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We develop a theory for the current-voltage characteristics of a two-dimensional electron gas–
superconductor interface in magnetic field at arbitrary temperatures and in the presence of surface roughness.
Our theory predicts that, in the case of disordered interface, the higher harmonics of the conductance oscilla-
tions with the filling factor are strongly suppressed as compared with the first one; it should be contrasted with
the case of the ideal interface for which amplitudes of all harmonics involved are of the same order. Our
findings are in qualitative agreement with recent experimental data.
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I. INTRODUCTION

The study of hybrid systems consisting of superconduct-
ors �S� in contact with high mobility two-dimensional elec-
tron gas �2DEG� in magnetic field has attracted considerable
interest in recent years.1–3 The quantum transport in this type
of structures can be investigated in the framework of An-
dreev reflection theory.4 When an electron quasiparticle in a
normal metal �N� reflects from the interface of the S into a
hole, Cooper pair transfers into the superconductor. A num-
ber of very interesting phenomena based on Andreev reflec-
tion had been studied in the past.5 For example, if the normal
metal is surrounded by superconductors, so we have a SNS
junction, a number of Andreev reflections appear at the NS
interfaces. In equilibrium, it leads to Andreev quasiparticle
levels in the normal metal that carry a considerable part of
the Josephson current; out of equilibrium, when supercon-
ductors are voltage biased, quasiparticles Andreev reflect
about 2� / eV times, transferring large quanta of charge from
one superconductor to the other. This effect is called multiple
Andreev reflection �MAR�.5

Effect similar to MAR appears at a long enough NS in-
terface in the presence of magnetic field; it bends quasipar-
ticle trajectories and forces quasiparticles to reflect many
times from the superconductor. If phase coherence is main-
tained, interference between electrons and holes can result in
periodic, Aharonov-Bohm-like oscillations in the magnetore-
sistance. The conductance g of a S-2DEG interface in the
presence of the magnetic field has been measured in recent
experiments.6–10 At large filling factors, it demonstrated
highly nonmonotonic dependence with the magnetic field B.
The most interesting effect was the oscillations of g with the
filling factor � in a somewhat similar manner as in the
Shubnikov–de Haas effect.

Recently, a phenomenological analytical theory of these
phenomena based on an “analogy” with the Aharonov-
Bohm effect was suggested in Ref. 11. Numerical simu-
lation was performed in Ref. 12. It was theoretically shown
that the transport along the infinitely long 2DEG-S interface
can be described in the framework of electron and hole
edge states.13 The 2DEG-S interfaces investigated in the

experiments were not infinitely long. Their length, L, was
typically of the order of a few cyclotron orbits, Rc, of an
electron in 2DEG at the Fermi energy EF. Quasiclassical
theory of the charge transport through 2DEG-S interface of
arbitrary length was developed in Ref. 14 for the case of
large filling factors and vanishing temperature. In most the-
oretical papers mentioned above, the 2DEG-S interface with
no roughness �ideal interface� was considered. As was
shown,14 when L�2Rc, g��� oscillates nearly harmonically
with �, as cos�2���. For L�4Rc, the next harmonics with
cos�4��� appears, and so on. In experiments L�6Rc, there-
fore, one would expect to observe cos�2�n�� harmonics in
the conductance, with n=1,2 , . . .. However, if we try to com-
pare theoretically predicted g��� with the experimentally
measured one, then we find that �i� although L�6Rc, the
lowest harmonic cos�2��� in the conductance survives,
whereas higher harmonics are absent; and �ii� the amplitude
of the conductance oscillations is much smaller than is pre-
dicted by theories. The reason for this disagreement is prob-
ably the roughness of the 2DEG-S interface in experiments
and the perfect flatness of this interface in theory.

The main objective of the present paper is to develop a
theory for the current-voltage characteristics of the 2DEG-S
interface in magnetic field at finite temperature, which takes
into account the surface roughness. Our approach with the
surface roughness possibly helps to make a step toward ex-
planation of the experimental results.

In this paper, we find the current-voltage characteristics of
a 2DEG-S interface in magnetic field in the presence of sur-
face roughness. Theories based on the assumption of inter-
face perfectness predict the conductance g=g0+g1 cos�2��
+�1�+g2 cos�4��+�2�+. . .; the amplitudes of the harmonics
are of the same order: g1�g2� . . .. This result cannot quali-
tatively describe the visibility of the conductance oscillations
in experiments. As we have mentioned above, experimen-
tally, the conductance behaves as g=g0+g1 cos�2��+�1�;
higher harmonics: g2 cos�4��+�2� , . . ., are hardly observed.
Our approach that takes into account the surface roughness
allows one to eliminate discrepancy between experiments
and the theory. Due to the presence of a disorder at a
2DEG-S interface, the higher harmonics in the conductance
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oscillations with � are suppressed, in qualitative agreement
with experiments.

