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Recent theory and measurements of the velocity of current-driven domain walls in magnetic nanowires have
reopened the unresolved question of whether Landau-Lifshitz damping or Gilbert damping provides the more
natural description of dissipative magnetization dynamics. In this paper, we argue that �as in the past� experi-
ment cannot distinguish the two, but that Landau-Lifshitz damping, nevertheless, provides the most physically
sensible interpretation of the equation of motion. From this perspective, �i� adiabatic spin-transfer torque
dominates the dynamics with small corrections from nonadiabatic effects, �ii� the damping always decreases
the magnetic free energy, and �iii� microscopic calculations of damping become consistent with general sta-
tistical and thermodynamic considerations.
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I. BACKGROUND

Experiments designed to study the effect of electric cur-
rent on domain wall motion in magnetic nanowires show that
domain walls move over large distances with a velocity pro-
portional to the applied current.1–10 Most theories ascribe this
behavior to the interplay between spin-transfer �the quantum
mechanical transfer of spin angular momentum between con-
duction electrons and the sample magnetization� and magne-
tization damping of the Gilbert type.11 Contrary to the sec-
ond point, we argue in this paper that Landau-Lifshitz
damping12 provides the most natural description of the dy-
namics. This conclusion is based on the premises that damp-
ing should always reduce magnetic free energy and that mi-
croscopic calculations must be consistent with statistical and
thermodynamic considerations.

Theoretical studies of current-induced domain wall mo-
tion typically focus on one-dimensional models, where cur-
rent flows in the x direction through a magnetization M�x�
=MM̂�x�. When M is constant, the equation of motion is

Ṁ = − �M � H + NST + D . �1�

The precession torque −�M�H depends on the gyromag-
netic ratio � and an effective field �0H=−�F /�M, which
accounts for external fields, anisotropies, and any other ef-
fects that can be modeled by a free energy F�M� ��0 is the
magnetic constant�. The spin-transfer torque NST is not de-
rivable from a potential, but its form is fixed by symmetry
arguments and model calculations.13–21 A local
approximation22 �for current in the x direction� is

NST = − � ��xM − �M̂ � �xM� . �2�

The first term in Eq. �2� occurs when the spin current follows
the domain wall magnetization adiabatically, i.e., when the
electron spins remain largely aligned �or antialigned� with
the magnetization as they propagate through the wall. The

constant � is a velocity. If P is the spin polarization of the
current, j is the current density, and �B is the Bohr magne-
ton,

� =
− Pj�B

eM
. �3�

The second term in Eq. �2� arises from nonadiabatic effects.
The constant � is model dependent.

The damping torque D in Eq. �1� accounts for dissipative
processes �see Ref. 23 for a review�. Two phenomenological
forms for D are employed commonly: the Landau-Lifshitz
form12 with damping constant �,

DL = − �M̂ � �M � H� , �4�

and the Gilbert form11 with damping constant 	,

DG = 	M̂ � Ṁ . �5�

The difference between the two is usually very small and
almost all theoretical and simulation studies of current-
induced domain wall motion solve Eq. �1� with the Gilbert
form of damping.18–20,24–28 This is significant because, as we
now discuss, Gilbert damping and Landau-Lifshitz damping
produce quite different results for this problem when the
same spin-transfer torque is used.

Consider a Néel wall, where M lies entirely in the plane

of a thin film when the current is zero. By definition, M̂
�H=0 if we choose M�x� as the equilibrium structure,
which minimizes the free energy F�M�. The wall distorts if

M̂�H�0 for any reason. The theoretical literature cited
above shows that, with damping omitted, the Néel wall
moves undistorted at the speed � �see Eq. �3�� when �=0 in
Eq. �2�. Gilbert damping brings this motion to a stop because
DG rotates M�x� out of plane until the torque from magne-
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tostatic shape anisotropy cancels the spin-transfer torque.
However, if the nonadiabatic term in Eq. �2� is nonzero,
steady wall motion occurs at speed �� /	.

