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We study two-magnon spectra in resonant inelastic x-ray scattering �RIXS� from Heisenberg antiferromag-
nets by extending the formula of Nomura and Igarashi �Phys. Rev. B 71, 035110 �2005��. The core-hole
potential in the intermediate state of RIXS gives rise to a change in the exchange coupling between 3d
electrons, leading to an effective interaction between the core hole and spins of 3d electrons. We derive a
formula suitable to calculate the two-magnon RIXS intensities, replacing the bare core-hole potential respon-
sible for charge excitations by this effective interaction creating two magnons in our previous formula. It
consists of two factors, one of which determines the incident-photon-energy dependence while the other is a
two-magnon correlation function. We evaluate the former factor for La2CuO4 in terms of the density of states
of the 4p states obtained by a band calculation. We also calculate the two-magnon correlation function as a
function of energy loss � and momentum transfer q of the Heisenberg model on a square lattice, by summing
up the ladder diagrams after transforming the magnon-magnon interaction into a separable form. The calcu-
lated spectra form a broad peak around �=3J for S=1/2 on the magnetic Brillouin zone boundary and vanish
at q= �0,0� and �� ,��. Such momentum dependence of the RIXS spectra could provide an excellent oppor-
tunity to study the dynamics in the Heisenberg model.
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I. INTRODUCTION

Resonant inelastic x-ray scattering �RIXS� has recently
attracted much interest, since it provides valuable informa-
tion about charge excitations in solids.1–7 Unlike optical
measurement, it can probe directly the momentum depen-
dence of the excitations. The K-edge resonance in transition-
metal compounds is particularly useful, because the corre-
sponding x-ray wavelengths are of the order of lattice
spacing. In this situation, the 1s core electron is promoted to
an empty 4p state by absorbing a photon, then charge exci-
tations are created in order to screen the core-hole potential,
and finally the photoexcited 4p electron is recombined with
the core hole by emitting a photon. In the end, charge exci-
tations are left with energy and momentum transferred from
photons.

For analyzing such spectra, Nomura and Igarashi �NI� de-
veloped a formalism8–10 by adapting the resonant Raman
theory of Nozières and Abrahams.11 According to the for-
mula NI have derived, the RIXS intensity is expressed in
terms of the density-density correlation function in the equi-
librium system under the Born approximation to the core-
hole potential. Describing the electronic states in the multi-
band tight-binding model within the Hartree-Fock
approximation, and taking account of the electron correlation
within the random phase approximation, NI analyzed the
RIXS spectra of undoped cuprates.8–10 The calculated spectra
reproduced well the experimental ones as a function of en-
ergy loss and the dependence on momentum. The use of the
Born approximation to the core-hole potential has been ex-
amined by evaluating higher-order corrections, and has been
partly justified in spite of a strong core-hole potential.10 In

addition, the RIXS spectra in NiO have recently been ana-
lyzed by the same method, in an excellent agreement with
the experiment.12 Therefore, the NI formula seems quite use-
ful to analyze the RIXS spectra. Note that, among several
theoretical studies on the momentum dependence of the
RIXS spectra,13–16 some have been based on the numerical
diagonalization method for small clusters, replacing the 4p
band by a single level.13,14 By these numerical methods, it
seems almost impossible to analyze the RIXS spectra in
three-dimensional systems.

Quite recently, Hill et al. have reported that the RIXS
intensity has been observed around the energy loss
300–600 meV in La2CuO4 with improving instrumental
resolution.17 One scenario for the origin of the spectra is that
the intensity arises from two-magnon excitations. In this pa-
per, we examine this possibility by developing the NI
formalism.8–10 As pointed out by van den Brink,18 the pres-
ence of the core-hole potential in the intermediate state
modifies the exchange process, giving rise to a change in the
exchange coupling between the spins of 3d electrons at the
core-hole site and those at neighboring sites. This leads to an
effective interaction which creates two magnons from a core
hole. Replacing the bare core-hole potential responsible for
charge excitations by the effective interaction in the NI for-
mula, we immediately obtain the formula of the two-magnon
RIXS spectra. It consists of two factors, one of which gives
the incident-photon-energy dependence while the other is a
two-magnon correlation function. The former factor involves
the density of states �DOS� of the 4p states and is almost
independent of energy loss. We evaluate it for La2CuO4, us-
ing the 4p DOS given by the local density approximation
�LDA�. A large enhancement is predicted at the K edge as a
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function of incident-photon energy; the enhancement is
much larger for the polarization along the c axis than for the
polarization in the ab plane.

