the STM
measurement of the vortex state in MgB2,17,44 our model is
general and applicable to any superconductor in which bal-
listic and diffusive bands are coupled mainly by the pairing
interaction.

The paper is organized as follows. The formulation and
computational details are given in Secs. II and III, respec-
tively. Results are presented in Sec. IV and they are summa-
rized and discussed in Sec. V. Throughout the paper we use
units with �=c=1.

II. THEORETICAL DESCRIPTION

Both the ballistic and diffusive limits of superconductivity
can be described within one unified theory, the quasiclassical
theory of superconductivity.51–57 The central quantity of this
theory, containing all the physical information, is the quasi-
classical Green function, or propagator, ĝ�� ,pF	 ,R�. Here �
is the quasiparticle energy measured from the chemical po-
tential, pF	 the quasiparticle momentum on the Fermi surface
of band 	, and R is the spatial coordinate. The hat refers to
the 2
2 matrix structure of the propagator in the Nambu-
Gor’kov particle-hole space. In the ballistic case, the equa-
tion of motion for ĝ is the Eilenberger equation, and in the
diffusive case the Usadel equation. Our model is appropriate
for any two-band superconductor with a clean and a dirty
band �generalization to several bands is straightforward�.
However, having in mind MgB2, for definiteness we call the
two bands � and � bands, respectively.

In the clean � band, ĝ��� ,pF� ,R� satisfies the Eilenberger
equation,51,52

���̂3 − �̂�, ĝ�� + ivF� · �ĝ� = 0̂, �1�

where vF� is the Fermi velocity and �̂� the �spatially vary-
ing� order parameter. The three Pauli matrices in Nambu-
Gor’kov space are denoted by �̂i, i=1,2 ,3, and �¯ , ¯ � de-
notes the commutator. Throughout this work, we ignore the
variation of the magnetic field in the vortex core, assuming a
strongly type-II superconductor �this is justified for example
for MgB2�.

For the � band we assume that it is in the diffusive limit.
In the presence of strong impurity scattering, the momentum
dependence of the quasiclassical Green function is averaged
out, and the equation of motion for the resulting propagator
ĝ��� ,R� reduces to the Usadel equation,53

���̂3 − �̂�, ĝ�� + �
D

�
�ĝ� � ĝ�� = 0̂, �2�

with the diffusion constant tensor D. Both ballistic and dif-
fusive propagators are normalized according to51

ĝ�
2 = ĝ�

2 = − �21̂. �3�

A two-band superconductor with a ballistic and a diffu-
sive band can exist only if interband scattering by impurities
is weak. We neglect in the following interband scattering by
impurities, and assume that the quasiparticles in different
bands are coupled only through the pairing interaction. Self-
consistency is achieved through the coupled gap equations
for the spatially varying order parameters in each band,

�	�R� = �
�

V	�NF�F��R� , �4�

where 	 ,�� �� ,�	, and �̂	= �̂1 Re �	− �̂2 Im �	. The cou-
pling matrix V	� determines the pairing interaction, NF� is
the Fermi-surface density of states on band �, and

F��R� 
 �
−�c

�c d�

2�i
�f���,pF�,R�
pF�

tanh� �

2T
� ,

F��R� 
 �
−�c

�c d�

2�i
f���,R�tanh� �

2T
� . �5�

Here f	 is the upper off-diagonal �1,2� element of the matrix
propagator ĝ	, and �c is a cutoff energy. The Fermi surface
average over the � band is denoted by �¯
pF�

.
Note that within our model the precise form of the Fermi

surface in the � band is not relevant, as in the diffusive limit
all necessary information is contained in the diffusion con-
stant tensor D. For simplicity we have assumed in our calcu-
lation an isotropic tensor Dij =D
ij. The diffusion constant
defines the �-band coherence length ��=�D /2�Tc. For the
�-band Fermi surface we assume a cylindrical shape, as mo-
tivated by the Fermi surface of MgB2. This allows us to treat
the � band as quasi-two-dimensional, vF�=vF�p̂r, with cy-
lindrical coordinates �pr , p� , pz� and the unit vector p̂r in di-
rection of pr. We define the coherence length in the � band
as ��=vF� /2�Tc. It will be used as length unit throughout
this paper.

The numerical solution of the �nonlinear� system of Eqs.
�1�–�3� is greatly simplified by using the Riccati parametri-
zation of the Green functions, both for the ballistic case58–61

and for the diffusive case,62
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ĝ	 = −
i�

1 + �	�̃	
�1 − �	�̃	 2�	

2�̃	 �	�̃	 − 1
� , �6�

with �̃��� ,pF� ,R�=��
*�−�* ,−pF� ,R� and �̃��� ,R�

=��
* �−�* ,R�. The transport equation for ���� ,pF� ,R� is

given by58–61

�� + 2��� + ��
*��

2 + ivF� � �� = 0, �7�

and for ���� ,R� it is62

�� + 2��� + ��
* ��

2 − iD��2�� −
2�̃������2

1 + ���̃�
� = 0. �8�

We solve Eqs. �1�–�5� self-consistently. After self-
consistency has been achieved for the order parameters, the
�for the � band, angle-resolved� LDOS in each band can be
calculated by

N���,pF�,R�/NF� = − Im g���,pF�,R�/� ,

N���,R�/NF� = − Im g���,R�/� , �9�

where g	 is the upper diagonal �1,1� element of ĝ	.
The current density around the vortex has contributions

from both � and � bands,

j�R� = j��R� + j��R� . �10�

The corresponding expressions are

j��R�
2eNF�

= �
−�

� d�

2�
�vF� Im g�
pF�

tanh� �

2T
� ,

j��R�
2eNF�

=
D

�
�

−�

� d�

2�
Im�f�

* � f��tanh� �

2T
� , �11�

where e=−�e� is the electron charge.

III. COMPUTATIONAL DETAILS

A. Gap equations

The first step is to write Eqs. �4� and �5� in a form that is
independent of the cutoff energy �c and the cutoff dependent
interaction matrix V	�. We diagonalize the interactions by

NF �
�=�,�

�n	V	�
�n�Y�

�k� = Y	
�k���k�, �12�

where NF=NF�+NF� and n	=NF	 /NF. The band index runs
over 	= �� ,��, and thus we need two basis functions for a
complete system, denoted by k=0,1. We expand the order
parameter and the anomalous Green functions in terms of the
eigenvectors

Y� �k� = �Y�
�k�

Y�
�k� � . �13�

The eigenvectors are orthonormal. We also introduce the
vectors

�� = ��n���

�n���

�, F� = ��n�F�

�n�F�

� . �14�

Using the expansion

�� = �
k=0,1

��k�Y� �k�, F� = �
k=0,1

F�k�Y� �k�, �15�

with ��k�=Y� �k�*�� and F�k�=Y� �k�*F� , the gap equations are
given by

��k��R� = ��k�F�k��R� . �16�

Without restriction we can choose the largest eigenvalue to
be ��0�. It can be eliminated together with the cutoff fre-
quency in favor of the transition temperature between the
normal and superconducting states, Tc. Although both cou-
pling constants ��0� and ��1� are cutoff dependent, the param-
eter � defined by

� =
��0���1�

��0� − ��1� �17�

is cutoff independent. We parametrize the two coupling con-
stants by the two cutoff independent quantities Tc and �.

