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First-principles theory of chiral dichroism in electron microscopy applied to 3d ferromagnets
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Recently it was demonstrated [Schattschneider e al., Nature 441, 486 (2006)], that an analog of the x-ray
magnetic circular dichroism experiment can be performed with the transmission electron microscope. The new
phenomenon has been named energy-loss magnetic chiral dichroism. In this work we present a detailed ab
initio study of the chiral dichroism in the Fe, Co, and Ni transition elements. We discuss the methods used for
the simulations together with the validity and accuracy of the treatment, which, in principle, can apply to any
given crystalline specimen. The dependence of the dichroic signal on the sample thickness, accuracy of the
detector position, and the size of convergence and collection angles are calculated.
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I. INTRODUCTION

The analogy between x-ray absorption spectroscopy
(XAS) and electron energy loss spectroscopy (EELS) has
been recognized long ago." The role of the polarization vec-
tor £ in XAS is similar to the role of the wave vector transfer
q in EELS. This has made feasible the detection of linear
dichroism in the transmission electron microscope (TEM).
However the counterpart of x-ray magnetic circular dichro-
ism (XMCD)3>> experiments with electron probes was
thought to be technically impossible due to the low intensity
of existing spin polarized electron sources. XMCD is an im-
portant technique providing atom-specific information about
the magnetic properties of materials. Particularly the near
edge spectra, where a well localized strongly bound electron
with [#0 is excited to an unoccupied band state, allow to
measure spin and orbital moments. Soon after the proposal
of an experimental setup for detection of circular dichroism
using a standard nonpolarized electron beam in the TEM
(Ref. 6) it was demonstrated that such experiments (called
energy-loss magnetic chiral dichroism, EMCD) are indeed
possible.” This technique is of considerable interest for na-
nomagnetism and spintronics according to the high spatial
resolution of the TEM. However, its optimization involves
many open questions.

In this work we provide theoretical ab initio predictions
of the dependence of the dichroic signal in the EMCD ex-
periment on several experimental conditions, such as sample
thickness, detector placement and the finite size of conver-
gence and collection angles. This information should help to
optimize the experimental geometry in order to maximize the
signal-to-noise ratio.

The structure of this work is as follows: In Sec. II we first
describe the computational approach based on the dynamical
diffraction theory and electronic structure calculations. We
also discuss the validity of several approximations for the
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mixed dynamic form factor. In Sec. III we study the depen-
dence of the dichroic signal of bce-Fe, hep-Co, and fce-Ni on
various experimental conditions. This section is followed by
a concluding section summarizing the most important find-
ings.

II. METHOD OF CALCULATION

We will follow the derivations of the double differential
scattering cross section (DDSCS) presented in Refs. 8 and 9.
Within the first-order Born approximation'® DDSCS is writ-
ten as

Fo 4y kS(q.E) W
IOVIE  dadky ¢
with
S(q.E) = X [(ile R/ S(E - E; - E), (2)
if

where q=Kk;—K is the difference (wave-vector transfer) be-
tween final wave vector K, and initial wave vector K of the

fast electron; y=1/y1 —v?/c? is a relativistic factor and ag is
Bohr radius. The S(q, E) is the dynamic form factor (DFF).!!

This equation is valid only if the initial and final wave
functions of the fast electron are plane waves. In the crystal
the full translation symmetry is broken and as a result, the
electron wave function becomes a superposition of Bloch
waves, which reflects the discrete translation symmetry. Each
Bloch wave can be decomposed into a linear combination of
plane waves—it is a coherent superposition of (an in-
principle infinite number of) plane waves. The wave function
of the fast electron can be thus written as
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i) 3)

E 2 () C(/
for incident wave and

¥ (r) = 22 e'De!

i(kD+h)-r (4)

for outgoing wave, where C U), D;ll) are Bloch coefficients, eV
(€) determine the excitation of the Bloch wave with index j
(1) and wave vector k¥ (k") and g (h) is a vector of the
reciprocal lattice.

When we derive the Born approximation of DDSCS start-
ing with such fast electron wave functions, we will obtain a
sum of two kinds of terms: direct terms (DFFs) as in the
plane wave Born approximation Eq. (1), and interference
terms. These interference terms are a generalization of the
DFF—the mixed dynamic form factors'! (MDFFs). Each of
them is defined by two wave-vector transfers, thus we label
them S(q,q’,E).