The paper is organized as follows. In Sec. II, we present
the general framework in terms of the quasiparticle scattering
states for the computation of the current-voltage characteris-
tics for 2DEG-S interface. In Sec. III, we consider the case of
an ideally flat 2DEG-S boundary. We generalize the result of
Ref. 14 on finite temperature. In Sec. IV, we consider the
effect of surface roughness �diffusive reflection case� on the
current-voltage characteristics. We end the paper with con-
clusions in Sec. V.

II. FORMALISM

We consider a junction consisting of a superconductor,
2DEG, and a normal conductor segment �see Fig. 1�. Mag-
netic field B is applied along the z direction, perpendicular to
the plane of 2DEG. It is supposed that quasiparticle transport
is ballistic; the mean free path of an electron ltr�L. The
current I flows between N and S terminals provided the volt-
age V is applied between them.

Following Refs. 15–18, we shall describe the transport
properties of the junction in terms of electron and hole qua-
siparticle scattering states, which satisfy Bogoliubov–de
Gennes �BdG� equations. Then the current through the
2DEG-S surface is given as

I�V� =
e

h
�

0

	

dE�fe Tr�1̂ − Ree + Rhe� − fh Tr�1̂ − Rhh + Reh�� ,

�1�

where fe�h� denotes the Fermi-Dirac distribution function:

fe�h� =
1

e�E
eV�/T + 1
.

The energy E is measured from the chemical potential � of
the superconductor, and Ree�E ,no ,ni� is the probability of the
�normal� reflection of an electron with the energy E incident
on the superconductor in the edge channel with quantum
number ni to an electron going from the superconductor in

the channel no. The trace in Eq. �1� is taken over the channel
space provided that spin degrees of freedom are included in
the channel definition. According to Eq. �1�, if we find the
probabilities Rab, a ,b=e ,h, then we shall be able to evaluate
the current, the conductance, the current noise, and so on.18

We shall focus on the case Rc�L. Then, quasiparticles re-
flected from the superconductor due to normal and Andreev
reflections return to the superconductor again due to bending
of their trajectories by the magnetic field.

At first sight, it seems that the reflection probabilities Rab

could be easily found using the approach of matching the
incident and outgoing quasiparticle wave functions at y=0
and y=L with the linear combinations of the quasiparticle
wave functions at the 2DEG-S boundary, corresponding to
Andreev edge states.13 However, this procedure is not easily
achieved, especially, in the presence of a disorder at the
2DEG boundaries. Even without a disorder, the matching
approach is hardly accomplished because Andreev bound
state wave functions13 and the wave functions of 2DEG edge
states are localized generally in different domains in the x̂
direction. The Andreev bound state wave functions  pen-
etrate inside the superconductor on the length scale of the
order of the superconductor coherence length �,13 but 2DEG
edge state wave functions � of the incident and outgoing
quasiparticles penetrate inside the 2DEG edges at the length
scale ln, which, in general, is not equal to � �Ref. 19;� e.g.,
ln=0 if we describe the edges of 2DEG by the model of solid
impenetrable potential walls.

Let �=1, and we want to find the reflection probabilities
by the matching procedure. Then, we should expand the
wave function �e�x� of the incident quasiparticles with the
energy EF at y=0 over the basis of the two �because �=1�
Andreev bound state wave functions: e�x� and h�x�. If,
e.g., ln=0, we can hardly do it because then e�h��x� is finite
but �e�x�=0 for −��x�0; so it seems that the basis of
Andreev bound state wave functions turns out to be incom-
plete in this case. When ��1, the incompleteness problem
of the Andreev bound state basis possibly will be asymptoti-
cally removed, but we do not know the accuracy of this
statement.

Using the picture of quasiclassical trajectories, we de-
velop here an alternative procedure of matching the quasi-
particle wave functions. It allows us to take into account the
disorder at the boundaries of the 2DEG.

At large filling factors, the quasiclassical approximation is
applicable. An electron �hole� quasiparticle in 2DEG can be
viewed in the quasiclassics as a beam of rays.21,22 In a simi-
lar way, propagation of the light is described in optics within
the eikonal approximation in terms of the ray beams.25 Tra-
jectories of the quasiparticle rays can be found from the
equations of classical mechanics. In terms of the wave func-
tions, this description means that we somehow make wave
packets from wave functions of the edge states. Reflection of
an electron from the superconductor is schematically shown
in Figs. 1–5. In what follows, we demonstrate that, within
the quasiclassical approximation, the matching problem can
be solved even in the presence of an interface disorder and
the probabilities Rab can be explicitly evaluated.

e

e,h

superconductor

normal
metal

NS (2DEG)

x0

y

y=L

I

I

y=0

FIG. 1. The device which we investigate consists of a supercon-
ductor, 2DEG, and a normal conductor. An electron injected from
the normal conductor to 2DEG in the integer quantum Hall regime
transfers through an edge state to the superconductor. It reflects into
a hole and an electron which returns to the normal contact through
the other edge states.
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III. IDEALLY FLAT 2DEG-S INTERFACE

We start from the transport properties of the ideally flat
2DEG-S interface which can be most simply described pro-
vided that the edge channels do not mix at such interface,
Rhe�E ;no ,ni���no,ni

. In the quasiclassical language, it means
that electrons �holes� skip along the 2DEG edge along the
same arc trajectories, like it is shown in Fig. 2.