Near Tc, the subdominant order parameter ��1� is of
higher order in �Tc−T� than ��0� is. The bulk gaps on the two
Fermi surface sheets are thus determined near Tc by ��0�

only, and are given by

�� =
Y�

�0�

�n�

��0�, �� =
Y�

�0�

�n�

��0�. �18�

We define the ratio of the bulk gaps on the two bands near
Tc,

� ª

��

��

=
Y�

�0�

Y�
�0��n�

n�

. �19�

We also introduce the notation nª�n� /n�. Then the matrix
of eigenvectors is given by

�Y�
�0� Y�

�1�

Y�
�0� Y�

�1� � =
1

�n2 + ���2
�n − �*

� n
� . �20�

B. Homogeneous solutions

In the homogeneous case, at zero temperature

lim
T→0

F	 = �	 ln
2�c

��	�
, �21�

where �c is the usual BCS cutoff frequency of the order of
the Debye frequency. Using the BCS formula

ln
2�c

�Tc
=

1

��0� − � �22�

���0.577 is Euler’s constant�, we obtain the zero-
temperature gap equations
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�� + ln
��	

0 �
�Tc

��	
0 = −

1

�
�
�

Y	
�1�Y�

�1�*�n�

n	

��
0 , �23�

where �	
0 denotes the bulk order parameter at zero tempera-

ture on band 	. From this we can derive an equation for the
ratio �0=��

0 /��
0 �assuming that the gap ratio � is real�,

� − �0

n2 + �2 = �
�0

n2 + �0�
ln��0� , �24�

and for the dominant zero-temperature gap

��
0/Tc = �e−�e−��0�/�n2+�0��� ln��0�. �25�

Equation �24� is a quadratic equation for �, which is readily
solved analytically in terms of �0, n, and �,

� =
2n2�0�1 + � ln��0��

�n2 − �0
2� + ��n2 + �0

2�2 − �2n�0� ln��0��2
. �26�

The four material parameters �0, n, �, and Tc completely
specify the bulk behavior of the system. We illustrate in Fig.
1 how the dominant bulk gap to Tc ratio at zero temperature
is affected by �0, n� /n�=1/n2, and �. In �a�, ��

0 /Tc deter-
mined by Eqs. �25� and �26� is shown as a function of �0, for
n�=n� and various values of �. In �b� we compare ��

0 /Tc
as a function of n� /n� for several values of �0, and for �
=−0.1 and 0.1. It can be seen in Fig. 1�a� that for a fixed
n� /n�, ��

0 /Tc exhibits nonlinear behavior as a function of �0
depending on the value of �, while the BCS value �1.764� is
recovered at �0=0 and 1. For ��0 this ratio is always larger
than the BCS value, and it is always larger for ��0 than for
��0, for fixed �0 and n� /n�. When ��0, ��

0 /Tc can be
smaller than the BCS value for a certain range of �0. The
effect becomes even more pronounced for larger n� /n�. For
a fixed �0, as shown in Fig. 1�b�, ��

0 /Tc increases almost
linearly with increasing n� /n�, with larger slope for larger

�0. Here again, the enhancement of ��
0 /Tc is always stronger

for ��0 than for ��0. For n� /n�=0 there is only one band
and the ratio reduces to the BCS value.

In fact, the enhancement of the bulk zero-temperature gap
by stronger Coulomb interactions in the subdominant chan-
nel can be estimated for small ��� analytically from Eqs. �25�
and �26�, which give

� �

��

��
0

Tc
�

�=0
= − ���

0

Tc
�

�=0
�n�0 ln ��0�

n2 + �0
2 �2

, �27�

and ��
0 ���=�0��

0���. More generally, at low T for given �0

and n, the homogeneous gap over Tc ratio increases with
decreasing � in both bands. The slope at �0=1 in Fig. 1�a� is
independent of � and is given by −�e−� / �1+n2�. An expan-
sion for small �0 or for small n� /n� gives for both cases

��
0

Tc
� �e−��1 −

n�

n�

�1 + � ln��0��ln��0��0
2� . �28�

We now discuss the relation between the gap ratios near
Tc, given by �, and at T=0, given by �0. When �=0, we
have �=�0. For small ��� or small �0 /n we obtain from Eq.
�26� the approximate relation

� � �0 + ��0 ln��0� . �29�

For ��0 � �1 it follows that when the Coulomb repulsion
dominates in the second channel ���0�, the magnitude of
the gap ratio at Tc is increased with respect to that at zero
temperature, �� � � ��0�; for effective attraction in the sub-
dominant channel ���0�, �� � � ��0�.

In Fig. 2 we show the solutions of the homogeneous gap
equations for both � and � bands as a function of tempera-
ture for various values of �, for fixed �0=0.3 and n=1. In
Figs. 2�a� and 2�b� the order parameters in the two bands and
the ratio of the two are plotted, respectively, as a function of
temperature. As discussed above, when �=0 �thick lines�,

FIG. 1. �Color online� The
bulk ��� � /Tc in the zero-
temperature limit as given by Eqs.
�25� and �26�: �a� as a function of
�0=��

0 /��
0 for n�=n� and various

values of �, and �b� as a function
of n� /n� for various sets of �0 and
�. For a fixed n� /n�, ��� � /Tc

shows nonlinear behavior as a
function of �0, where the BCS
value is recovered at �0=0 and 1.
The bulk gap is enhanced as
n� /n� increases, and this effect is
larger for larger �0 and for smaller
�.
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the ratio ����T� /���T�� stays constant and equal to �=�0,
while for ��0 ��0� � is larger �smaller� than �0.

If the order parameter in the � band has a zero slope at Tc,
i.e., �=0 �see, e.g., the lowest curves in Fig. 2�, then for
positive � there is a second superconducting transition2 as-
sociated with the � band at temperature

Tc��� = 0� = Tce
−1/� �� � 0� . �30�

In this case the order parameter in the � band stays zero
above Tc�; below Tc� both order parameters are nonzero, and
the zero-temperature gap ratio is �0=e−1/� so that the relation
Tc� /Tc=�0 holds. For negative � there is no second transi-
tion in the � band, and superconductivity is purely induced
for all temperatures. For small absolute values of �, the order

parameter in the � band is given approximately by

���T�
���T�

�
�

1 − ��ln
T

Tc
� ���� � 1� . �31�

This equation is correct for T�Tc� as long as ����T� /���T��
stays small. For ��0 the order parameter in the � band is
nonzero in the entire temperature range �see Fig. 2�a��, being
purely induced for ��0, and for T�Tc� when ��0. It
follows from Eq. �31� that for ��0, ����T� /���T�� is re-
duced from ��� as temperature decreases, while for ��0 it
increases from ��� for Tc��T�Tc �see also Fig. 2�b��.