The MDFF can be evaluated within a single particle ap-
proximation as

S(0.9",E) = 3, (il R fle ™ Ry o(E,— E;~ E), (5)
if

where |i),
functions of the target electron in the crystal. Thus the defi-
nition of MDFF encompasses the notion of DFF, Eq. (2), for
q=q’. For more details about calculation of MDFF see Sec.
II B.

The wave-vector transfers are qﬂhzk(”—km+h—g and
the total DDSCS will be a sum over all diads of q and q’
vectors of terms

4'}’2_[2 'l S (9.9',E) ©6)
aO Xo ghg’h’ q2q12 ’
where Xgl’l ,h,(a) is a the product of the coefficients of the

individual plane wave components of the fast electron wave
functions and a labels the position of the atoms where the

inelastic event can occur. The Xi,ll’l o'h’ (a) coefficients are
given by dynamical diffraction theory. This will be covered
in the next Sec. I A. The x; and x, are magnitudes of wave
vectors outside the crystal (in the vacuum).

The calculation is thus split into two separate tasks. (i)
Calculation of Bloch wave coefficients using the dynamical
diffraction theory and identification of important terms. This
task is mainly “geometry dependent,” although it can also
contain some input from electronic structure codes, namely
the Coulomb part of the crystal potential. (ii) Calculation of
MDFFs requested by the dynamical diffraction theory. This
part strongly depends on the electronic structure of the stud-
ied system. The final step is the summation of all terms.

Physically, this separate treatment is possible because the
exchange and correlation effects of fast electrons with elec-
trons in the sample are negligible. The fast electron wave
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function is described as a linear combination of plane waves
with large k vector (of the order of 10°G, where G is a
reciprocal lattice vector). The wave functions of electrons in
the sample have (with the exception of deeply lying core
states of heavy elements) much lower spatial frequencies.
Therefore the overlap integrals between fast electron and
electrons in the sample are practically zero and this makes
their exchange interaction (and thus also correlations) negli-
gible.

Further simplification of the fast electron part of the prob-
lem is possible due to negligible exchange and correlation
effects of fast electrons among themselves. Indeed, it can be
safely neglected, because even for high-brilliance electron
sources in modern electron microscopes the density of fast
electrons in the sample is extremely low. This allows to
transform the problem into a single electron one, where the
fast electron moves in the crystal potential—a basis of the
dynamical diffraction theory.

A. Dynamical diffraction theory

The formalism, which will be described here is a gener-
alization of the formalism presented in Refs. 8 and 12 ex-
tending it beyond systematic row approximation by includ-
ing also higher-order Laue zones (HOLZ). The extension to
HOLZ is performed along lines presented in Refs. 13 and 14.
We will assume the high-energy Laue case, i.e., we can
safely neglect back reflection and back diffraction.

The Bloch wave vectors of the electron after entering the
crystal fulfill the continuity condition

kY = x+9n, (7)

where n is the unit vector normal to the crystal surface and y
is the wave-vector of the incoming electron. Only the wave-
vector component normal to the surface can change.
Expanding the wave function of the fast electron into a
linear combination of plane waves and substituting it into the
Schrodinger equation we obtain the secular equation'

: A\ ikDse).
> ([KZ—(k0>+g>2]+ > U.,cglh)e<k WT_0, (8)
g h#0

where K?=Uy+2meE/#?, m and e are, respectively, the elec-
tron mass and charge, Ug=2meVg/ fi2 where Vg are the Fou-
rier components of the crystal potential, which can be either
calculated ab initio'>'° or obtained from the tabulated forms
of the potential.!”!¥ It can be shown!*!° that in the high
energy limit the secular equation, which is a quadratic eigen-
value problem in YY), can be reduced to a linear eigen-
value problem ACY=9/CY where A is a non-Hermitian
matrix'31?

K- (x+g)’ U
2 S n A g O

This eigenvalue problem can be transformed into a Her-
mitian one using a diagonal matrix D with elements
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‘n

Dghzﬁgh(ug—). (10)
XN

Then the eigenvalue problem is equivalent to (DY2AD'?)

