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We report a theoretical study of the macroscopic quantum dynamics in spatially extended Josephson sys-
tems. We focus on a Josephson tunnel junction of finite length placed in an externally applied magnetic field.
In such a system, electromagnetic waves in the junction are excited in the form of cavity modes manifested by
Fiske resonances, which are easily observed experimentally. We show that in the quantum regime, various
characteristics of the junction such as its critical current Ic, width of the critical current distribution �, escape
rate � from the superconducting state to a resistive one, and the time-dependent probability P�t� of the escape
are influenced by the number of photons excited in the junction cavity. Therefore, these characteristics can be
used as a tool to measure the quantum states of photons in the junction, e.g., quantum fluctuations, coherent
and squeezed states, entangled Fock states, etc.
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Great interest is currently attracted to experimental and
theoretical studies of macroscopic quantum phenomena in
diverse Josephson systems.1–4 Most of such systems contain
just one or few lumped Josephson junctions. At low tempera-
tures, quantum-mechanical effects such as macroscopic
quantum tunneling, energy level quantization, and coherent
oscillations of the Josephson phase have been observed.3,4

The important method allowing the study of the macroscopic
energy levels in Josephson coupled systems is the microwave
spectroscopy.3,4 As the frequency � of an externally applied
microwave radiation matches the energy level separation,
one can observe resonant absorption and Rabi oscillations
due to the population of excited levels.

An interaction between Josephson systems and quantized
electromagnetic fields opens new frontiers in research. Simi-
lar type of interaction arises between an atom and electro-
magnetic cavity modes in quantum electrodynamics �QED�.
Recently, such QED-inspired experiments have been per-
formed with superconducting charge qubits5 and flux
qubits6,7 coupled to on-chip resonators. In these experiments,
the quantum degree of freedom of a lumped Josephson sys-
tem couples to the quantized electromagnetic field of a su-
perconducting cavity located on the same chip, as illustrated
in Fig. 1�a�. The excitation of cavity modes �CMs� in an
external cavity leads to an appearance of an oscillating cur-
rent flowing through the Josephson circuit. Such an oscillat-
ing current excites transitions between macroscopic energy
levels of the Josephson phase. The quantum regime of a
weak resonant interaction between the Josephson phase
� and CMs is described by a bilinear Hamiltonian

Ĥ���â+ â+�, where â+ �â� are the operators of creation �an-
nihilation� of a particular CM. This Hamiltonian corresponds
to the famous Jaynes-Cummings model,8,9 and therefore, a
quantum regime of a lumped Josephson circuit incorporated
in an external transmission line can be mapped to a problem
of a single atom weakly interacting with CMs. In this re-
gime, many fascinated phenomena, such as mixture of dif-
ferent Rabi frequencies, creation of entangled states of CMs,
and a single atom maser behavior, can be observed.10 The
interaction via CMs can be used to couple superconducting
qubits.11–13

As we turn to spatially extended Josephson systems, e.g.,
long Josephson junctions and Josephson junction parallel ar-
rays and ladders, the spatially dependent Josephson phase
��x� can also display macroscopic quantum effects as tun-
neling and energy level quantization. For a Josephson vortex
trapped in a long Josephson junction, these phenomena have
been studied theoretically14 and observed in experiments.15

An additional, interesting property of spatially extended
junctions is that they can support the propagation of electro-
magnetic waves forming CMs inside the junction itself, see
Fig. 1�b�. When the Josephson system is biased in the resis-
tive state, the resonant interaction of such CMs with ac Jo-
sephson current leads to the classical resonances in the
current-voltage characteristics known as Fiske steps.16,17 The
quantum regime of such resonances at finite voltages in sys-
tems containing few small Josephson junctions has been
theoretically considered in Ref. 18.

In the superconducting state of a current-biased
Josephson junction, the spatially averaged Josephson
phase difference � oscillates at Josephson plasma frequency
�p=�p0�1− �I / Ic0�2�1/4 depending on the dc bias I. Here, �p0

and Ic0 are the plasma frequency at zero bias and the nominal
value of the critical current of the junction, respectively. If
the Josephson plasma frequency �p matches the frequency of
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FIG. 1. �Color online� �a� Schematic view of lumped Josephson
junction embedded in an external cavity and its equivalent scheme.
�b� Distributed Josephson junction subject to an external magnetic
field with excited internal �Fiske� CMs and its equivalent scheme.
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CMs, the interaction between the Josephson phase and CMs
becomes resonant.