For a given �0, the critical �, above which a second tran-
sition in the � band can be observed, is given by �c
=−1/ ln ��0�. In the case of Fig. 2 this yields �c�0.8306. We
find that for ���c there is a � phase difference between the
order parameters in the two bands for T�Tc� �the gap ratio
becomes negative�, and for T�Tc� a more complicated pic-
ture arises, with three solutions that compete, and possible
first-order phase transitions. This is demonstrated in Fig. 3,
in which the zero-temperature bulk gap to Tc ratio in the �
��a� and �b�� and � ��c� and �d�� band is plotted as a function
of the gap ratio at Tc, �=limT→Tc

�� /��, obtained from the
solution of Eqs. �25� and �26�. Results are shown for the
effective subdominant coupling � ranging from repulsive
�left� to attractive �right�. For −1���0 there is a unique
solution for the bulk gaps at zero temperature for a given �
��a� and �c��. However, as can be seen in the �b� and �d�,
when ��0, there are three possible solutions to the gap
equations for sufficiently small �. As these zero-temperature
solutions are associated with the same single solution near
Tc, this indicates that first-order phase transitions can occur
as temperature is varied. This behavior is not the topic of this
paper, however, and we assume for the remainder of the
paper that ���c for a given �0 �or �0��c=e−1/� for a given
��.

C. Choice of material parameters

For MgB2, if estimated from the ab initio values of the
electron-phonon coupling strengths5,9,10 and the Coulomb
pseudopotentials,9,63 � varies depending on which calcula-
tions are used, while some calculations yield very small �.
But using Eq. �26�, one can fix � from the observed values
of �0 and �—although for the latter, some data points have
relatively large error bars. From the experiments of Refs. 8,
14–16, and 38, we find roughly −0.3���0.3. Among
these, the measurement of Ref. 8 has a data point at the
highest temperature, T�0.96Tc, and � estimated using this
point is close to zero. Therefore, we assume that for MgB2,
� is small and can be either positive or negative.

The strength of induced superconductivity in the � band
is specified in our model by � and �0, the latter of which is
about 0.3 in MgB2. Results are presented mainly for �0
=0.1,0.3,0.5. The n� /n� in MgB2 has been determined ex-
perimentally to be n� /n��1−1.2.17,64,65 We show results for
n� /n�=1 and 2, and discuss the effects of the �-band density
of states.

FIG. 2. �Color online� Energy gaps ���T� and ���T� �a� and the
ratio ���T� /���T� �b� in the homogeneous case as a function of
temperature T for various values of �, for fixed �0=0.3 and n
=�n� /n�=1. There is a second transition temperature associated
with the � band for ���c �see text�.
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Finally, there is another material parameter in our model,
that is the ratio of the coherence lengths in the two bands,
�� /��. Note in this regard that in defining the �-band coher-
ence length ��=�D /2�Tc, we have used the energy scale Tc
rather than ��. This is motivated by the fact that, as dis-
cussed above, superconductivity in the � band is assumed to
be mostly induced by the � band. Consequently, for the
variation of the �-band order parameter determined by the
self-consistency equation, Eq. �4�, the energy scale Tc is rel-
evant. However, the quasiparticle motion in the � band is
governed by the Eilenberger transport equation supple-
mented with an appropriate impurity self-energy �i,� of the
order of 1 /��, where �� is the �-band quasiparticle lifetime
due to elastic intraband impurity scattering. To determine
under which conditions the diffusive approximation can be
used in the � band, the relative size of the �-band gap, ��,
and the � band impurity self-energy, �i,�, matters. Thus, the
condition for the � band to be diffusive so that the Eilen-
berger equation supplemented with �i,� reduces to the Us-
adel equation is

1/�� � ��. �32�

In practice it turns out that the diffusive approximation ap-
plies quite well already when 1/�� is only larger, not much
larger, than ��. Using the above definitions for �� and �� and
with the diffusion constant D= 1

3��vF�
2 , this yields

��

��

�
vF�

vF�

�2�Tc

3��

. �33�

Strong electron-phonon coupling in the � band renormalizes
the Fermi velocity as vF� /Z,66 where Z is the renormalization
factor and is about 2 in the zero-frequency limit.67 Taking the
ab initio Fermi velocities, vF� /vF�=5.8/4.4,68 as the un-
renormalized values, and using �� /Tc�0.6 as found in sev-
eral experiments, we estimate �� /���5 for MgB2. As dis-
cussed in Sec. IV C 1, an estimate from the experiment of

Ref. 17 yields a value between 1 and 3 for MgB2. To keep
the discussion general, the effects of the coherence length
ratio on the vortex core structure are illustrated for �� /��

=1,2 ,3 ,5.
Throughout this work, cylindrical symmetry is assumed

for the two-dimensional � band, and an isotropic diffusion
tensor for the three-dimensional � band. Up to this point, the
energy gaps �homogeneous order parameters� in the two
bands have been denoted as �� and ��. In the following, ��

and �� represent the spatially varying order parameters.

IV. RESULTS

A. Order parameter

1. Effects of the Coulomb interaction in the diffusive band

Negative � means that the effective Coulomb interaction
dominates over the effective pairing interaction in the second
pairing channel. In this case, Coulomb interactions are re-
sponsible for the fact that the � band cannot maintain super-
conductivity on its own, and it superconducts only due to its
proximity to the superconducting � band. We first examine
the effects of the Coulomb interaction on the order param-
eters. We consider a vortex that extends in z direction, with
the vortex center situated at x=y=0 for each z. In Fig. 4, we
show the order parameter magnitudes as a function of coor-
dinate x along the path y=0 for three values of �, appropri-
ate for attractive, repulsive and no effective interaction in the
second pairing channel. Figure 4�a� shows ����x�� and
����x��, and Fig. 4�b� their ratio. The Coulomb repulsion
renormalizes the recovery lengths of the order parameters
�the characteristic length scale over which the order param-
eter recovers to the bulk value� in both bands. Although su-
perconductivity in the � band is mostly induced by that in
the � band, it is clear from Fig. 4 that the length scales in the
two bands can differ considerably if ��0. For �=0 there is
only one length scale and hence the same recovery length in