X (D2C0) = /A(DV2CW) or ACY=4CY),| where the matrix

A is Hermitian,

-~ K*-(x+g)’ Ugn

= -9
#7 2(x+g) -n + gh)2\/[()(+ g)-n][(x+h)-n]
(11)

and the original Bloch wave coefficients can be retrieved
using the relation

. ~ ‘1N
cg>=cg>/ "“%' (12)

By solving this eigenvalue problem we obtain the fast
electron wave function as a linear combination of eigenfunc-
tions as given in Eq. (3). To obtain values for e/ we need to
impose boundary conditions, namely that the electron is de-
scribed by a single plane wave at the crystal surface. The
crystal surface is a plane defined by the scalar product n-r
=t,. Then the boundary condition (in the high-energy limit)
leads to the following condition:'#

0 = e, (13)
It is easy to verify that
W ey = S CY* O 7
jg
— E ei()(+g)-r2 eiy(i)n-re—iy(f)toc(()j)*cg)

g J
= E ei(x+g)~r2 C(()i)*cg)
J

g
= E e’(X+g)'r50g/ 1 + g— = elX.r|n-l‘=tO
X1
g

(14)

as required by the boundary condition. We have used the
continuity condition, Eq. (7), and the completeness relation
for the Bloch coefficients,

o ‘n h:-n S
dn=2 CI'CY = \/<1+g—><1+—>2 cy ay.
j X-n X/
(15)

Therefore the wave function of the fast moving electron
in the crystal, which becomes a single plane wave at n-r
=ty 1s given by the following expression:
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U =2 Cf el e ws (16)
Jg

The following discussion will be restricted to a particular
case—a crystal with parallel surfaces. For such a crystal with
normals in the direction of the z axis we set #,=0 for the fast
electron entering the crystal and #y=t when leaving the crys-
tal (7 is the crystal thickness).

The inelastic event leads to a change of the energy and
momentum of the scattered electron. The detector position
determines the observed projection of the electron wave
function (Bloch field) onto a plane wave after the inelastic
event. Therefore the calculation of the energy loss near edge
spectra (ELNES) requires the solution of two independent
eigenvalue problems describing an electron wave function
before and after the inelastic event.®!? Invoking reciprocity
for electron propagation the outgoing wave can also be con-
sidered as a time reversed solution of the Schrodinger equa-
tion, also known as the reciprocal wave®® with the source
replacing the detector position.

Now we can identify the prefactors ngljl ,h,(a) from Eq.
(6). For the sake of clarity we will keep C, /) for the Bloch
coefficients of the incoming electron and we use D() for the
Bloch coefficients of the outgoing electron entermg the de-
tector (obtained from the two independent eigenvalue prob-
lems). Similarly, superscript indices (j) and (/) indicate ei-
genvalues and Bloch vectors for incoming and outgoing
electrons, respectively. We thus obtain

X (@)= c*cdppi*cy el i " b,

X e i - ))tei(q—q’)-a, (17)
where

q=k"-k"+h-g,

q =k -k +n' - g’ (18)

In crystals the position of each atom can be decomposed
into a sum of a lattice vector and a base vector, a=R+u.
Clearly, MDFF does not depend on R, but only on u. It is
then possible to perform analytically the sum over all lattice
vectors R under the approximation that the MDFF does not
depend strongly on the j,/ indices. This is indeed a very
good approximation, as verified by numerical simulations
(see below).

First we will treat the summation over all lattice vectors.
The sum in Eq. (6) can be separated into two terms

12 eia-a’)a __2 PUCRE )u E J@a)R (19)
N a
Since
a-a'=[7 - W) = (Y =/ )n+h-h'+g g
(20)
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and the algebraic sum of g.h is simply a reciprocal lattice
vector G, which fulfills ¢®R=1, it is possible to simplify the
second term

> elaa)R_Y Ll A==
R R

TR (01)

For general orientations of the vector n this sum is diffi-
cult to evaluate. In a particular coordinate system with nllz

and crystal axes a,b L z this sum leads®?! to
E Sila-a)R_ iagnSin A(2/2) (22)
- A(2)

so that the total sum over all atomic positions is

12 ola-a)a _ eiA(r/Z)MLE glaau(23)
N A(#/2) Ny'u

where A= () y(j/)) — (Y- y(l,)). We write the final expres-
sion of the DDSCS as

Su(q,q",E)

u Jlj'l

aQaE > N 2 7a” I Y e T (0),
ghg'h’ 't

(24)

where

i =crcdpPp ey ci)" i "l (25)
depends only on the eigenvectors of the incoming and out-
going beam and

sin A(#/2)

(D0 (D)
To(t) = L =7 D=y D](w2) 2 —2 =2 26
Jij'l ( )— Q(I/Z) ( )

is a thickness and eigenvalue dependent function.