In this paper, we study macroscopic quantum phenomena
in the presence of the alternative, nonresonant interaction
between the Josephson phase � and intrinsic CMs of the
junction. Such an interaction can be realized in long Joseph-
son junctions or their discrete versions–parallel Josephson
arrays, also often called as Josephson transmission lines. We
show that the switching from the superconducting state to a
resistive one, i.e., the Josephson phase escape, can be facili-
tated or suppressed by excitation of cavity modes.

Moreover, we argue that measurements of the switching
current Ic, the width of its distribution �, and the time-
dependent probability P�t� of the escape allow us to obtain
information on the quantum state of intrinsic CMs in the
junction.

In order to quantitatively analyze the macroscopic quan-
tum phenomena appearing due to the interaction of plasma
oscillations with CMs, we consider a Josephson junction of a
finite length L. The Josephson junction is characterized by
the time and coordinate dependent Josephson phase ��x , t�.
In the presence of an externally applied magnetic field, the
Josephson phase can be written as

��x,t� =
2�	x

	0L
+ �̃�x,t� , �1�

where 	 is the external magnetic flux and 	0=hc /2e is the
flux quantum. Strictly speaking, Eq. �1� is valid in the limit
of L
�J, where �J is the Josephson penetration length.
However, our analysis is qualitatively correct also for junc-
tions of a size L��J and subjected to large magnetic field, at
which the critical current is strongly suppressed. The system
is described by the Hamiltonian

H = EJ0�
0

L � 1

2�p0
2 �̃t

2 +
�J

2

2
�̃x

2 + U�x,�̃��dx

L
,

U�x,�̃� = EJ0�1 − cos�2�	x

	0L
+ �̃	 − j�̃� , �2�

where �J and EJ0 are the Josephson penetration length and
the Josephson energy, accordingly. The normalized dc bias
j= I / Ic0 can be changed to tune the effective potential
U�x , �̃� of the junction.

In a particular case of homogeneously applied dc bias
�see Fig. 1�b��, the boundary conditions for the Josephson
phase are written as 
 ��̃

�x 
0= 
 ��̃
�x 
L=0. Next, we represent the

time-dependent Josephson phase by a sum of the spatially
averaged Josephson phase �t� and electromagnetic CMs,
i.e.,

�̃�x,t� = �t� + �
n

Qn�t�cos�knx� , �3�

where the wave numbers of cavity modes kn=�n /L, with
n=1,2 , . . .. Substituting expression �3� in Eq. �2� and assum-
ing that the amplitudes of cavity modes Qn�t� are small �so
that we can neglect anharmonic interaction between CMs19�,

we obtain the quantum-mechanical Hamiltonian in the fol-
lowing form:

Ĥ = Ĥ0 + �
n

Ĥn + Ĥint, �4�

where the first term

Ĥ0 =
�p0

2

2EJ0
P̂

2 − EJ�H�cos  − j �5�

describes the dynamics of homogeneous �plasma� oscilla-
tions of the Josephson phase with momentum operator

P̂. The magnetic field dependent coupling energy is EJ�H�
=EJ0 · Ic�H� / Ic0, where Ic�H� is the magnetic field suppressed
nominal value of the critical current, i.e.,

Ic�H� = Ic0� sin��	

	0
	

	

	0

� .

The second term is the Hamiltonian �Eq. �4�� corresponding
to noninteracting CMs,

Hn =
�p0

2

EJ0
P̂Qn

2 + EJ0
�n

2

4�p0
2 Qn

2, �6�

where P̂Q=−i� �
�Q is the operator of generalized momentum,

and �n=�p0�Jkn. Here, we have neglected a small renormal-
ization of CM spectrum due to the presence of plasma oscil-
lations of the Josephson phase . The last term in Eq. �4�
describes an interaction between the Josephson phase and
CMs:

Ĥint = EJ0�
n,m

anmQnQm, �7�

where the -dependent coefficients

anm =
1

2
� dx

L
cos�knx�cos�kmx�cos�2�	x

	0L
+ 	

determine the strength of interaction between the CMs and
the spatially averaged Josephson phase.