The probability of Andreev reflection can be found as
follows for the trajectories shown in Figs. 2 and 3:

Rhe�y0;no,ni� = �no,ni
	ei�Se−�/2��rhereereereee

3iSe−i3�/2−i��y3�

+ rhhrhereereee
iSh+2iSe−i�/2−i��y2� + . . . �	2, �2�

where rba is the amplitude of reflection of a quasiparticle
�ray� a into a quasiparticle �ray� b from the superconductor.
The quantity Se�h� is the quasiclassical action of an electron
�hole� taken along the part of the trajectory connecting the
adjacent points of reflection. The additional phase ±� /2 is
the Maslov index20 of the electron trajectory. The phase ��y�
arises due to the screening supercurrents. We assume that if
the superconductor satisfies the description within the Lon-
don theory �it is usually the case in experiments�, then
��y�=��0�+ �2m /��
0

ydỹvs�ỹ�,23 where vs is the superfluid
velocity evaluated at x=0, and m is the electron mass in the
superconductor. Here, we used the following property of
London superconductors: the spatial dependence of the vec-
tor potential and vs are small in the direction perpendicular to
the superconductor edge on the length scale �.

It is convenient to introduce the matrix

M�y� = � reee
i�Se−�/2� rehei�Sh+�/2�+i��y�

rhee
i�Se−�/2�−i��y� rhhei�Sh+�/2� � �3�

that contains the amplitudes of Andreev �rhe ,reh� and normal
�ree ,rhh� quasiparticle reflections from the superconductor at
the point y. Then, the matrix product

S�3� = M�y3�M�y2�M�y1�M�y0� �4�

describes the Andreev and normal scattering amplitudes for
the case shown in Figs. 2 and 3. In the case of n+1 reflec-
tions of a quasiparticle from the 2DEG-S interface, we ob-
tain the result

S�n� = M�yn�M�yn−1� ¯ M�y1�M�y0� . �5�

Hence, the probabilities Rab can be found as

Ree�E;y0;ni,ni� = 	S11
�n�	2, Reh�E,y0;ni,ni� = 	S12

�n�	2, �6�

Rhe�E;y0;ni,ni� = 	S21
�n�	2, Rhh�E;y0;ni,ni� = 	S22

�n�	2. �7�

The matrix S�n� can be calculated analytically for any in-
teger n when the superfluid velocity vs�x=0,y� is constant
and the phase ��y� is a linear function of y. Then, ��yn�
−��y0�=n��, with ��=2mvsd /�. The matrix M�yn� can be
conveniently written as

M�yn� = �†�n�M�y0���n� , �8�

FIG. 3. �Color online� When the conditions of the Andreev ap-
proximation are violated, we cannot use the assumption that an
Andreev-reflected hole velocity is exactly opposite to the velocity
of the incident quasiparticle at the superconductor electron. Then,
the quasiparticle rays propagate along the 2DEG-S interface as
sketched in the figure. The orbits are organized as if the scattering
occurs not at the 2DEG-S interface but from the interface in the
superconductor lying at some distance from the 2DEG-S interface.
According to Ref. 13, Andreev reflection couples electron and hole
orbits with the guiding center x coordinates −�±X, where �
 lB

2mvs /�, lB=��c /eB, and the value of vs should be taken at the
2DEG-S interface. For superconductors wider than the London pen-
etration length �M, �=�M. �b� illustrates schematically how An-
dreev and normal quasiparticle reflections occur at the supercon-
ducting interface along which a supercurrent flows. Indices i and o
label the incident and reflected quasiparticles, respectively.