Perturbative treatment of the absorption can be easily in-
troduced. If we denote by Ué the absorptive part of the po-
tential, within the first-order perturbation theory the Bloch
coefficients will not change, just the eigenvalues will be
shifted by i7" or i7" for the incoming or outgoing wave,
respectively. Particular ) can be calculated using the fol-
lowing expression:'*

S ug ey
(G —
=2 (27)
2> Cg)Cg) (x+g) -n
g

and similarly for the outgoing beam.

This way the eigenvalues change from Y/ to YW/ +iyV)
and the A acquires an imaginary part. Such approximative
treatment of absorption thus affects only the thickness-
dependent function T;;;(2).

Here we add a few practical considerations, which we
applied in our computer code. The sum in Eq. (24) is per-
formed over eight indices for every energy and thickness
value. Such summation can easily grow to a huge number of
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terms and go beyond the computational capability of modern
desktop computers. For example, if we assume the splitting
of the incoming (and outgoing) beam into only 10 plane
wave components, taking into account the 10 most strongly
excited Bloch waves, we would have 10% terms per each
energy and thickness. A calculation with an energy mesh of
100 points at 100 different thicknesses would include one-
trillion terms and require a considerable amount of comput-
ing time. However most of these terms give a negligible
contribution to the final sum. Therefore several carefully
chosen cutoff conditions are required to keep the computing
time reasonable without any significant degradation of the
accuracy.

The first cutoff condition used is based on the Ewald’s
sphere construction. Only plane wave components with
k+g close to the Ewald’s sphere will be excited. The
strength of the excitation decreases also with decreasing
crystal potential component U,. A dimensionless parameter
wy=sg€—product of the excitation error and the extinction
distance'*—reflects both these criteria. Therefore we can fil-
ter the list of beams by selecting only beams with w,
<Wpax- Experience shows that in the final summation a
fairly low number of beams is necessary to have well-
converged results (in systematic row conditions this number
is typically around 10). The convergence of the correspond-
ing Bloch coefficients requires solving an eigenvalue prob-
lem with a much larger set of beams (several hundreds).
Therefore we defined two cutoff parameters for wy—the first
for the solution of the eigenvalue problem (typically w1 18
between 1000 and 5000) and the second for the summation
(Wmax.2 typically between 50 and 100).

The second type of cutoff conditions is applied to selec-
tion of Bloch waves, which enter the summation. Once the
set of beams for summation is determined, this amounts to
sorting the Bloch waves according to a product of their ex-
citation €/ and their norm on the subspace defined by a
selected subset of beams, C(()’)HC Nlsupsp- In the systematic
row conditions this value is large only for a small number of
Bloch waves. Typically in the experimental geometries used
for detection of EMCD one can perform a summation over
less than 10 Bloch waves to have a well converged result
(often five or six Bloch waves are enough).

B. Mixed dynamic form factor

It can be seen from Eq. (5) that the calculation of the
MDFF requires the evaluation of two matrix elements be-
tween initial and final states of the target electron. The deri-
vation of the expression for the MDFF describing a transition
from core state nlk (n, I, k are the main, orbital, and relativ-
istic quantum numbers, respectively) to a band state with
energy E is presented in detail in the supplementary material
of Ref. 7 and in Ref. 8. Though, note that in Ref. 8 the initial
states are treated classically, which leads to a somewhat dif-
ferent expression for MDFF giving incorrect L,-L; branching
ratio.

The final expression is’
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S(q.q".E)
=> > > 3D 4xN 20+ DV[MN,LL']

mm’ LMS ' p's" N Nu!