As EJ�H����p0, the switching from the superconducting
state to a resistive one occurs at the dc bias close to its
critical value, i.e., �= �Ic�H�− I� / Ic�H�
1, and the dynamics
of a Josephson junction is determined by the effective
potential19

U�,Qn� = EJ�H��� −
3

6
� − EJ0�

n

anQn
2, �8�

where an= 1
2  dx

L cos2�knx�cos� 2�	x
	0L �. In the absence of an ex-

ternal magnetic field, all coefficients an=1/4. However, in
the presence of a magnetic field characterized by magnetic
flux 	�m	0, the coefficient am=−1/8 and other coeffi-
cients are small.

If the size of the Josephson system is not very large
�L��J�, all frequencies �n��p0 and, therefore, the interac-
tion between the CMs and the plasma oscillations are non-
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resonant. Thus we can use a time-averaged expression for the

interaction Hamiltonian Ĥint=−EJ0�nan�Qn
2�, where �¯� is

the time average. The mean switching current Īc is written as

Īc = Ic�H� − Ic0�
n

an�Qn
2� . �9�

The excitation of CMs results in a nonzero value of �Qn
2�,

which leads to a suppression of the average switching current
in the absence of magnetic field. However, when the mag-
netic field is applied, the fluctuation-free critical current
Ic�H� is strongly suppressed and excitation of CMs results in
an unusual increase of the mean switching current �an values
become negative in this case�.

Switching from the superconducting �zero-voltage� state
to the resistive state occurs at random values of the external
current I. This process is characterized by the probability
P�I�. In the quantum regime, the Josephson phase escape is
determined by tunneling. The typical values of the switching
current and, therefore, the width � of the distribution P�I�
are obtained by using the condition �Umax��−Umin���
���p. Using Eq. �8�, we write this condition in the follow-
ing form:

�� − Ic0�
n

anQn
2

Ic�H�
�5/4

�
��p0

EJ�H�1/2EJ0
1/2 . �10�

If we neglect the CMs, the width � of the distribution P�I�
strongly depends on magnetic field:

� � ���p0

EJ0
	4/5

Ic0
2/5Ic�H�3/5. �11�

Quantum fluctuations induced by zero-point oscillations of
CMs lead to a saturation of � as a function of magnetic field
at the level

�CM � Ic0�Q1
2� =

��p0L

EJ0�J
. �12�

The typical dependence of the width of the critical current
distribution on magnetic flux applied to the junction is shown
by solid line in Fig. 2.

In the following, we present a quantitative analysis of the
influence of quantum-mechanical properties of CMs on the
process of escape from the superconducting state to the re-
sistive state of the junction. In the quantum regime, the pro-
cess of escape is determined by the tunneling of phase  and
the switching rate is given by

��I,Qn� � exp�−
48��2EJ�H�EJ0�1/2

5��p0

��� −
Ic0

Ic�H��n

anQn
2	5/4� . �13�

In order to obtain Eq. �13�, we used the Wentzel-Kramers-
Brillouin approximation for the Hamiltonian �Eq. �4��. The
derivation is similar to the one carried out in Ref. 2. In ex-
periment, the measured characteristics are usually the time-

dependent probability P�I , t� of finding the junction in the
zero-voltage state. Since in the quantum regime the values of
Qn are characterized by the quantum-mechanical probability
distribution of CMs in the junction ��Qn�, the probability
P�I , t� can be written as

P�I,t� =� ��Qn�exp�− t��I,Qn��dQn. �14�

If we neglect the excitation of CMs, P0�t��exp�−t /�0�
displays a standard exponential decay with time. Here, �0
=1/��I ,0� is the dc bias dependent lifetime of the zero-
voltage state, see Eq. �13�. This behavior is shown in Fig. 3
by the dashed line. The deviation of P�t� from the exponen-
tial dependence allows us to characterize the quantum-
mechanical properties of CMs. The situation becomes espe-
cially interesting for nonequilibrium and nonclassical states

FIG. 2. �Color online� The width of the switching current prob-
ability distribution as a function of magnetic field with �solid line�
and without �dashed line� taking into account zero-point oscillations
of CMs. Here, we have taken typical parameters for the junction as
Ic0=100 �A and ��p0 /EJ0=10−3; the junction size L=�J.