Another factor, a two-magnon correlation function, deter-
mines the dependence on the energy loss � and the momen-
tum transfer q. We employ systematically the 1/S expansion
�S is the magnitude of spin� of the antiferromagnetic Heisen-
berg model in a square lattice. We show that matrix elements
concerning the excitation of two magnons are quite different
from those for light scattering and neutron scattering.
Thereby, the RIXS intensity would vanish at q= �0,0� and
�� ,��. It is known that the 1/S expansion works well at
taking account of the quantum fluctuation. The linear-spin-
wave theory is made up of 1/S expansion to leading
order,19,20 and the magnon-magnon interaction, as well as the
Oguchi correction to the magnon energy, arise in the first
order of 1 /S.21,22 Various physical quantities, such as the
spin-wave dispersion, the sublattice magnetization, the per-
pendicular susceptibility, and the spin-stiffness constant,
have been calculated up to the second order in 1/S on a
square lattice.23–27 In this paper, we calculate the correlation
function within the first order of 1 /S, where the ladder dia-
grams with a magnon-magnon interaction have to be
summed up. We carry out the summation exactly by trans-
forming the interaction into a separable form. This approach
is different from the decoupling approximation to the equa-
tion of motion for the spin Green’s function.28–30

It is found that the spectral shape as a function of energy
loss is strongly modified by the interaction. Such an effect is
known in light scattering, although the momentum transfer is
limited to zero.28,29,31–34 RIXS could detect the momentum
dependence of the spectra. Our results show that the spectra
form a broad peak around �=3J �J is the exchange constant�
for S=1/2 at the magnetic Brillouin zone boundary. Note
that the momentum dependence of two-magnon excitations
has been studied in the context of the phonon-assisted photon
absorption spectra,35 and has recently been discussed in light
scattering.36 The latter case may be relevant for nonresonant
inelastic x-ray scattering experiments, but the mechanism
causing two-magnon excitations is quite different from RIXS
because no core hole is involved in the process.

The present paper is organized as follows. In Sec. II, we
formulate the RIXS spectra for Heisenberg antiferromagnets
by adapting the NI formalism. In Sec. III, the RIXS formula
is expressed with magnon operators. The two-magnon corre-
lation function is calculated within the first order in the 1/S
expansion. In Sec. IV, numerical results are presented for the
RIXS spectra in a two-dimensional Heisenberg model for
La2CuO4. Section V is devoted to the concluding remarks.
The spectra �at q=0� for light scattering are summarized in
the Appendix for the square lattice.

II. TWO-MAGNON PROCESS IN RIXS

At the transition-metal K edges, the 1s core electron is
excited to the 4p band in a dipole transition by absorbing a
photon. This process may be described by

Hx = w�
q�

1
�2�q

�
j��

e�
���pj��

† sj�cq�eiq·rj + H.c., �2.1�

where e�
��� represents the �th component ��=x ,y ,z� of two

kinds of polarization vectors ��=1,2� of photon. The opera-
tor cq� stands for the annihilation operator of the photon with
momentum q and polarization �. Since the 1s state is so
localized, the 1s→4p transition matrix element is well ap-
proximated as a constant w. The annihilation operators pj��

and sj� are for the 4p� and 1s electrons with spin �, respec-
tively, at the transition-metal site j. The Hamiltonians for the
core electron and for the 4p electrons are given by