XYZ(q/Q)*Y:\Lr(q,/ql)(j)x(‘]))ELSjO)\’(q/)>EL’S’j
(1 A L)(l \ L’)
X

00 0/\0 0 O

(z A L)(l N L’)
X

-m u M/\-m'" u M

, [ S
XD (= 1) (2j+1)< 2 )( ’ )

—Jz m' S —Jz

X Dyys(VK)D 1y (VK) SE + Epyp— Ey) . (28)
vk

Here we made use of Wigner 3j-symbols, Y* are spherical
harmonics, (j\(¢))gs; are radial integrals of all the radial-
dependent terms (radial part of the wave function of the core
and band states, radial terms of the Rayleigh expansion) and
Dy ys(vK) is the projection of the (vk) Bloch state onto the
LMS subspace within the atomic sphere of the excited atom.
For more details we refer to the supplementary material of
Ref. 7.

For evaluation of the radial integrals and Bloch state pro-
jections D; ;5(vk) we employ the density-functional theory??
within the local spin-density approximation.>* Note, that this
is just one of several possible approaches. In principle, one
can employ this to any other method capable to provide ra-
dial parts of the wave functions and the energy resolved den-
sity matrix pﬁj%,sr(E), which is given in the Bloch state for-
mulation as the last line in Eq. (28). For example, one can
employ the multiplet approach described in Ref. 24 or other
methods better suited for correlated solids.

In Sec. I A we used an approximation of negligible de-
pendence of MDFF on the j,I indices [see Eq. (20)]. Gener-
ally, as the wave vector kU for each Bloch wave changes
slightly by an amount given by the corresponding eigenvalue
Y, the values of g, and g would change accordingly and
therefore we should not be allowed to take MDFF out of the
sum over the indices j,I in Eq. (24). However, the change in
g, (and g!) induced by the eigenvalues Y is small and can
be neglected with respect to the g,=x,E/2E, given by the
energy loss E (the question of momentum conservation in the
z direction in the inelastic interaction in a crystal of finite
thickness is related to the probability of interbranch and in-
trabranch transitions of the probe electron®’). To demonstrate
this we plot the dependence of MDFF on g, ¢! for ¢, and 4y
corresponding to the main DFF and MDFF terms, see Fig. 1.
If g, is given in a.u.”! (atomic units, 1 a.u.=0.529 178 A),
typical values for L, ; edges of Fe, Co, and Ni are around
one-tenth of a.u.”!, whereas typical values of YU/ for
strongly excited Bloch waves are one or two orders of mag-
nitude smaller. Thus the approximation of weak j,/ depen-
dence of MDFF is well justified.

Besides YV, the other factors determining the value of ¢,
are the energy of the edge, i.e., the energy lost by the probe
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electron, the tilt with respect to the zone axis and whether the
excited beam is in a HOLZ. These last factors have been
included in our calculation. Only the variations due to Y
are neglected, thus giving rise to an error =1%. If a more
accurate treatment would be needed, the smooth behavior of
MDFF with respect to ¢, would allow to use simple linear or
quadratic interpolation methods.

As mentioned in the introduction and explained in Refs. 1
and 7, dichroism in the TEM is made possible by the analo-
gous role that the polarization vector € and the wave-vector
transfer q play in the dipole approximation of the DDSCS.
However we do not restrict our calculations to the dipole
approximation. We use the more complete expression Eq.
(5).

To evaluate the accuracy of the dipole approximation, we
compare the dipole approximation of MDFF with the full
calculation (with X up to 3) also showing \-diagonal compo-
nents of the MDFF, Fig. 2. Because the dominant contribu-
tion to the signal originates from (dipole allowed) 2p — 3d
transitions, the A=\"=1 term nearly coincides with the total
MDFF. While the dipole approximation works relatively well
for the studied systems, particularly the MDFF divided by
squares of momentum transfer vectors (right-hand column of
Fig. 2), it has significantly different asymptotic behaviors for
larger q vectors. The A=\"=1 term provides a much better
approximation, which remains very accurate also in the large
q region.

It is worth mentioning that thanks to the properties of the
Gaunt coefficients the 2p — 3d transitions are all included in

0.3 ———— —
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E 0.2
=
< 015
<
ool -
A B ARy
0.05~ =
0 I S S S
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| — Re[MDFF]@L, |
— Re[ MDFF |@ L,
~ e - Im[MDFF|@L, |
‘é‘ r T o 2 Im[ MDFF | @ L2 1
5 0.02F .
s T
E L
E
B | e e o
E A R e T T
-0.02F .
004l T T
0 0.2 0.4 0.6 0.8 1
1
q, (au. )
FIG. 1. (Color online) Dependence of S(q,E) (top) and