FIG. 2. �Color online� The propagation of quasiparticles in the
quasiclassical approximation can be described in terms of rays. The
state of a ray can be found from the equations of the classical
mechanics. �a� and �b� show what happens if an electron ray from
an edge state of 2DEG comes to the superconductor. The electron
ray reflects at the point y=y0 from the superconductor into electron
and hole rays �normal and Andreev reflections�. They reflect, in
turn, at the position y1 from the superconductor generating two
other electron �red lines� and two other hole rays �blue lines�, and
so on. To find the probabilities, e.g., Rhe�E ,no ,ni�, it is necessary to
know the sum of the amplitudes of the eight holes that appear after
the last beam reflection at the point y3. Drawing �a�, we assume that
Andreev approximation �Ref. 4� is applicable �see Eq. �19�� and the
2DEG-S interface is ideally flat.
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where

��n� � �exp�−
i

2
n��� 0

0 exp� i

2
n��� � . �9�

Next, we obtain

S�n� = �†�n��M��n+1�†, �10�

where M =M�y0� and �=��1�. Given Eq. �A1� �see Appen-
dix A�, it is easy to find

�M��n+1 = ei��n+1�/2��Se+Sh��reerhh − rehrhe��n+1�/2�
reee

i�0Un�a�
�reerhh − rehrhe

− Un−1�a�
rehe−i�0

�reerhh − rehrhe

Un�a�

rhee
i�0

�reerhh − rehrhe

Un�a�
rhhe−i�0Un�a�
�reerhh − rehrhe

− Un−1�a� � . �11�

Here, Un�a�=sin��n−1�arccos a� /�1−a2 denotes the Cheby-
shev polynomial of the second kind and

a =
reee

i�0−i��/2 + rhhe−i�0+i��/2

2�reerhh − rehrhe

, �12�

with �0= �Se−Sh−�� /2.
If the amplitudes of local reflection rab are given, then we

can find the probabilities Rab from Eqs. �10�–�12�. We obtain
for n+1 reflections:

Ree = 	reerhh − rehrhe	n+1� reee
i�0Un�a�

�reerhh − rehrhe

− Un−1�a��2

,

Rhh = 	reerhh − rehrhe	n+1� rhhe−i�0Un�a�
�reerhh − rehrhe

− Un−1�a��2

,

Reh = 	reerhh − rehrhe	n	reh	2	Un�a�	2,

Rhe = 	reerhh − rehrhe	n	rhe	2	Un�a�	2. �13�

The probabilities Rab depend on the position of the first
reflection from the 2DEG-S interface, y0, that varies in the
range �0,d� �see Fig. 2�a��. The number of reflections n de-
pends on the choice of y0 as n=1+ ��L−y0� /d�, where �x�
denotes the integer part. So, the solution strategy is to calcu-
late the current using Eq. �1� with the probabilities Rab de-
fined in Eqs. �13� and, then, average the result over y0. The
natural choice for the distribution of y0 is the uniform distri-
bution: Pni

�y0�=��d�ni�−y0� /d�ni�. Hence, we find

I�V� =
e

h
�

0

	

dE�
ni

� dy0Pni
�y0���1 − Ree + Rhe�fe

− �1 − Rhh + Reh��fh. �14�

Equations �13� and �14� constitute the main result of the
paper. They allow one to find the current through the

2DEG-S surface at arbitrary temperature provided the ampli-
tudes of local reflection rab are given.

The action Se=
k̃e ·dl, where k̃e is the generalized mo-
mentum and the integral is over the quasiparticle trajectory
that connects the adjacent points of reflection from the
2DEG-S interface:

Se = kele +
e

�c
� A · dl = kele −

	e	
�c

�e, �15�

Sh = − khlh +
	e	
�c

�h. �16�

Here, ke�h�=�2m��2DEG± �E+gL�B�B�� /�2 and �= ±1, with
�2DEG and gL being the chemical potential and the g factor of
2DEG, respectively; le�h� is the trajectory length; and �e�h� is
the absolute value of the magnetic field flux through the area
bounded by the quasiparticle trajectory arc and the 2DEG-S
interface. The actions can be explicitly written in terms of
the filling factor � and the y component of the quasiparticle
velocity, vy

e�h�, at the 2DEG-S interface �when E ,gL�B�B
��2DEG/�, so ke�h��kF�:

Se�h� = se�h� ± ��� + 1/2� , �17�

where

sa = 2�� +
1

2
��arcsin

vy
a

va −
vy

a

va�1 − �vy
a

va�2� . �18�

Often the Andreev approximation can be used.4 Then, the
Andreev-reflected hole velocity direction may be considered
opposite to the velocity direction of the incident quasiparticle
at the superconductor electron �see Fig. 2�. The conditions
are as follows:
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vs � vF
�2DEG�, max�	eV	,T,gL�BB� � � � EF

�2DEG�.

�19�

Then, se=sh and

Se − Sh =
	e	

2�c
� = 2��� +

1

2
� . �20�

Here, � is the flux through the Larmor ring trajectory of an
electron in magnetic field B at the Fermi shell.