H1s = �1s�
j�

sj�
† sj�, �2.2�

H4p = �
k��

�4p
� �k�pk��

† pk��. �2.3�

In the intermediate state, the attractive core-hole potential
works on the 3d electrons, which may be described by

H1s-3d = V �
im���

dim�
† dim�si��

† si��. �2.4�

The annihilation operator di� is for the 3d state with spin � at
site i. Finally, for describing the low-energy behavior, we
assume a single-band Hubbard model for 3d electrons,

H = t�
�i,j�

�di�
† dj� + H.c.� + U�

i

di↑
† di↓

† di↓di↑. �2.5�

Here U may be 4–8 eV and is smaller than V. This Hubbard
model may be mapped from a more precise “d-p” model for
cuprates.

At half filling, a spin singlet pair has energy 2t2 /U lower
than that of a spin triplet pair. Therefore, in the low-energy
sector, the system may be described by the Heisenberg model
with the exchange coupling constant J=4t2 /U.37 At the core-
hole site, this exchange process may be influenced by the
core-hole potential, as shown in Fig. 1, resulting in a change
of the exchange coupling. This has been pointed out by van
den Brink.18 The energy difference between the spin triplet
and singlet of two electrons, one at the core-hole site and the
other at a nearest-neighbor site, is estimated as

FIG. 1. Schematic representation of the two-magnon process in
RIXS, corresponding to the first term of Eq. �2.6�; �a� the 1s elec-
tron is excited to the 4p band by absorbing x rays, �b�,�c� an ex-
change process takes place under the influence of the core-hole
potential, and �d� the 4p electron is recombined with the 1s core
hole.
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t2	 1

U − V
+

1

U + V

 . �2.6�

The first and second terms arise from the process with two
electrons on the core-hole site as shown in Fig. 1�b� and that
with two electrons on the nearest-neighbor sites to the core-
hole sites, respectively. Taking the difference of the energy
from the value without the core hole, we obtain an effective

interaction between the core hole at site n and spins of 3d
electrons,18

H1s-3d
eff = Jc�

�,�
sn�sn�

† Sn · Sn+�, �2.7�

with

Jc =
4t2

U

V2

U2 − V2 , �2.8�

where n+� represents a nearest-neighbor site to site n.
The RIXS intensity is simply given by replacing H1s-3d

with H1s-3d
eff in the NI formula.9 The corresponding diagram in

the Keldysh scheme is shown in Fig. 2, where the effective
interaction H1s-3d

eff is represented by the double line. The in-
cident photon has momentum qi, energy �i, and polarization
e��i�, and the scattered photon has momentum q f, energy � f,
and polarization e��f�. The momentum and the energy trans-
ferred from the photon are given by q=qi−q f and �=�i
−� f. They are written simply as q= �q ,��. Similarly, we in-
troduce the notations qi= �qi ,�i� and qf = �q f ,� f�.

The upper triangle represents the product of Green’s func-
tions of the 4p electron and the core hole on the outward
time leg, which gives a factor exp�i��4p

� �p�−�1s− i�1s−�i�t�,
with �1s being the lifetime broadening width of the 1s core
hole. The lower triangle represents the product of Green’s
functions on the backward time leg, which gives a factor
exp�−i��4p

� �p�−�1s+ i�1s−�i��t�−u���. Note that the extra
time-dependent factors, ei�s on the outward time leg and
e−i�s� on the backward time leg, arise from the interaction.
Integrating the time factors combined with the above product
of Green’s functions with respect to s and t in the region of
t	s	0, −
	 t	0, we obtain

LB
���i;�� 
 Jc�

−


0

dt
1

N�
p

exp�i��4p
� �p� − �1s − i�1s − �i�t��

t

0

ds ei�s = − Jc� �4p
� ���d�

��i + �1s + i�1s − ����i − � + �1s + i�1s − ��
.