FIG. 3. �Color online� The
��

0 /Tc ��a� and �b�� and ��
0 /Tc ��c�

and �d�� as a function of the gap
ratio at Tc, �=limT→Tc

�� /��, ob-
tained from Eqs. �25� and �26�, for
��0 ��a� and �c�� and ��0 ��b�
and �d��. While for −1���0
there is a unique solution, for �
�0, for sufficiently small � there
are three solutions. This indicates
possible first-order transitions as a
function of temperature, if � for a
given � is larger than a critical
value.
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both bands. When ��0 ��0�, ����x�� is enhanced �sup-
pressed� around the vortex core, resulting in a shorter
�longer� recovery length compared to the case with �=0. On
the other hand, the sign of � has opposite effects on ����x��,
although these effects are relatively small for the parameter
set for Fig. 4. In fact, �� �its length scale and magnitude� can
be affected by the �-band Coulomb interaction significantly
for larger �0 and �� /��.1

As demonstrated in Fig. 1, the bulk gap over Tc ratios in
both bands are enhanced by stronger Coulomb repulsion in
the diffusive band, an effect also seen in Fig. 4�a�. As shown
in Eq. �27�, this renormalization of the magnitude of the bulk
gap has the same sign for both bands, and is very different
from the renormalization in the core region seen in Fig. 4�a�,
that has opposite sign for the two order parameters. The lat-

ter effect can be seen most dramatically when plotting the
ratio ����x� /���x��, as we do in Fig. 4�b�. For ��0 the ratio
increases by up to a factor of 2 for �=−0.1, and decreases by
about the same factor for �=0.2. When �=0, ����x� /���x��
stays constant and equal to �0=�. This results from the fact
that in this case ��1�=0 in Eq. �16�, leading to ��1��x�=0 so
that Eq. �18� holds for all x.

2. Effects of the density of states in the diffusive band

Figure 5 demonstrates the effects of the Fermi-surface
density of states in the diffusive band on the order param-
eters for a typical set of material parameters and for T /Tc
=0.1. In Fig. 5�a� we show the order parameter magnitudes
and in �b� their ratio. It can be seen in Fig. 5�a� that the bulk
gap over Tc ratios increase with increasing density of states

FIG. 4. �Color online� �a� Order parameters ����x�� and ����x��
and �b� the ratio ����x� /���x�� as a function of coordinate x along
the path y=0 for various values of �, for �� /��=3, �0=0.3, T /Tc

=0.1, n=1. The Coulomb repulsion �which reduces �� renormalizes
the recovery lengths of the order parameters in the two bands
differently.

FIG. 5. �Color online� �a� Order parameters ����x�� and ����x��
and �b� the ratio ����x� /���x�� as a function of coordinate x along
the path y=0 for various density of states ratios n� /n�, and fixed
�� /��=3, �0=0.3, T /Tc=0.1, �=−0.1. The �-band density of states
renormalizes the recovery lengths of the order parameters, and the
bulk magnitudes of the order parameters are larger for larger n� /n�.
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ratio n� /n�, a behavior consistent with Fig. 1�b� and with
Eqs. �25� and �28�. From Fig. 5�a� we see that a larger n� /n�

also enlarges the core area in both bands. At higher tempera-
ture �not shown�, n� /n� has less effect on the order param-
eters. The effects of the �-band Coulomb interaction de-
scribed in the last section manifest more drastically in both
bands for larger n� /n�. When comparing the shapes of the
order parameter profiles in the � band and the � band in Fig.
5�a�, there is a qualitative difference between the cases
n� /n�=0.5 and n� /n�=2. Nevertheless, Fig. 5�b� shows that
despite the different shapes of the order parameter profiles in
the two bands for different values of n� /n�, the spatial varia-
tion of the ratio ����x� /���x�� is almost independent of
n� /n�. This is for ��0 a nontrivial and rather interesting
finding.

3. Effects of the coherence length and gap ratios

In Fig. 6 we illustrate how the order parameter profile in
the � band changes as �0 and �� /�� are varied. We compare
the two cases of �a� �=−0.1 and �b� �=0.1, leaving T /Tc
=0.1 and n� /n�=1 fixed. As can be seen in Fig. 6�b�, for
��0, ����x�� is depleted in the core area as �� /�� increases,
and this effect is larger for larger �0. On the other hand, when
the Coulomb repulsion is dominant in the � band ���0�, as
shown in Fig. 6�a�, the profile of ����x�� changes in a pecu-
liar way as �� /�� varies. For relatively small �0 �e.g., 0.1 in
Fig. 6�a��, ����x�� is enhanced around the vortex core for
larger �� /��, while for �0=0.3 ����x�� hardly changes for
different values of �� /��. For larger �0��0.3� �not shown�,
however, the core region becomes larger with increasing
�� /��—in a similar way as for ��0, though not so drasti-
cally. This lets us conclude that for the case �0�0.3 in Fig.
6�a� a cancellation between two opposite tendencies is at
work, that renders ����x�� seemingly insensitive to the pa-
rameter �� /��. As to ����x��, similarly as ����x�� in Fig. 6�b�,
the core area is enlarged for larger �� /��, more noticeably
for larger �0, and for both positive and negative � �see Fig.
8�b� below�.

As discussed above, even though superconductivity is in-
duced in the � band due to coupling with the � band, the
characteristic length scale of the order parameter can be quite
different in the two bands. This is demonstrated in Fig. 7 for
various sets of �0 and �� /��. Here the order parameter ratio
����x� /���x�� is plotted as a function of x. In agreement with
our discussion of Fig. 4�b�, this ratio is in the vortex core
larger than �0 for negative, and smaller than �0 for positive
�. When ��0, despite the peculiar change of the ����x��
profile as a function of �� /�� depending on the value of �0,
����x� /���x�� is always larger than �0 in the core area, as can
be seen in Fig. 7�a�. The main conclusion of Fig. 7 is that the
enhancement for ��0 and depletion for ��0 of
����x� /���x�� increases with �� /�� and �0.

In Fig. 8 we compare the influence of the material param-
eters �0 and �� /�� on the order parameter profiles in the
vortex core. In Fig. 8�a� we vary �0 for fixed �� /��=3, and
in �b� we vary �� /�� for fixed �0=0.3. As shown in Fig. 1, in
general the bulk gap to Tc ratio in the � band changes in a

nonmonotonous way as a function of �0. In the case of the
parameter set for Fig. 8�a�, however, the bulk ��� � /Tc in-
creases with increasing �0 for the values of �0 shown �for a
fixed �� /���. At the same time, as the coupling of the two
bands becomes stronger, the recovery length of ���� in-
creases �Fig. 8�a�� and the length scales in the two bands are
more different �see also Fig. 7�a��. For a fixed �0 the �-band
order parameter has a larger core area as �� /�� increases
�Fig. 8�b��. The ���� profile changes in a similar way with
varying �� /�� when ��0. Also seen in Fig. 8�b� is that the
insensitivity of the ���� profile due to the cancellation effect
for ��0 discussed above, combined with the enhanced
depletion of ����, yields a seemingly paradoxical picture,
namely that an increase in �� �for fixed ��� results in a larger
core area in the � band instead of the � band.