The problem of how to evaluate the rab amplitudes also
simplifies within the parameter range �19�. The conditions
mean that the magnetic field could be neglected in the BdG
equations; it is already taken into account by the phase �.
Then, rab can be evaluated according to the Blonder-
Tinkham-Klapwijk �BTK� theory.15

In general, when the conditions �19� are violated, our qua-
siclassical transport picture in terms of quasiparticle rays can
still be applied �see Fig. 3�. The amplitudes rab are the solu-
tions of the scattering problem for Bogoliubov–de Gennes
equations:

�E − gL�BB�u = � �p + mvs�2

2m
− ��u + �v , �21�

�E − gL�BB�v = − � �p − mvs�2

2m
− ��v + �u . �22�

Here, m, gL, and � should be considered different in S and
2DEG. The spatial distribution of the superfluid velocity is
fixed by the London equation, rot mvs=−Be /c. We do not
write the contribution to the BdG equations from a barrier
which exists usually at the 2DEG-S interface.

At T=0, the amplitudes of local reflection rab are related
to each other as rhh=ree

� , reh=−rhe
� , and 	ree	2+ 	rhe	2=1. Then,

using Eq. �14�, we find the conductance at zero temperature
and voltage:

g =
2e2

h
�
ni

�
s

Ps

	reh	2 sin2�s arccos��	ree	2 cos�����
1 − 	ree	2 cos2���

,

�23�

where spin is combined with the channel index, �= �Se−Sh

−�� /2+�−�� /2, and �=arg�ree� is the phase of the ampli-
tude of electron-electron reflection from the superconductor.
If the superconductor characteristic dimensions in the x di-
rection are larger than the Meissner penetration length �M,
then �� /2=2�Mk�, where k�=k��ni� is the perpendicular
component of the quasiparticle momentum when it reflects
from the superconductor. The function Ps is the probability
that the orbit experiences s reflections from the surface of the
superconductor. The function Ps originates from the integra-
tion over y0 in Eq. �14�. It can be expressed through the
maximum number of jumps, �L /d�, over the S-2DEG surface
as

Ps =�
L

d
− �L

d
� if s = 1 + �L

d
� ,

1 −
L

d
+ �L

d
� if s = �L

d
� ,

0 otherwise.
� �24�

The conductance �Eq. �23�� as well as the current �Eq.
�14�� are an oscillating function of �:

g��� = �
n=0

	

gn cos�2��n + �n� , �25�

where gn are the Fourier coefficients and �n the “phase
shifts.” For the length of the interface L�2Rc, the leading
contribution to the conductance �current� is given by the zero
harmonic g0. In the case 2Rc�L�4Rc, the conductance is
determined by the zero and first harmonics, g�g0
+g1 cos�2��+�1�. If 4Rc�L�6Rc, the second harmonics
g2 cos�4��+�2� becomes relevant, and so on.

How the conductance changes at T=0 with � is illustrated
in Fig. 4�a�. The thin black curve in Fig. 4 corresponds to
L /2Rc�3, which is a typical value in experiments. Applying
BTK model for extracting ree , . . ., one can plot figures of the
zero-bias conductance g��� at finite temperatures using such
parameters that many harmonics are presented, as in the case
T=0 shown in Fig. 4. It is worthwhile mentioning that the
amplitudes g1 ,g2 ,g3 , . . ., of all visible harmonics of the con-
ductance oscillations decrease more or less equally when
temperature grows from zero to Tc; finally, they vanish at
T=Tc. However, contrary to these predictions where a large

FIG. 4. �Color online� The oscillations with � of the dimension-
less zero-bias conductance at T=0. The parameters are as follows.
Fermi wave vector kF

�2DEG�=2�106 cm−1 and �� /4=20 that corre-
spond to NbN film with a width of the order of 100 nm. The
L=3 �m �L /2Rc5 at �=25� for the lower �black thin� curve and
L=0.6 �m �L /2Rc1 at �=25� for the upper �red thick� curve. We
neglect the Zeeman splitting, which is typically small. The 2DEG-S
interface scattering amplitudes rab were taken according to the BTK
model �Ref. 15�, with Z=0.6. The curves were produced using Eq.
�23�.
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number of harmonics are seen well, experimentally, only the
zeroth and first harmonics, g0 and g1, survive. The reason for
the discrepancy between our theory and the experiment is the
assumption that the 2DEG-S interface is ideally flat. Indeed,
as we shall demonstrate in the next section, disorder at the
2DEG-S interface makes g0�g1�g2. . ..

IV. DISORDERED 2DEG-S INTERFACE

Usually, 2DEG-S interface is not ideally flat. The disorder
at the interface can be divided into two classes: long range
and short range with the respect to the characteristic wave-
length, �F, in 2DEG. The presence of the long-range disorder
implies that the 2DEG-S interface position fluctuates around
the line x=0 at length scales much larger than �F

�2DEG�

�10−6 �m. Photographs of the experimental setups do not
allow one to think that 2DEG-S interface bends strongly
from the line x=0. Therefore, in the experiments of Refs.
6–10, this kind of disorder is likely not very important.