S(q,q’,E) with q'=G+q (bottom) on ¢, calculated for the L, 3
edge of hep-Co, with G=(100), ¢,=-q,=-|G|/2, g,=q,=|G|/2.
The ratio between values calculated at L3 or L, is constant and
equal to 2.1 for the real part and —1 for the imaginary part.
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FIG. 2. (Color online) Decomposition of MDFF and dipole ap-
proximation calculated for hcp-Co with q'-q=G=(100) and ¢,
=q!=|G|/2 as a function of g, @ L. Left-hand column, graphs (a),
(c), and (e), show S(q,q’,E) and right-hand column, graphs (b),
(d), and (f), show S(q,q’,E)/q*q'*. Top row, (a) and (b), is the
DFF; middle row, (c) and (d), is the real part of MDFF; and bottom
row, () and (f), is the imaginary part of MDFF. The y axes are in
arbitrary units, but consistent within the given column. The values
for the L, edge differ only by a factor of 2.1 for the real part and —1
for the imaginary part. Note that the contributions of A=0 and 2 are
always negligible. See text for more details.

the A=1 and A=3 contributions. Thanks to the negligible
value of the radial integrals for A=3 the terms with A=1
account for the large majority of the calculated signal. The
contributions from A=0 and A=2 describe transitions from
2p to valence p or f states and are always negligible due to
the composition of the density of states beyond the Fermi
level. They practically overlap with the zero axis in all six
parts of Fig. 2.

It can be shown? that in the dipole approximation the real
part of the MDFF is proportional to q-q’ and the imaginary
part is proportional to q X q’. A little algebra can thus show
that the imaginary part of the MDFF is, in the geometry
described in the caption of Fig. 2, constant with respect to g,.
As expected, the DFF (which is proportional to ¢?) has a
minimum at ¢,=0, where S(q,E)/g¢* has a maximum. For
the MDFF [and corresponding S(q.q’,E)/q*q'*] these
minima and maxima are centered at ¢,=—G/2
=-0.76 a.u.”!, where |q,|=|q.|.

III. RESULTS

We summarize the results obtained for body-centered-
cubic iron (bcc-Fe), hexagonal close-packed cobalt (hcp-Co)
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kf,1 Xf 2
</ D\17 D2
-

FIG. 3. (Color online) Experimental geometry. The bar shaped
sample is tilted so that its surface normal n is deflected from in-
coming beam direction k; by an angle of approximately 10 degrees.
This excites a systematic row of Bragg reflections -G ,0,G,2G,....
Two spectra are measured by detectors D1 and D2 placed in kg
and k;, directions, which correspond to positions (+) and (—) on
the Thales circle above the strongest 0 and G reflections in the
diffraction plane. The two-beam case is excited by setting the Laue
circle center to G/2.

and face-centered-cubic nickel (fcc-Ni) crystals, which are
also the first samples prepared for EMCD measurements.
These results are valuable for optimization of the experimen-
tal setup.

The geometry setup (see Fig. 3) for observing the dichroic
effect’ consists in creating a two-beam case by tilting the
beam away from a zone axis [here (001)] by a few degrees
and then setting the Laue circle center equal to G/2 for the
G vector to be excited. In analogy to XMCD, where two
measurements are performed for left- and right-handed cir-
cularly polarized light, here we perform two measurements
by changing the position of the detector, which appear once
at the top and once at the bottom of the Thales circle having
as diameter the line connecting the diffraction spots 0 and G.
This geometry setup, together with the crystal structure, is an
input for the calculation of the Bloch wave coefficients
(within the systematic row approximation) using the dynami-
cal diffraction theory code described in Sec. IT A.

The electronic structure was calculated using the WIEN2K
package,'> which is a state-of-the-art implementation of the
full-potential linearized augmented plane waves method. The
experimental values of lattice parameters were used. More
than 10 000 k-points were used to achieve a very good con-
vergence of the Brillouin zone integrations. Atomic sphere
sizes were 2.2, 2.3, and 2.2 bohr radii for bcc-Fe, hep-Co,
and fcc-Ni, respectively. The resulting electronic structure
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FIG. 4. (Color online) Spin-resolved d-den-
sities of states (left-hand side) and resulting sig-

nal on Lz edge (right-hand side) on bee-Fe, hep-
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Co, and fce-Ni (from top to bottom) at optimal
thickness (see text). Spin-up DOS is drawn using
a solid black line (positive) and spin-down DOS
using a dashed red line (negative). DDSCS for
the (+) detector position is drawn using a solid
blue line, DDSCS for the (—) position is drawn

using a dashed green line. The dichroic signal
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(difference) is the cross-hatched red area. G
=(200) for bcc-Fe and fce-Ni and (100) for
hcep-Co.
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was the input for the calculation of the individual MDFFs
required for the summation (see Sec. II B).