FIG. 6. �Color online� �a� Order parameter in the � band ����x��
as a function of coordinate x along the path y=0 for various values
of �0 and �� /��, for T /Tc=0.1 and n� /n�=1; for �a� �=−0.1 and
�b� �=0.1. For ��0, ����x�� is depleted around the vortex core for
larger �� /��, and this effect is larger for larger �0. When the Cou-
lomb repulsion dominates ���0�, for small �0 �e.g., 0.1�, ����x�� is
enhanced near the vortex center for larger �� /��.
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4. Temperature dependence

The ratio ����x� /���x�� as a function of coordinate x is
plotted in Fig. 9 for various values of �0 and T /Tc, for �a�
�=−0.1 and �b� �=0.1. The enhancement �depletion� and its
temperature dependence of this ratio in the core area are
larger for larger �0 for negative �positive� �. This effect is
considerable when the Coulomb repulsion dominates in the
� band �Fig. 9�a��. As temperature becomes higher, however,
the difference between the recovery lengths of the two order
parameters is reduced, as can be seen in Fig. 9 �see also Fig.
10�.

Figure 10 shows the temperature dependence of �a�
����x�� and �b� ����x�� for a typical set of material param-
eters. By coupling to the weak � band, the suppression of
���� and the widening of its core region with increasing tem-
perature are more drastic compared with the single-band
case. The �-band order parameter is less affected by tem-
perature for low enough T /Tc. For higher temperature, how-
ever, the profile of the order parameters in the two bands are
similar.

The temperature dependence of the core area of the order
parameter can be characterized by the vortex core size de-
fined by69

�c
−1 =

���r = 0�
�r

1

��r = � �
, �34�

where r is the radial coordinate measured from the vortex
center. In a clean single-band superconductor, the order pa-
rameter exhibits the Kramer-Pesch �KP� effect,49 i.e., shrink-
age of the vortex core as T is lowered, approaching zero in
the zero-temperature limit.50,69–71 In an s-wave supercon-
ductor, however, the core size as defined above saturates as
temperature approaches zero, when there are nonmagnetic

impurities.50,71 This can be understood by the broadening of
the vortex core bound states that carry the supercurrent
around the vortex center. This broadening removes the sin-
gular behavior in the spatial variation of the order parameter
in the vortex center, and the vortex core shrinking ceases
when kBT becomes smaller than the energy width of the
zero-energy bound states situated at the vortex center �in
quasiclassical approximation one can neglect the small split-
ting of these bound states due to the Caroli–de Gennes mini-
gap�.

Recently, our model of coupled clean and dirty bands1 has
been applied to study the KP effect in a two-band supercon-
ductor, and it has been shown that, by coupling to the clean
band, the KP effect is induced in the dirty band.50 The cal-
culation in Ref. 50 corresponds to positive � in our formu-
lation.

FIG. 7. �Color online� �a� The ratio ����x� /���x�� as a function
of coordinate x along the path y=0 for various values of �0 and
�� /��, for T /Tc=0.1 and n� /n�=1; for �a� �=−0.1 and �b� �
=0.1. For negative �positive� �, the ratio is larger �smaller� than �0

around the vortex core, and the area of the enhancement �depletion�
is larger for larger �� /��. As �0 increases, the ratio changes more
drastically as x approaches zero.

FIG. 8. �Color online� Order parameters ����x�� and ����x�� as a
function of coordinate x along the path y=0 for T /Tc=0.1, �=
−0.1, n� /n�=1; for �a� various values of �0 for �� /��=3 and �b�
different values of �� /�� for �0=0.3. For a fixed �� /��, as �0 in-
creases, the core area is enhanced in both bands. For a fixed �0, for
larger �� /�� the core area is enlarged in the � band.
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In Fig. 11 we plot �c /�� in the � and � bands as a func-
tion of temperature for �0=0.3, �� /��=3, and n� /n�=1, for
�a� �=0.1 and �b� �=−0.1. Points are data obtained by self-
consistent calculation, and curves are guides to the eye.
Single-band results are also shown for clean �dotted curves�
and dirty �dashed-dotted curves� superconductors, which ex-
hibit the core shrinkage and saturation as T→0, respectively.
In the two-band case, the core size in the dirty � band
�dashed curves� tends to zero in the zero-temperature limit,
as the core size in the clean � band �full curves� does. For
��0, shown in Fig. 11�a�, the core size in the � band is
always larger than the core size in the � band. There is the
KP effect in the � band also when the Coulomb repulsion is
dominant �see Fig. 11�b��. However, here the core size de-

fined by Eq. �34� is always smaller in the � band than in the
� band. Surprisingly, with dominating Coulomb interactions,
the KP effect is better developed rather in the diffusive band
than in the ballistic band. Only at very low temperature the
core size extrapolates to zero in the � band, whereas this
happens in the � band already below T�0.5Tc. We suggest
that the KP effect can be used to study the strength of Cou-
lomb interactions in the effective pair interaction matrix. Fi-
nally, when �=0 �not shown�, the order parameters in the
two bands have the same length scale and the same �c.

B. Spectral properties of diffusive band

In Fig. 12 we show an example for the LDOS N��� ,r� as
obtained from Eq. �9� in the diffusive � band as a function of
energy � at various distances r from the vortex center. At the
vortex center, N��� ,r=0� as a function of � is completely
flat, showing no sign of localized states. This is consistent
with the experiment on MgB2,17 which probed the �-band
LDOS by tunneling along the c axis. Far away from the
vortex core, the bulk BCS density of states is recovered. For
a fixed �0, the BCS density of states is recovered at larger
distances for larger �� /��; while for a fixed �� /��, the LDOS
recovers to the bulk density of states further away for smaller
�0.

Experimentally the vortex core size obtained from tunnel-
ing spectroscopy can be defined as a measure of the decay of
the zero-bias LDOS as one moves away from the vortex
center. Note that this definition of the vortex core size is very
different from that defined in Eq. �34� and shown in Fig. 11:
the two quantities in fact differ by a large amount as we
discuss in the following. Figure 13 shows the zero-bias
LDOS in the � band N���=0,r� as a function of r for �a�
varying �� /��, �b� varying �0, �c� varying �, and �d� varying

FIG. 9. �Color online� The ratio ����x� /���x�� as a function of
position x along the path y=0 for �� /��=3 and n� /n�=1, for vari-
ous values of �0 and T /Tc; for �a� �=−0.1 and �b� �=0.1. The
difference between the length scales in the two bands and its tem-
perature dependence are enhanced as �0 increases, especially for
��0. As temperature is raised, the difference between the recovery
lengths of the two order parameters becomes smaller.