The short-range disorder includes the fluctuations of the
surface at length scales smaller than �F

�2DEG�. Usually, this
type of disorder is provided by impurities, clusters of atoms
at the surface due to defects of the lithography, etc. When,
for example, an electron ray falls on the disordered 2DEG-S
surface, the reflected electron rays go off the surface not at a
fixed angle but they may go at any angle with certain
disorder-induced probability distribution �diffusive reflec-
tion�. The phases that carry the reflected electron rays going
off the surface at different angles may be considered random,
so the reflected electron rays can be considered as
incoherent.27 However, to any reflected electron ray, an
Andreev-reflected hole ray is attached that is coherent with
the electron. So the interference of rays that produces the
conductance oscillations may not be suppressed completely
by the short-range disorder.

“Weak” short-range disorder at 2DEG-S interface does
not destroy the Andreev edge states, but it induces transitions
between the edge states �see Fig. 5�b��. Andreev edge states
in quasiclassics fix electron-hole orbit arcs with the same
beginning and end. The quasiclassical picture of the disorder-
induced transitions is shown in Fig. 5�a�.

In what follows, we assume that if the Andreev approxi-
mation conditions �Eq. �19�� are fulfilled, then se=sh and the
only fluctuating quantity is ��. In the general case, qualita-
tively similar results for the current can be obtained after
cumbersome calculations.

In close analogy with the ideal case, we introduce the
matrix

M�yn� = �†�n�M��n�exp�i�
i=0

n

si� , �26�

where s is defined in Eq. �17�, the matrix

��n� � �exp�−
i

2�
i=0

n

��i� 0

0 exp� i

2�
i=0

n

��i�� , �27�

and

M = �reee
i�� rehe−i��

rhee
i�� rhhe−i�� � . �28�

As before, for the situation sketched in Fig. 5�a�, we find
S�3�=M�y3�M�y2�M�y1�M�y0�exp�i�i=0

3 si� and, e.g., Rhe

= 	S21
�3�	2. It is worthwhile mentioning that the factor

exp�i�i=0
3 si� does not influence the probabilities Rab; there-

fore, we shall omit this term below. In the general case of
n+1 reflections, we obtain

S�n� = �†�n��M�n ¯ M�1M�0��0
†. �29�

Here,

�n ��exp�−
i

2
��n� 0

0 exp� i

2
��n� � , �30�

with ��n=�n−�n−1 and ��0�0.
Provided that Ree−Rhe=Rhh−Reh, we find the probabilities

FIG. 5. �Color online� The propagation of quasiparticles in the
quasiclassical approximation along the 2DEG-S interface in the
presence of disorder �see �a��. It corresponds to the transitions be-
tween the Andreev edge states, as shown in �b�, which are induced
by relatively weak short-range disorder. Disorder at the edges of the
2DEG-S interface leads to the orbits depicted in �c�. Strong disorder
destroys Andreev edge states. There are no oscillations in the con-
ductance because quasiparticles reflected from the strongly disor-
dered 2DEG-S surface are incoherent. Their orbits are shown in �d�.
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Ree − Rhe =
1

2
Tr��zM�nM�n−1 ¯ �2M�1M�zM

†�1
†

�M†�2
†
¯ �n−1

† M†�n
†M†� . �31�

For reasons to be explained shortly, we neglect the term
�†�n�. If one wants to find Ree, then �z should be substituted
by ��0+�z� /2 in the last equation. In order to obtain Reh, one
should substitute the first �z by ��0+�z� /2 and the second
one by ��0−�z� /2.

As in the previous section, we should average the current
over position y0. This operation is closely related to the dis-
order averaging, because by shifting y0 we make the trajec-
tories go through different disorder realizations. The phase
jumps ��n fluctuate due to the disorder.

We assume the following disorder average:

���a�ij��b�pq
† � = �ab�ij�pq��ip + �ip� , �32�

�ip = � 0 �e−i��a�
�ei��a� 0

� . �33�

Then, for example, the averages of the type ��1
−�ab�e−i���a±��b�/2�=0, because quasiparticles acquire a ran-
dom phase reflecting from the disordered interface, as was
mentioned above. The quantity Ree−Rhe can be treated per-
turbatively over small �. For the Gaussian distribution of
��n:

���a� = �� , �34�

����a��b�� = 2��ab, �35�

where ��¯�� denotes the irreducible average, one finds

�ei��a� = ei��e−�. �36�

For weak fluctuations: ��1, the results of the previous sec-
tion are valid. The opposite case, ��1, we shall discuss
below.

To the lowest order in �, the average probabilities for n
=3 are given as

Ree − Rhe = Tr���z�i2i2
	Mi2i3

	2	Mi3i4
	2	Mi4i5

	2	Mi5i6
	2��z�i6i6

� .