FIG. 3. �Color online� Time-dependent probability P�t� of find-
ing the junction in the zero-voltage state: without taking into ac-
count CMs �dotted line� and with taking into account quantum fluc-
tuations induced by CMs �solid line� and coherent state of CMs
�dashed line�. The parameters are chosen as �=510−3, Ic�H� / Ic�0�
=0.2, ��p0 /EJ0=10−4, �=1.5 10−4, and the junction size L
=0.27�J. For simplicity, we have taken �0=�coh.
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of the cavity modes. These are the zero-point oscillations, the
chaotic, coherent and squeezed states, and various entangled
states well known in quantum optics.8,9

As a particular example, first, we consider zero-point os-
cillations in CMs. In this case, the ��Qn� is given as

�zp�Qn� = �
n
� EJ0�n

2���p0
2 	1/2

exp�−
EJ0

2�p0
2 �

�
n

�nQn
2	 .

�15�

Substituting Eq. �15� in Eq. �14� and calculating integrals
over Qn asymptotically for large times t, we obtain for 	
�	0

PCM
zp �t� � ��1�0

t
	�1

, t � �1�0, �16�

where the magnetic field dependent parameter �1

=
��J

3L
� Ic�H�

Ic0
�1/2

�2��−1/4. For small times t��1�0, the influence
of the equilibrium CM quantum noise is small, and the de-
pendence P�t��exp�−t /�0� is restored. Notice here that for
small external magnetic field and not very large number of
excited CMs, the exponential dependence of P�I , t� is always
valid.

Various nonequilibrium quantum-mechanical states of
CMs can be induced by applying external microwaves. The
interesting case is the coherent state of a single CM excited
at a frequency �=�1. In this case, all values of Qn except for
Q1 are small, and ��Q1� is given by

�coh�Q1� � exp�−
EJ�1

2�p0
2 �

�Q1 − ��2� , �17�

where ���W is determined by the power W of external
microwave radiation. For a Josephson junction subject to an
external magnetic field, we obtain that the excitation of the
coherent state of a single CM leads to the dependence P�t� in
the form

PCM
coh�t� � exp�− �2 ln2 t

�2�coh
�, t � �2�coh. �18�

The parameter �2�
�J

L

��p0Ic�H�

EJ0Ic0� �−1/2 depends on both magnetic
field and the power of microwave radiation. Here, �coh
=1/��I ,Q1=��, see Eq. �13�. Similar to the case of a quan-

tum noise in CMs, at short times t��2�coh, the P�I , t� decays
exponentially with time, i.e., P0�t��exp�−t /�coh�.

Another interesting quantum-mechanical state of CMs is
the chaotic state of a single CM induced by microwave
radiation.8,9 In this case, the power W of external microwave
radiation determines only the mean photon number m̄, i.e.,
m̄�W. As the mean photon number m̄ is relatively large, the
probability distribution ��Qn� takes the form

�ch�Qn� = � EJ0�1

2��p0
2 �

m̄	1/2

exp�−
EJ0�1

2��p0
2 m̄

Q1
2	 . �19�

Therefore, a strongly excited chaotic state of a single CM
should show the same time-dependent probability P�t� as in
the zero-point oscillations case �Eq. �16��, for which �1 is
replaced by the microwave power dependent parameter �3
=�1 / m̄.

The probability P�t� of finding the junction in the zero-
voltage state is shown in Fig. 3 for various states of CMs. As
one can see, the CMs lead to a suppression of the escape rate
at large times. This effect is due to the excitation of CMs
with the amplitude 
Qn
� 
�Qn�
. The population of such CMs
is small, but these modes strongly renormalize the potential
well. We also note that more complicated states as squeezed
states or Fock states �e.g., N photons in one mode n=1� can
be prepared by using pulsed technique and intrinsic nonlin-
earity of cavity modes.20 The entanglement of Fock states
will manifest itself by oscillations of P�t� dependence. For
realistic values of junction parameters, we obtain �1��2
=7, and the deviations of P�t� from the exponential decay
should be detectable experimentally.

In conclusion, we have shown that the excitation of cavity
modes in distributed Josephson junction or parallel arrays of
junctions manifests itself by either enhancement or suppres-
sion of the escape rate from the superconducting state, de-
pending on applied magnetic field. This effect is due to a
renormalization of the potential barrier for the escape which,
in turn, depends on the quantum state of the cavity mode.
The important characteristics of the cavity mode quantum
electrodynamics, namely, the probability distribution of the
CMs ��Q�, can be detected experimentally by measuring the
temporal decay of the switching probability P�t� given by
Eqs. �13� and �14�.
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