In the three studied cases the dichroic effect is dominated
by the transitions to the unoccupied 3d states. The d-resolved
spin-up density of states (DOS) is almost fully occupied,
while the spin-down d-DOS is partially unoccupied. In Fig. 4
we compare the d-DOS with the dichroic signal at the Lj
edge. Due to negligible orbital moments in these compounds
the L, edge shows a dichroic signal of practically the same
magnitude but with opposite sign. The shape of the calcu-
lated dichroic peaks corresponds to the difference of spin-up
and spin-down d-DOS, similarly to XMCD, as it was shown
for the same set of systems in Ref. 26. The calculations were
performed within systematic row conditions with G=(200)
for bee-Fe and fee-Ni and G=(100) for hep-Co. The sample
thicknesses were set to 20 nm, 10 nm, and 8 nm for bcc-Fe,
hcp-Co, and fce-Ni, respectively. These values were found to
be optimal for these systems in the given experimental ge-
ometry.

An interesting point is the comparison of the strength of
the dichroic signal. According to the d-DOS projections one
would expect comparable strength of signals for the three
elements under study. But the dichroic signal of hcp-Co
seems to be approximately a factor of 2 smaller than that of
the other two. The reason for that can be explained by simple
geometrical considerations starting from Eq. (24). For sim-
plicity we consider only the main contributions: the DFF
S(q,q,E) and the MDFF S(q,q’,E) with q L q’. For bcc-Fe
and fcc-Ni the summation over u within the Bravais cell
leads always to the structure factors 2 and 4, respectively,
because q'—q=G is a kinematically allowed reflection. This
factor cancels out after division by the number of atoms in
the Bravais cell. Therefore it does not matter, what is the
value of q vectors, the sum over the atoms is equal to
S(q.q',E)/q*q'? itself. On the other hand, the unit cell of
hcp-Co contains two equivalent atoms at positions u;
=(%,%,3¢) and u2=(%,%,%). For the two DFFs q=q’ and the
exponential reduces to 1; since there are two such terms,

E, (eV)

fin

after division by N, the sum again equals the DFF itself. But
for the main MDFF we have q L q' and the exponential fac-
tor will in general weight the terms. One can easily see, that
q' —q=G. For the G=(100) systematic row case, which was
used for calculation of hcp-Co in Fig. 4, the exponentials
evaluate the complex numbers —liif and —% * i% for u,
and u,, respectively. Because of symmetry, the MDFFs for
both atoms are equal and then the sum 1%“2“ leads to a factor

—% for the MDFF contribution, i.e., the influence of its
imaginary part, which is responsible for dichroism, on the
DDSCS is reduced by a factor of 2.

To optimize the dichroic signal strength of hcp-Co, we
require G-u;=G-u,=2mn, which gives in principle an infi-
nite set of possible G vectors. The one with lowest Akl indi-
ces is G=(110). A calculation for this geometry setup leads
to approximately 2 times the dichroic signal, see Fig. 5 and
compare to the corresponding graph in Fig. 4.

For the optimization of the experimental setup it is impor-
tant to know how sensitive the results are to variation of
parameters such as the thickness of the sample or the accu-
racy of the detector position. Another question related to this
is also the sensitivity to the finite size of the convergence and
collection angles a and B. In the following text we will
address these questions.