FIG. 10. �Color online� Order parameters �a� ����x�� and �b�
����x�� as a function of x along the path y=0 for �0=0.3, �� /��

=3, n� /n�=1, �=−0.1. The weak � band makes the temperature
dependence of the ���� profile more drastic than in the single-band
case.

FIG. 11. �Color online� The core size �c defined by Eq. �34� in
the two bands for �0=0.3, �� /��=3, and n� /n�=1, for �a� �=0.1
and �b� �=−0.1. The Kramer-Pesch effect is induced in the � band,
although absent in a single diffusive band �dashed-dotted curves�.
As seen from �a�, the core radius �c is larger in the � band than that
in the � band when ��0. However, the opposite is true for �
�0, as shown in �b�.
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T /Tc; for the combination of the remaining parameters
n� /n�=1, �� /��=3, �0=0.3, T /Tc=0.1, �=−0.1. For a fixed
�0, the core size defined as a decay length of the zero-bias
LDOS increases substantially with increasing �� /��, as
shown in Fig. 13�a�. On the other hand, for a fixed �� /��, the
core size becomes considerably larger for weaker coupling to
the � band, i.e., smaller �0, as presented in Fig. 13�b�. It can
be seen in Fig. 13�c� that the LDOS profile in the � band is
barely changed for different values of �. The Fermi-surface
density of states n� /n� also has little effect on the �-band
LDOS �not shown�. As illustrated in Fig. 13�d�, the LDOS is
hardly affected by temperature over a rather large tempera-

ture range; however, the decay length increases notably for
temperatures close to Tc. Figure 13 is a central result of our
calculations, as it can be used directly as reference for com-
parison with scanning tunneling experiments, in order to de-
termine either of the material parameters �� /�� or �0. In
particular, the parameter �� /�� is otherwise difficult to ac-
cess experimentally.

The decay length of the LDOS can be very different in the
two bands. The length scale of the zero-bias LDOS in the �
band is �� and thus shorter than that in the � band for small
enough �0 or large enough �� /��. The existence of two co-
herence length scales in MgB2 has been suggested;45,44,17 i.e.,
a core size ��50 nm� much larger than that expected from
Hc2 ��10 nm�. Theoretically, two apparent length scales in
the LDOS have been found also in the case of two clean
bands46 and two dirty bands.47,72 In our model, the difference
in the decay lengths comes from the fact that, although su-
perconductivity is induced in the � band, quasiparticle mo-
tion is governed by the effective coherence length resulting
from the Usadel equation �2�, �D /2�� �that is longer than
��=�D /2�Tc�.

Our model of a clean and a dirty band is suitable for
describing MgB2, and the values of �0, n� /n�, and � for Fig.
13�a� are appropriate for modeling MgB2. Using the ab initio
value68 of vF� and including the renormalization factor as
mentioned above, ���6.8 nm for MgB2 �Tc=39 K�. By
comparing Fig. 13�a� with the zero-bias LDOS measured in
the experiment of Ref. 17 �Fig. 3�a� in Ref. 17�, for this
parameter set, we find �� /�� is about 2 for MgB2. As dis-
cussed in detail in the next section, there can be bound states
near the gap edge in the strong ballistic � band, which arise
from coupling to the weak diffusive � band. Such bound
states exist for parameter values relevant for MgB2, e.g., for
�� /��=2, �0=0.3, and for various temperatures, n� /n�, and
� �see, e.g., Fig. 15�.

FIG. 12. �Color online� The �-band LDOS N��� ,r� as a func-
tion of energy � at various distances r from the vortex center �r /��

from 0 to 40 with an increment of 5�. The parameter values are
�� /��=1, �0=0.3, T /Tc=0.1, n� /n�=1, and �=0. The N��� ,r�
shows no sign of localized states in the vortex core, consistent with
the experiment on MgB2 �Ref. 17�.

FIG. 13. �Color online� The
zero-bias LDOS N���=0,r� as a
function of distance r from the
vortex center for n� /n�=1; �a�
�0=0.3, T /Tc=0.1, �=−0.1 for
various values of �� /��; �b�
�� /��=3, T /Tc=0.1, �=−0.1 for
various values of �0; �c� �0=0.3,
�� /��=3, T /Tc=0.1 for various
values of �; �d� �0=0.3, �� /��

=3, �=−0.1 for various tempera-
tures. By comparing with the ex-
perimental data �Ref. 17� we esti-
mate �� /���2 for MgB2, taking
�0=0.3.
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C. Spectral properties of ballistic band

1. Total LDOS

We turn now to the spectral properties of the vortex core
originating from the clean � band. We plot in Fig. 14 the
total �angle-averaged� LDOS N��� ,r�= �N��� ,pF� ,r�
pF�

in
the ballistic � band as a function of energy � at various
distances r from the vortex center. The spectra show the
well-known Caroli–de Gennes–Matricon �CdGM� bound-
state bands48,74 at low energies. In the single-band case �see
Fig. 15�a��, at the gap edge the spectrum is suppressed and
there is neither coherence peak nor bound state in the vortex
center spectrum.60,75,76 The new feature found in our model
is the additional bound states at the gap edge, as can be seen
clearly in Fig. 14, which arise from coupling to a diffusive
band. While the CdGM bound states disperse strongly as a
function of position, the extra bound states stay near the gap
edge as r is varied. The self-consistency of the order param-
eters is essential for studying the presence or absence of
these gap-edge bound states.

In Fig. 15 the total LDOS near the gap edge at various
distances r is shown at temperature T /Tc=0.1, for �a� the
single-band case, �b� �� /��=5, �0=0.2, �c� �� /��=2, �0
=0.3, and �d� �� /��=5, �0=0.3. It can be seen in Fig. 15�a�
that in the single-band case, there is no localized state near
the gap edge at r=0, while a small peak develops at the gap
edge at large r. This is a bound state arising solely from the
phase winding around the vortex. In Fig. 15�b�, additional
bound states exist at the gap edge both in the core region and
far away from the vortex center. For a fixed �� /��, with
increasing �0, gap-edge bound states are enhanced and more
bound states can be created �Figs. 15�b� and 15�d��. In the
case of Fig. 15�d�, there are two bound states close to the gap
edge in the r=0 spectrum. For nonzero r, all bound states
broaden into bands due to dispersion of the bound states with
momentum direction, exhibiting the typical 1 /��-like behav-

ior at the band edges. This can be seen clearly in Fig. 14 for
the main bound state crossing zero energy at r=0. The addi-
tional gap-edge bound states also show this behavior, as can
be seen, e.g., in Fig. 15�d� for the main gap-edge bound state
at small r. For a fixed �0, �more� bound states can exist for
larger �� /�� �Figs. 15�c� and 15�d��. In the case of Fig. 15�c�,
gap-edge bound states exist at large r, but not in the core
region. However, in this case a coherence peak can be ob-
served at the gap edge at small r.