�37�

We see, therefore, that in the “completely incoherent case,”
�=0, the average probabilities can be found as the corre-

sponding elements of the matrix S̃n

S̃n = �	ree	2 	reh	2

	rhe	2 	rhh	2
�n

. �38�

For example, Ree= �S̃n�11. Given the theorem presented in

Appendix A, it is easy to find the explicit form of S̃n.
More interesting, however, is the first order term in the

expansion in powers of � for the probabilities Rab. After
calculations diagrammatically illustrated in Figs. 6 and 7 see
Appendix B�, we find for the average probabilities at T=0:

Ree − Rhe = �	ree	2 − 	reh	2�s

��1 + e−�
4�s − 1�	ree	2	reh	2

�	ree	2 − 	reh	2�2 cos�2��� .

�39�

Here, �=��+�ee−�� /2, and s is the number of reflections
from the 2DEG-S interface. All trajectory-dependent quanti-
ties that enter Eq. �39� should be evaluated for the trajectory
with equal electron and hole arcs.

Finally, we obtain the desired result for the zero-bias con-
ductance at T=0:

g =
4e2

h
��

s

Ps�1 − �	ree	2 − 	reh	2�s

��1 + e−�
4�s − 1�	ree	2	reh	2

�	ree	2 − 	reh	2�2 cos�2���� , �40�

where Ps is defined in Eq. �24�, but with d being substituted
by 2Rc. As one can see, in the limit e−��1, the conductance
oscillations are described by the first harmonics g1 cos�2��

FIG. 6. �Color online� Disorder averaging for the transmission
probabilities. The loop corresponds to the trace in Eq. �31�. The �
vertices are � ,�†; the solid lines represent M ,M†; and the dashed
lines are the ���†� correlators.

FIG. 7. �Color online� It is convenient to split the ���†� line
into the sum of two. The first one corresponds to the �ip term in Eq.
�32� and the second one to the � term ��a��. The parallel lines show
the part of the bubble �Eq. �31�� where the zero order in � is taken
�“diffusion”�. It does not carry interference information, �b�. �c�
Typical contribution to the average of the bubble of the first order in
� is schematically shown. The diamond denotes the place where
the � line is inserted. It is this diamond that provides oscillations of
the current with �. In order to find the contribution to the current of
the first order in �, one should sum all n diagrams like those shown
in �c� that differ by the position of the diamond.
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+�1� in Eq. �25�; higher harmonics are exponentially sup-
pressed by disorder as gn+1 /gn�e−��1.

The conductance oscillations �Eq. �40�� are illustrated in
Fig. 8. The conductance behavior agrees qualitatively with
the experimental data �for detailed discussion, see Ref. 8�.

An important question is the temperature dependence of
the conductance. Generally, the visibility of the conductance
oscillations is maximal at T=0 and is strongly suppressed as
T tends to Tc.

11–13 Given Eqs. �B13�, one can find the con-
ductance at arbitrary temperature: g=g0+g1 cos�2��+�1�.
Here, the amplitude g1�e−�. In accordance with general ex-
pectations, finite temperature suppresses the amplitude g1 of
the conductance oscillations. In Fig. 9, we draw the tempera-
ture dependence of the conductance maximum using Eq. �1�
for the case of strong disorder at the interface; parameters
correspond to the conductance maximum at �max�23 for the
curve on Fig. 8. The curve in Fig. 9 qualitatively reproduces
the shape of the experimental data, see detailed comparison
in Ref. 8. Surprisingly, the T behavior of the conductance at
different maxima �different �max� are qualitatively the same
and resembles the dependence of conductance on tempera-
ture of the 2DEG-S junction in zero magnetic field.

Finally, we mention that the result similar to Eqs. �39� and
�40� could be obtained by calculation of the influence of the
disorder at the edges of 2DEG-S interface on the magneto-
conductance �see Fig. 5�c��.

V. CONCLUSIONS

To summarize, in this paper, we developed a theory for
the current-voltage characteristics of a 2DEG-S interface in a
magnetic field at finite temperature and in the presence of
surface roughness �diffusive reflection�. We predict that the
surface roughness at the 2DEG-S interface suppresses higher
harmonics in the conductance oscillations with the filling
factor of 2DEG. We believe that it removes the contradiction
between the theory and the experiment that existed so far.

The magnetoconductance of the 2DEG-S boundary seems to
be sensitive to the degree of the boundary roughness, which
then offers an independent way of probing the interface qual-
ity.
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APPENDIX A: ABELÉS THEOREM

For the sake of the reader’s convenience, we present in
this appendix the following theorem.24,25 Let Q be a 2�2
�complex� matrix with the determinant equal to unity, then

Qn+1 = �Q11Un�a� − Un−1�a� Q12Un�a�
Q21Un�a� Q22Un�a� − Un−1�a�

� ,

�A1�

where a=Tr Q /2, and Un�a� is the Chebyshev polynomial of
the second kind26

Un�a� = sin��n + 1�arccos�a��/�1 − a2.