Using this information, two recent experiments9,10 used
their observations of average domain wall velocities very
near � to infer that ��	 for Permalloy nanowires. This is
consistent with microscopic calculations �which include
disorder-induced spin-flip scattering� that report �=	 �Ref.
29� or ��	 �Ref. 30� for realistic band models of an itiner-
ant ferromagnet. On the other hand, calculations for s-d
models of ferromagnets with localized moments find little
numerical relationship between � and 	.30,31

A rather different interpretation of the data follows from a
discussion of current-driven domain wall motion in the s-d
model offered by Barnes and Maekawa.32 These authors ar-
gue that there should be no damping of the magnetization
when a wall which corresponds to a minimum of the free
energy F�M� simply translates at constant speed. This is true
of DL in Eq. �4� because M�H=0 but it is not true of DG in

Eq. �5� because Ṁ�0 when NST�0. From this point of
view, the “correct” equation of motion is

Ṁ = − �M � H − ��xM − �M̂ � �M � H� , �6�

because it reduces �for energy-minimizing walls� to

Ṁ = − ��xM . �7�

In the absence of extrinsic pinning, this argument identifies
the experimental observation of long-distance wall motion
with a uniformly translating solution M�x−� t� of Eq. �7�
with minimum energy.

As we discuss below, it is possible to convert between
descriptions with Landau-Lifshitz and Gilbert dampings by
concurrently changing the value of the nonadiabatic spin-
transfer torque. The Landau-Lifshitz description in Eq. �6� is
equivalent to one with Gilbert damping with �=	. The goal
of this paper is to argue that there are conceptual reasons to
prefer the description with Landau-Lifshitz damping even
when ��	.

Section II presents micromagnetic simulations that con-
firm the discussion above and describes further details. Then,
the remainder of this paper provides three theoretical argu-
ments which support the use of Landau-Lifshitz damping for
current-driven domain wall motion �in particular� and for
other magnetization dynamics problems �in general�. First,
we reconcile our preference for Landau-Lifshitz damping
with the explicit microscopic calculations of Gilbert damping
and nonadiabatic spin torque reported in Refs. 29–31. Sec-
ond, we show that Gilbert damping can increase the mag-
netic free energy in the presence of spin-transfer torques.
Finally, we show that Landau-Lifshitz damping is uniquely
selected for magnetization dynamics when the assumptions
of nonequilibrium thermodynamics are valid.

II. MICROMAGNETICS

Our analysis begins with a check on the robustness of the
foregoing model predictions using full three-dimensional mi-
cromagnetic simulations of current-driven domain wall

motion.33 We studied nanowires 12 nm thick and 100 nm
wide, with material parameters chosen to simulate Ni80Fe20.
At zero current, this geometry and material system support
in-plane magnetization with stable domain walls of trans-
verse type.34 Figure 1 shows the wall position as a function
of time for a transverse domain wall for several values of
applied current density j. The curves labeled Gilbert
�	=0.02� show that wall motion comes quickly to a halt.
Examination of the magnetization patterns confirms the
torque cancellation mechanism outlined above. The curves
labeled Landau-Lifshitz show that the wall moves uniformly
with the velocity given by Eq. �3�, which is independent of
the damping parameter �.35

The sudden turn-on of the current and hence Oersted
magnetic field at t=0 generates the small amplitude undula-
tions of the curves in Fig. 1 but, otherwise, has little effect on
the dynamics. An initial state of a stable vortex wall in a
300 nm wide wire produces similar results, except that under
the Gilbert formulation, the vortex wall moves about 20
times farther before stopping as compared to the transverse
wall in the 100 nm wire. We conclude from these simulations
that the basic picture of domain wall dynamics gleaned from
one-dimensional models is correct.