2. Gap-edge bound states

We now study the detailed development of bound states
near the gap edge in the � band in terms of the spectrum at
the vortex center. We start with the sensitivity of the gap-
edge bound state spectrum to � and to n� /n�. In Fig. 16 we
show the �-band total LDOS N��� ,r=0� for energy � close
to the energy gap at temperature T=0.1Tc. To emphasize the
changes we show here examples for a relatively large coher-
ence length ratio �� /��=5. The panels �a�–�d� correspond to
various fixed parameter combinations, and the curves in each
panel are for different values of �. We show results for �0
=0.2 ��a�,�b�� and 0.5 ��c�,�d��, and for n� /n�=1 ��a�,�c�� and
2 ��b�,�d��. The Coulomb interaction in the � band also af-

FIG. 14. �Color online� The �-band LDOS N��� ,r� as a function
of energy � at various distances r from the vortex center �r /�� from
0 to 10 with an increment of 1�. The parameter values are �� /��

=3, �0=0.3, T /Tc=0.1, n� /n�=1, and �=−0.1. Coupling to a dif-
fusive band results in bound states at the gap edge in the clean band,
in addition to the well-known Caroli–de Gennes–Matricon bound
states.

FIG. 15. �Color online� The N��� ,r� as a function of energy � at
various distances r from the vortex center �r /�� from 0 to 10 with
an increment of 1� for T /Tc=0.1; �a� the single-band case, �b�
�� /��=5, �0=0.2, �c� �� /��=2, �0=0.3, and �d� �� /��=5, �0=0.3.
In the two-band cases, n� /n�=1 and �=−0.1. The gap-edge bound
states, which are absent in the single-band case, are enhanced �and
the number of branches increases� for larger �� /�� and �0.

TANAKA, ESCHRIG, AND AGTERBERG PHYSICAL REVIEW B 75, 214512 �2007�

214512-12



fects the gap-edge bound states. It can be seen in Fig. 16�a�
that, for the given set of parameters, gap-edge bound states
exist for �=−0.1, but not for �=0.2. An increase in n� /n�

results in an increase in the energy gap, and �more� gap-edge
bound states due to widening of the core area �Fig. 16�b��.
Increasing �0 has similar effects. It can be seen in Figs. 16�c�
and 16�d� that the lowest branch shifts considerably to lower
energy, while the energy gap becomes larger, as � is re-
duced.

Next we discuss the dependence on the coherence length
ratio �� /�� and on the zero temperature gap ratio �0. There is
a threshold for both parameters, above which gap-edge
bound states appear. We illustrate this in Fig. 17 for T /Tc
=0.1 and �=0. In Figs. 17�a� and 17�b� �� /�� is changed for
fixed �0=0.5. Results are for �a� n� /n�=1 and 2 �b�. For this
gap ratio, gap-edge bound states exist for �� /���1 for both
ratios of the density of states shown. As �� /�� increases, the
energy gap changes only slightly. On the other hand, the
lowest bound-state energies are reduced substantially and
more branches appear. This effect is enhanced for larger
n� /n�. For �� /��=5 and �0=0.5, there are three branches for
n� /n�=2. Figures 17�c� and 17�d� show the LDOS for vari-
ous values of �0 for fixed �� /��=5 for �c� n� /n�=1 and 2
�d�. For this parameter set, for �0=0.1 there is no gap-edge
bound state for n� /n��2. As �0 increases, the energy gap is

enhanced and more branches appear at the gap edge, and this
effect is more significant for larger n� /n�.

Increasing temperature T also enhances the features of
gap-edge bound states. Figure 18 shows the LDOS for
n� /n�=2 and �=0 for various T. In �a� and �c� we compare
for �� /��=3 the cases �0=0.3 and �0=0.5, and in �b� and �d�
we fix �0=0.5 and compare the cases �� /��=1 and �� /��

=5. As T increases, bound states at the gap edge shift lower
together with the energy gap and increase in strength. The
change from T /Tc=0.1 to 0.5 in Fig. 18 is substantial for
�0=0.5 and �� /��=5. The results in Fig. 16–18 illustrate that
the gap edge bound states are a robust feature of our model.

3. Angle-resolved LDOS

The bound-state spectrum can be discussed most clearly
in terms of the angle-resolved LDOS spectra, obtained from
Eq. �9�. In Fig. 19, the angle-resolved LDOS N��� , py

=0,y� for quasiparticles moving with impact parameter y in
the px direction is shown as a function of � at various posi-
tions y �x=0�. The two panels are for �a� �0=0.3 and �b�
�0=0.5. The position of the bound states as a function of
impact parameter y is plotted in Fig. 20. The CdGM bound-
state branch disperses with angular momentum, crossing the
chemical potential in the vortex center. In Fig. 19�a� addi-
tional bound states near the gap edge can be seen, which
have only weak dispersion. A close inspection reveals that

FIG. 16. �Color online� The total LDOS in the �-band at the
vortex center, N��� ,r=0�, for energy � close to the energy gap, for
�� /��=5 and T /Tc=0.1 for different values of �; for �0=0.2
��a�,�b�� and 0.5 ��c�,�d�� and for n� /n�=1 ��a�,�c�� and 2 ��b�,�d��.
Bound states exist near the gap edge for � smaller than a certain
value.

FIG. 17. �Color online� Same as Fig. 16, but for fixed �=0, and
for ��a�,�b�� various values of �� /�� for �0=0.5 and ��c�,�d�� differ-
ent values of �0 for �� /��=5. Gap-edge bound states develop as �0

or �� /�� is increased.
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there are two branches; for ��0, the lower branch for
roughly y�−6 and the higher one for y�0, and similarly for
negative y for ��0. The higher branch hardly disperses with
y �see Fig. 20�a��. As coupling with the � band becomes
stronger, the energy gap increases. At the same time, the
energies of the bound states are lowered �for relatively small
angular momenta�, and more bound states appear near the
gap edge, due to enlargement of the core area �Fig. 19�b��
�see also Fig. 20�b��. For �0=0.5, there is a third bound-state
branch at the gap edge for small �y�, and the lowest branch
extends over large distances, with enhanced dispersion com-
pared to that for �0=0.3. For a fixed �0, increasing �� /��

results in a larger core area and has similar effects as increas-
ing �0.

D. Current density

For a clean single-band superconductor, supercurrents
around a vortex are strongly coupled to the Andreev spec-
trum discussed in the preceding section, and are inside the
core area carried mainly by these bound states.74,75 In the
following we present results for the current density calcu-
lated with Eqs. �11� for our two-band model. In Fig. 21 we
show contributions from the two bands to the current density
around the vortex separately, for parameters n� /n�=1 and

�=0, and for various temperatures. In the left-hand panels,
we have �0=0.1, and �a� �� /��=1 and �b� 3. For this weak
coupling between the two bands, the current contribution
from the � band is negligible for �� /��=1. For �� /��=3,
though still small, at low temperature �i.e., T /Tc=0.1� the
�-band contribution in the bulk �outside the vortex core, but
still well within the penetration depth distance from the core�
is almost the same as that in the � band. As T→0, the peak
of j� approaches the vortex center—this is the KP effect
manifest in the supercurrent. The current density arising
from the induced superconductivity in the � band is also
enhanced by decreasing temperature, but the maximum does
not approach the vortex center �see Fig. 21�b��. In Ref. 1, the
same trend of the �-band current density as a function of
temperature was presented for parameter values appropriate
for MgB2.