APPENDIX B: DISORDER AVERAGING

In this appendix, we present the details of derivation for
Eq. �39�. Let us consider the matrix

FIG. 8. �Color online� The figure shows the dependence of the
conductance on � at T=0 for the case of the disordered 2DEG-S
interface. The parameters used for this graph: length L of the
S-2DEG interface and the normal conductance of the interface, are
the same as for the black thin curve in Fig. 4. The comparison with
the data of Refs. 6 and 8 suggests e−�0.1 that we choose for this
figure. The harmonics g2 ,g3 , . . ., do not contribute to the conduc-
tance in the case of the disordered interface in contrast to the clean
interface case of Fig. 4. Remarkably, features of the conductance
oscillations, such as suppression of the harmonics higher than g1,
the order of the oscillation amplitude, etc., agree qualitatively with
the experimental data.

FIG. 9. �Color online� The temperature dependence of the con-
ductance. The visibility of the conductance oscillations is maximal
at T=0 and is strongly suppressed as T tends to Tc. We plot the
temperature dependence of the conductance at the maximum using
Eq. �1� for the case of strong disorder at the interface; parameters
correspond to the conductance maximum of the curve at ��23
�Fig. 8�.
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�An+1 Bn+1

Cn+1 Dn+1
� = �M�n+1�An Bn

Cn Dn
��n+1

† M†� �B1�

with

�A0 B0

C0 D0
� = M�zM

†. �B2�

Then, the quantity Ree−Rhe in Eq. �31� is equal to An−1. It is
convenient to introduce a vector �n= �An ,Dn ,Bn ,Cn�T:

�n+1 = T�e−���n, T�x� = � S̃ − xU

W − xV
� , �B3�

where the elements U, V, and W of the transfermatrix T are
the following 2�2 matrices:

W = �reerhe
� rehrhh

�

rheree
� rhhreh

� � , �B4�

U = �reereh
� ei2��−i�� rehree

� e−i2��+i��

rherhh
� ei2��−i�� rhhrhe

� e−i2��+i�� � , �B5�

V = �reerhh
� ei2��−i�� rehrhe

� e−i2��+i��

rhereh
� ei2��−i�� rhhree

� e−i2��+i�� � . �B6�

By using �0=T�0��−1 with �−1= �1,−1,0 ,0�T, we find

�n = Tn�x�T�0��−1. �B7�

To the lowest order in exp�−��, we obtain from Eq. �B7� the
following:

An = lim
x→0

Tr� 1 0

− 1 0
��S̃n+1 − 2e−� Re ei�2��−�� �

�x
�S̃ + xZ�n� ,

�B8�

where

Z = � ree
2 reh

� rhe
� 	reh	2ree

� rhh
�

	rhe	2rhh
� ree rhh

�2rehrhe
� . �B9�

1. Zero temperature „T=0…

At T=0, the matrices S̃ and Z can be simplified drasti-
cally:

S̃ = �	ree	2 	reh	2

	reh	2 	ree	2
�, Z = 	ree	2	reh	2e2i��− 1 1

1 − 1
� .

�B10�

With the help of the following identity:

�a b

b a
� =

�x − �z

�2
�a − b�z�

�x − �z

�2
, �B11�

we obtain Eq. �39� as

An−1 = �	ree	2 − 	reh	2�n�1 +
4�n − 1�e−�	ree	2	reh	2

�	ree	2 − 	reh	2�2 cos 2�� .

�B12�

2. Arbitrary temperature

At arbitrary temperature �energy� there is no special rela-
tion between rab. Then, with the help of Eq. �A1�, we find

An = An
�0� − 2e−� Re ei�2��−���An

�1�, �B13�

where

An
�0� = det0

n/2� 	ree	2 − 	rhe	2

�det0
Un−1�a0� − Un−2�a0��

�B14�

and

An
�1� = det0

�n−1�/2 Un−1�a0��ree
2 rhe

� reh
� − 	reh	2reerhh

� �

− det0
n/2��a0Un−2� �a0� +

n

2
�Un−2�a0��

+ det0
�n−1�/2�n − 1

2
Un−1�a0� − �a0Un−2� �a0���	ree	2

− 	reh	2� . �B15�

Here, we have introduced the following notations:

det0 = 	ree	2	rhh	2 − 	reh	2		rhe	2, �B16�

a0 =
	ree	2 + 	rhh	2

2�det0
, �B17�

and

� = det0
−1�	rhh	2ree

2 reh
� rhe

� + 	ree	2rhh
�2rehrhe − 2	reh	2	rhe	2reerhh

� � ,

�B18�

� =
ree

2 reh
� rhe

� + rhh
�2rehrhe

	ree	2 + 	rhh	2
−

�

2
. �B19�
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