The thickness influences the factor 7/, in Eq. (24) only.
This factor leads to the so called pendellosung oscillations—
modulations of the signal strength as a function of thickness.
This also influences the strength of the dichroic signal. Re-
sults of such calculations are displayed in Fig. 6 (we did not
include absorption into these simulations, so that all signal
variations are only due to the geometry of the sample). From
these simulations it follows that a well-defined thickness of
the sample is a very important factor. Relatively small varia-
tions of the thickness can induce large changes in the di-
chroic signal, particularly in fcc-Ni. From the figure one can
deduce that the optimal thickness for a bce-Fe sample should
be between 8 nm and 22 nm (of course, due to absorption,
thinner samples within this range would have a stronger sig-
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FIG. 5. (Color online) L; peak of hcp-Co calculated for the G
=(110) systematic row at 18 nm. See caption of Fig. 4. The peaks
have been renormalized so that their sum is 1, therefore their dif-
ference is the dichroic signal (ca. 17% in this case).

nal), for hep-Co between 15 nm and 22 nm and for fce-Ni it
is a relatively narrow interval—between 6 nm and 10 nm.
However, we stress that these results depend on the choice of
the systematic row vector G. For example, hcp-Co with G
=(100) [instead of (110) shown in Fig. 6] has a maximum
between 5 nm and 15 nm (although it is much lower, as dis-
cussed before).

Taking the optimal thickness, namely 20 nm, 18 nm, and
8 nm for bee-Fe, hep-Co, and fee-Ni, respectively, we calcu-
lated the dependence of the dichroic signal on the detector
position. We particularly tested changes of the dichroic sig-
nal when the detector is moved away from its default posi-
tion in the direction perpendicular to G, see Fig. 7. It is
interesting to note that the maximum absolute difference oc-
curs for a value of g, smaller than |G|/2. This can be quali-
tatively explained by considering the nonzero value of ¢, and
q.,i.e., qand q' are not exactly perpendicular at the default
detector positions. Moreover the MDFF enters the summa-
tion always divided by ¢’g’? and the lengths of q vectors
decrease with decreasing ¢,. The important message we can
deduce from this figure is that the dichroic signal is only
weakly sensitive to the accuracy of g, since even displace-
ment by 10-20% in the detector default g, positions (i.e.,
gy,=+G/2) do not affect significantly the measured dichroic
signal.

Related to this is a study of the dependence of the di-
chroic signal on the finite size of the convergence and col-
lection angles « and B. We performed a calculation for the
three studied metals and found that collection and conver-
gence half-angles up to 2 mrad weakens the relative dichroic
signal by less than 10%.

IV. CONCLUSIONS

We have developed a computer code package for the cal-
culation of electron energy loss near edge spectra, which
includes the theory of dynamical Bragg diffraction. We ap-
plied the code to the recently discovered phenomenon of
magnetic chiral dichroism in the TEM and we demonstrated
the relation of the dichroic peak shape to the difference of
d-projections of the spin-resolved density of states in anal-
ogy with similar observation for XMCD.
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FIG. 6. (Color online) Dependence of the DDSCS and of the
dichroic signal on sample thickness for (a) bee-Fe, (b) hep-Co and
(c) fce-Ni. Systematic row vector G=(200) was used for bee-Fe and
fee-Ni, while for hep-Co G=(110) was chosen. The blue and green
solid curves are DDSCSs calculated for the (+) and (—) detector
positions, the dashed black curve is the DFF part of the DDSCS (it
is identical for both detector positions). The red line with circles is
the relative dichroism defined as difference of DDSCSs divided by
their sum, the red solid curve is the absolute dichroism—difference
of DDSCSs.

Using this code we examined the validity of the dipole
approximation, which is often assumed. We found that for
the 3d ferromagnetic systems studied it is a reasonable ap-
proximation, however with wrong asymptotic properties—it
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FIG. 7. (Color online) Dependence of the relative dichroic sig-
nal on detector displacements along g,. Vertical lines are showing
the default detector positions.
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overestimates the contributions from larger q vectors. A very
accurate approximation for the studied systems is the A=\’
=1 approximation, which treats appropriately the dominant
p—d dipole transitions and remains very accurate also for
large ¢,q'.

In order to provide guidance to the experimentalist we
have investigated the strength of the dichroic signal as a
function of the sample thickness and the precision of the
detector placement. While the dichroic signal strength is
rather robust with respect to the precision of the detector
placement, the thickness of the specimen influences the sig-
nal considerably. Therefore it might be a challenge to pro-
duce samples with optimum thickness and selecting the best
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systematic row Bragg spot. Our calculations yield best thick-
nesses in order to detect EMCD of the iron and nickel
samples for the systematic row G=(200) to be 8—22 nm and
6—10 nm, respectively, and for cobalt in the systematic row
G=(110) to be 15-22 nm.
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