As �0 increases, the �-band contribution to the current
density becomes considerable. In Figs. 21�c� and 21�d�, the
current density contributions are plotted for �0=0.5, for �c�
�� /��=1 and �d� 3. Interestingly, as the coupling between the
two bands is increased, the � band starts exhibiting the KP
effect in the current density. The maximum shifts towards the

FIG. 18. �Color online� Same as Fig. 16, but for n� /n�=2 and
�=0, for four sets of other parameters �see text� and various tem-
peratures. The energy gap is reduced significantly as temperature
increases and the energies of the gap-edge bound states are shifted
together with the energy gap.

FIG. 19. �Color online� The angle-resolved LDOS N��� , py

=0,y� as a function of energy �, for quasiparticles moving in the x
direction at various positions along the y axis �from y=−18�� to
y=18�� with an increment of 3���. The parameter values are
�� /��=5, T /Tc=0.5, n� /n�=1, �=−0.1, with �a� �0=0.3 and �b�
�0=0.5. An increase in �0 results in more gap-edge bound states and
enhancement of their dispersion.
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vortex center as temperature is decreased, although the core
size as defined by the position of the current maximum re-
mains larger than that in the � band �see Figs. 21�c� and
21�d��.

As can be seen in Fig. 21�d�, for relatively large �0 and
�� /����1�, the �-band contribution to the current density
becomes substantial. Especially away from the vortex core,
where the contribution of the � band is reduced, the �-band
contribution can be dominant. Another important observation
is that the current density in the � band has strong tempera-
ture dependence also far outside the core. On the contrary,
the �-band current density is temperature dependent only in
the core area. Far away from the vortex core, we can use in
Eq. �11� the analytical solutions to the Eilenberger and Us-
adel equations for a quasihomogeneous system, with con-
stant magnitude and constant phase gradient of the order
parameters. We thus obtain the current-density magnitudes
for a large distance r from the vortex center �but small com-
pared to the London penetration depth� as

j��r� � eNF�vF�
2 1

2r
, �35�

j��r� � eNF��D����
1

r
. �36�

Clearly, the temperature dependence of j� is dominated by
that of ����. This bulk behavior of the current density in the
two bands also explains the dominance of the �-band con-
tribution in the bulk for relatively large �0 and �� /��. For
large r, the current-density ratio approaches

lim
r���,�

j��r�
j��r�

=
NF�2�D����

NF�vF�
2 =

n�

n�

����
Tc

� ��

��
�2

. �37�

Thus the �-band contribution to the current density domi-
nates when ��� /���2� �n� /n������ � /Tc�−1. This is relevant
for MgB2, for which this condition roughly reads as �� /��

�1.

V. CONCLUSIONS

In conclusion, we have studied a model recently intro-
duced by us1 for describing a multiband superconductor with
a ballistic and a diffusive band in terms of coupled Eilen-
berger and Usadel equations. Both equations were solved
directly and numerically until self-consistency of the order
parameters was achieved. We have studied the effects of in-
duced superconductivity and impurities in the weak diffusive
��� band on the order parameter, the current density, and the
spectral properties of the strong ballistic ��� band. A unique
feature found in our model is the existence of additional
bound states at the gap edge in the ballistic band, which are

FIG. 20. �Color online� The energy of the bound states as a
function of y obtained from Fig. 19. There are two branches of
gap-edge bound states for �0=0.3. For �0=0.5 there is a third
branch in the vortex core: the lowest branch is extended over large
distances and its dispersion is enhanced considerably compared
with the case for �0=0.3.

FIG. 21. �Color online� Magnitude of the supercurrent density in
the two bands, j� and j�, as a function of distance r from the vortex
center, for n� /n�=1 and �=0, for various temperatures. In the
left-hand panels, we have �0=0.1, for �a� �� /��=1 and �b� 3. The
right-hand panels have �0=0.5, for �c� �� /��=1 and �d� 3. The
�-band contribution can be substantial, or even dominating, and
have strong temperature dependence far outside the vortex core for
large enough �0 and �� /��.
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absent when there is no coupling with the diffusive band.
Although the two bands are coupled by the pairing inter-

action, the order parameters in the two bands can have very
different length scales. When the Coulomb interaction domi-
nates in the � band, the order parameter in the � band has a
longer recovery length than that in the � band. In this case,
the � band exhibits the Kramer-Pesch effect with a core size
�defined by Eq. �34�� smaller than that in the � band. Fur-
thermore, when coupled to the diffusive band, the order pa-
rameter in the ballistic � band is suppressed by temperature
more strongly than in the single-band case.

The zero-bias LDOS in the two bands can have very dif-
ferent decay lengths, the one in the � band being larger than
that in the � band. As the induced superconductivity in the �
band becomes stronger, the core area widens in the � band
and �more� gap-edge bound states appear. Moreover, an in-
crease in the Fermi-surface density of states in the � band
results in an increase in the energy gap and the number of
gap-edge bound states in the � band. Increasing the Coulomb
repulsion in the � band and temperature also enlarges the
core area in the � band, which results in additional bound
states at the gap edge. The gap-edge bound states have only
weak dispersion. It is thus expected that these bound states
are affected only weakly by impurity scattering within the �
band.76 Results incorporating impurities in the strong � band
confirm this statement and will be presented in a future
paper.77

The supercurrent density is dominated in the vortex core
by the �-band contribution, and outside the core the �-band
contribution can be substantial, or even dominating over the
�-band current density. The current density in the � band
shows the Kramer-Pesch effect in the core area. On the other

hand, the � band current density has strong temperature de-
pendence also outside the core. It exhibits the Kramer-Pesch
effect when the coupling between the two bands is relatively
strong. Stronger Coulomb repulsion in the � band enhances
the current density in the � band, while it has little effect on
the �-band current density.

Our model is suitable for describing MgB2. For parameter
values appropriate for MgB2, we have found the above in-
triguing features in the LDOS and the current density, includ-
ing additional bound states near the gap edge in the � band.
The gap-edge bound states should be affected only weakly
by the strong electron-phonon interaction, as the energy of
relevant phonons is much higher �above 60–70 meV� �Refs.
18, 78, and 79�. Our predictions on the spectral properties of
the � band can be tested by tunneling electrons onto the ab
plane.8,80
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