The magnetic free energy behaves differently in simula-
tions depending on whether Landau-Lifshitz or Gilbert
damping is used. Before the current is turned on, the domain
wall is in a configuration that is a local minimum in the
energy. For Landau-Lifshitz damping, the energy remains
largely constant near this minimum and is exactly constant if
the Oersted fields are ignored. For Gilbert damping, the en-
ergy increases when the current is turned on and the walls
distort. For a transverse wall, the distortion is largely an out
of plane tilting. Initially, the energy increases at a rate pro-
portional to the damping parameter �ignoring higher order
corrections discussed in the next section�. The details of this
behavior are somewhat obscured by the oscillations due to
the Oersted magnetic field, but are quite apparent in simula-
tions in which this field is omitted. As the wall tilts out of
plane, the torque due to the magnetostatic field opposes the
wall motion and the wall slows down. Eventually, the torque
balances the adiabatic spin-transfer torque and the wall stops.
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FIG. 1. �Color online� Position versus time for a transverse do-
main wall, and several values of the applied current density com-
puted with adiabatic spin torques ��=0� and the two forms of
damping in Eqs. �4� and �5�.
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In simulations using Gilbert damping, the change in mag-
netic free energy between the initial and final configurations
is independent of the damping parameter, and is determined
by the balance between the magnetostatic torque and the
adiabatic spin-transfer torque. However, the amount of time
before the wall stops and the distance the wall moves are
inversely proportional to the damping parameter. The Gilbert
damping torque is responsible for this increase in energy, as
can be seen from analyzing the directions of the other
torques. Precessional torques, like those due to the exchange
and magnetostatic interactions that are important in these
simulations, by their nature are directed in constant energy
directions and do not change the magnetic free energy. The
adiabatic spin-transfer torque is in a direction that translates
the domain wall and does not change the energy in systems
where the energy does not depend on the position of the wall.
Thus, in simulations of ideal domain wall motion without
Oersted fields, the Gilbert damping torque is the only torque
that changes the energy. Throughout these simulations, the
Gilbert damping torque is in a direction that increases rather
than decreases the magnetic free energy.

III. MAGNETIC DAMPING WITH SPIN-TRANSFER
TORQUE

When NST=0, it is well known that a few lines of algebra
convert the equation of motion �1� with Gilbert damping into
Eq. �1� with Landau-Lifshitz damping �and vice versa� with
suitable redefinitions of the precession constant � and the
damping constants � and 	.36 The same algebraic
manipulations29 show that Eq. �6� is mathematically equiva-
lent to a Gilbert-type equation with 	=� /�:

Ṁ = − ��1 + 	2�M � H + 	M̂ � Ṁ − � ��xM − 	M̂ � �xM� .

�8�

To analyze Eq. �8�, we first ignore spin transfer �put �=0�
and note that this rewritten Landau-Lifshitz equation differs
from the conventional Gilbert equation only by an O�	2�
renormalization of the gyromagnetic ratio. Consequently,
first-principles derivations of any equation of motion for
the magnetization must be carried out to second order in
the putative damping parameter if one hopes to distinguish
Landau-Lifshitz damping from Gilbert damping. This
observation shows that papers that derive Gilbert
damping29–31,37–39 or Landau-Lifshitz damping40,41 from mi-
croscopic calculations carried out only to first order in 	
cannot be used to justify one form of damping over the other.

Now restore the spin-transfer terms in Eq. �8� and note
that the transformation to this equation from Eq. �6� auto-
matically generates a nonadiabatic torque with �=	. This
transformation means that, to lowest order in 	 and �, an
equation of motion with Gilbert damping and a nonadiabatic
coefficient �G is equivalent to an equation of motion with
Landau-Lifshitz damping with nonadiabatic coefficient �L
=�G−	. This shows that equivalent equations of motion can
be made using either form of damping, albeit with rather
different descriptions of current-induced domain wall mo-
tion. Nevertheless, as we argue below, there are conceptual
advantages to the Landau-Lifshitz form.

IV. LANDAU-LIFSHITZ DAMPING UNIQUELY REDUCES
MAGNETIC FREE ENERGY

Landau-Lifshitz damping irreversibly reduces magnetic
free energy when spin-transfer torque is present. The same
statement is not true for Gilbert damping. This can be seen
from the situation described in Sec. II, where Gilbert damp-
ing causes a minimum-energy domain wall configuration to
distort and tilt out of plane. Nothing prevents an increase in
magnetic free energy for this open system, but it is clearly
preferable if changes in magnetic configurations that increase
F�M� come from the effects of spin-transfer torque rather
than from the effects of a torque intended to model dissipa-
tive processes. This is an important reason to prefer DL in
Eq. �4� to DG in Eq. �5�. This argument depends crucially on
the fact that the adiabatic spin-transfer torque is not derivable
from a free energy. This we discuss next.

The field H in Eq. �1� is the �negative� gradient of the
magnetic free energy. The component of this gradient in the
direction that does not change the size of the magnetization

is −M̂� �M�H�. Since this direction is exactly that of the
Landau-Lifshitz form of the damping �Eq. �4��, it follows
that this form of the damping always reduces this magnetic
free energy. When the Gilbert form of the damping �Eq. �5��
is used in Eq. �1�, it is possible to rewrite the damping term

as DG=−	�M̂� �M�H− �1/��NST�+O�	2�. Further, one
can always write NST=−�M�HST, where HST is an effec-
tive “spin-transfer magnetic field.” However, unlike the field
�0H=−�F /�M in Eq. �1�, there is no “spin-transfer free en-
ergy” FST, which gives HST as its gradient:

�0HST = −
�FST

�M
�not correct� . �9�

If Eq. �9� were true, the lowest order �in 	� Gilbert damping

term −	�M̂� �M� �H+HST�� would, indeed, always de-
crease the sum F+FST. Unfortunately, a clear and convincing
demonstration of the nonconservative nature of the spin-
transfer torque is not easy to find. Therefore, in what follows,
we focus on the adiabatic contribution to Eq. �2� and show
that a contradiction arises if Eq. �9� and its equivalent,

dFST = − �0HST · dM , �10�

are true.
For this argument, we consider a simpler model than that

discussed in Sec. II. Figure 2 shows the magnetization M�x�
for a one-dimensional Néel wall in a system with uniaxial
anisotropy along the x direction. The domain wall of width w
is centered at x=0 and the plane of the magnetization is tilted
out of the x-y plane by an angle 
. A convenient parametri-
zation of the in-plane rotation angle ��x� is

x
y

z

φθ(x)

FIG. 2. A one-dimensional Néel domain wall with magnetiza-
tion M�x�.
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��x� = �/2 + sin−1�tanh�x/w�� . �11�

Therefore,

M = M�cos ��x�,sin ��x�cos 
,sin ��x�sin 
� , �12�

where cos ��x�=−tanh�x /w� and

sin ��x� = sech�x/w� . �13�

The magnetic free energy of this domain wall is independent
of both its position and its orientation �angle 
�.

For electron flow in the x direction, Eq. �2� shows that the
adiabatic piece of the spin-transfer torque lies entirely in the
plane of the magnetization:

NST
ad 
 ���x��− sin �,cos � cos 
,cos � sin 
� . �14�

This torque rotates the magnetization in a manner which pro-
duces uniform translation of the wall in the x direction with
no change in 
. Since

���x� = �1/w�sech�x/w� , �15�

comparison with Eq. �13� shows that NST
ad =0 outside the wall

as expected. The magnetic free energy of the domain wall
does not change as the wall is translated.

Now, as indicated above Eq. �9�, we are free to interpret
the foregoing wall translation as resulting from local preces-
sion of M�x� around an effective field HST�x� directed per-
pendicular to the plane of the domain wall. Specifically,

HST�x� 
 ���x��0,− sin 
,cos 
� . �16�

However, if Eq. �9� and thus Eq. �10� are assumed to be
correct, the magnitude and direction of HST imply that the
putative free energy FST decreases when M�x� rotates rigidly
around the x axis in the direction of increasing 
.42 On the
other hand, the free energy must return to its original value
when 
 rotates through 2�. Since the gradient �9� can never
increase the free energy, we are forced to conclude that our
assumption that FST exists is incorrect.

V. LANGEVIN EQUATION FOR THE MAGNETIZATION

Neglected work by Iwata43 treats magnetization dynamics
from the point of view of the thermodynamics of irreversible
processes.44 His nonperturbative calculations uniquely gen-
erates the Landau-Lifshitz form of damping. In this section,
we make equivalent assumptions but go farther and derive an
expression for the damping constant. Yamada et al. did this
using a projection operator method.45 Our more accessible
discussion follows Reif’s derivation of a Langevin equation
for Brownian motion.46

We begin by taking the energy change in a unit volume

dE = − �0H	dM	, �17�

where the repeated index 	 implies a sum over Cartesian
coordinates. It is crucial to note that the magnitude �M�=M is
fixed, so only rotations of M toward the effective field H
change the energy of the system. The interaction with the
environment enters the equation of motion for the magneti-
zation through a fluctuating torque N	�:

dM	

dt
= − ��M � H�	 + N	� . �18�

The torque N� is perpendicular to M since �M�=M.
We consider the evolution of the magnetization over a

time interval �t, which is much less than the precession pe-
riod, but much greater than the characteristic time scale for
the fluctuations ��. After this time interval, the statistical av-
erage of the change in magnetization �M	=M	�t+�t�
−M	�t� is

�M	 = − ��M � H�	��t� + �
t

t+�t

dt��N	��t��	 . �19�

The equilibrium Boltzmann weighting factor W0 gives
�N	��t��	0=0. However, �N	��t��	�0 when the magnetization
is out of equilibrium. Indeed, this method derives the damp-
ing term precisely from the bias built into the fluctuations
due to the changes �E=−�0H��M� in the energy of the
magnetic system.

The Boltzmann weight used to calculate �N	��t��	 is W
=W0 exp�−�E / �kBT��, where �assuming that H does not
change much over the integration interval�

�E�t�� = − �0H��t���
t

t� dM��t��
dt�

dt�

� − �0H��t��
t

t�
N���t��dt�. �20�

Note that precession does not contribute to �E�t��. Only mo-
tions of the magnetization that change the energy of the mag-
netic subsystem produce bias in the torque fluctuations.
Therefore, since W=W0�1−�E / �kBT�� for small �E / �kBT�,
the last term in Eq. �19� now involves only an average over
the equilibrium ensemble:

�M	 � − ��M � H�	��t�

+
�0H��t�

kBT
�

t

t+�t

dt��
t

t�
dt��N	��t��N���t��	0.

�21�

We recall now that the torque fluctuations are correlated
over a microscopic time �� that is much shorter than the
small but macroscopic time interval over which we integrate.
Therefore, to the extent that memory effects are negligible,
we define the damping constant � �a type of fluctuation-
dissipation result� from

�
t

t�
dt��N	��t��N���t��	 � ��kBTM/�0��	�

� , �22�

for �t�− t���* and with �	�
� =�	�−M̂	M̂�, which restricts the

fluctuations to be transverse to the magnetization, but other-
wise uncorrelated. This approximation reduces the last term

in Eq. �21� to �MH�	�t, where H�=−M̂� �M̂�H� is the
piece of H which is perpendicular to M. Substituting Eq.
�22� into Eq. �21� gives the final result in the form
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dM

dt
� − ��M � H� − �M̂ � �M � H� . �23�

Equation �23� is the Landau-Lifshitz equation for the statis-
tically averaged magnetization. It becomes a Langevin equa-
tion when we add an �now� unbiased random torque to the
right hand side.

The procedure outlined above generates higher order
terms in � from the expansion of the thermal weighting to
higher order in �E. The second order terms involve an equi-
librium average of three powers of N�. These are zero for
Gaussian fluctuations. The third order terms involve an av-
erage of four powers of N�, and are nonzero. They lead to a
term proportional to �2H�

2 H�, which we expect to be small
and to modify only large-angle motions of the magnetization.

VI. SUMMARY

In this paper, we analyzed current-driven domain wall
motion using both Gilbert-type and Landau-Lifshitz-type
damping of the magnetization motion. Equivalent equations
of motion can be written with either type of damping, but the
implied description of the dynamics �and the relative impor-
tance of adiabatic and nonadiabatic effects� is very different
in the two cases.

With Landau-Lifshitz damping assumed, adiabatic spin-
transfer torque dominates and produces uniform translation
of the wall. Nonadiabatic contributions to the spin-transfer
torque distort the wall, raise its magnetic energy, and thus

produce a magnetostatic torque which perturbs the wall ve-
locity. Damping always acts to reduce the distortion back
toward the original minimum-energy wall configuration.
With Gilbert damping assumed, the damping torque itself
distorts and thereby raises the magnetic energy of the mov-
ing wall. The distortion-induced magnetostatic torque stops
domain wall motion altogether. Additional wall distortions
produced by nonadiabatic spin-transfer torque are needed to
produce wall motion.

In our view, Landau-Lifshitz damping is always prefer-
able to Gilbert damping. When spin-transfer torque is
present, this form of damping inexorably moves the mag-
netic free energy toward a local minimum; Gilbert damping
does not. Even in the absence of spin-transfer torque, argu-
ments based on irreversible thermodynamics show that the
Landau-Lifshitz form of damping is uniquely selected for a
macroscopic description.43 Here, we proceeded equivalently
and derived the Landau-Lifshitz equation of motion as the
unique Langevin equation for the statistical average of a
fluctuating magnetization with fixed spin length.
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