�2.9�

Here the summation over momentum is replaced by an inte-
gration over energy associated with the 4p DOS �4p

� ��� pro-
jected onto the � �=x ,y ,z� symmetry. The integration with
respect to s� and t� on the backward time leg gives the com-
plex conjugate term to Eq. �2.9�. The integration with respect
to u� gives the energy conservation factor, which guarantees
that � in Eq. �2.9� is the energy loss, �=�i−� f. See Ref. 10
for the detailed derivation of this function. Since the magnon
energy is usually of the order of 0.5 eV, which is much
smaller than the energy scale of the 4p DOS, we can safely
put �=0 in Eq. �2.9�. The bubble with shaded vertices in Fig.
2 denotes the two-magnon correlation function Y+−�q ,�� de-
fined by

Y+−�q,�� = �
−





�Mq
†�s��Mq�s��ei��s�−s�d�s� − s� , �2.10�

with

Mq =� 2

N
�
n,�

Sn · Sn+�e−iq·rn, �2.11�

where �¯� indicates the average over the ground state. Com-
bining all the above factors, we finally obtain the expression
for the RIXS intensity as

W�qi,�i;qf,� f� =
�w�4

4�i� f

N

2
Y+−�q,����

�

e�
��f�LB

���i;��e�
��i��2

.

�2.12�

III. THE 1/S EXPANSION

We carry out systematically the 1/S expansion by intro-
ducing the Holstein-Primakoff transformation to the spin
operators.38 Assuming two sublattices in the antiferromag-

FIG. 2. Diagrams for the RIXS intensity in the Keldysh scheme.
The double lines represent the effective interactions between the
core hole and spins of 3d electrons. The solid lines with 4p and 1s
denote the Green’s functions of the 4p electron and of the 1s core
hole, respectively. The bubble with shaded vertices stands for the
two-magnon correlation function, which connects the outward time
leg on the top half and the backward time leg on the bottom half.
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netic �AF� ground state, we express spin operators by boson
operators as

Si
z = S − ai

†ai, �3.1�

Si
+ = �Si

−�† = �2Sfi�S�ai, �3.2�

Sj
z = − S + bj

†bj , �3.3�

Sj
+ = �Sj

−�† = �2Sbj
†f j�S� , �3.4�

where ai and bj are boson annihilation operators, and

f��S� = 	1 −
n�

2S

1/2

= 1 −
1

2

n�

2S
−

1

8
	 n�

2S

2

+ ¯ , �3.5�

with n�=ai
†ai and bj

†bj. Indices i and j refer to sites on the
“up” and “down” sublattices, respectively.

A. Heisenberg Hamiltonian

We apply the 1/S expansion to the Heisenberg Hamil-
tonian described by

H = J�
�i,j�

Si · S j , �3.6�

where �i , j� indicates the sum taken over nearest-neighbor
pairs. Substituting Eqs. �3.1�–�3.4� into Eq. �3.6�, we expand
the Hamiltonian in powers of 1 /S as

H = −
1

2
JS2Nz + H0 + H1 + ¯ , �3.7�

where N and z are the number of lattice sites and that of
nearest-neighbor sites, respectively. The leading term H0 is
expressed as

H0 = JS�
�i,j�

�ai
†ai + bj

†bj + aibj + ai
†bj

†� . �3.8�

Rewriting the boson operators in the momentum space as

ai = 	 2

N

1/2

�
k

ak exp�ik · ri� , �3.9�

bj = 	 2

N

1/2

�
k

bk exp�ik · r j� , �3.10�

we diagonalize H0 by introducing the Bogoliubov transfor-
mation,

ak
† = �k�k

† + mk�−k, b−k = mk�k
† + �k�−k, �3.11�

where

�k = 	1 + �k

2�k

1/2

, mk = − 	1 − �k

2�k

1/2


 − xk�k,

�3.12�

with

�k = �1 − 
k
2, 
k =

1

z
�
�

eik·�. �3.13�

Here � is the nearest-neighbor vector. The momentum k is
defined in the first magnetic Brillouin zone �MBZ�.

As shown in Ref. 23, after the Bogoliubov transformation,
the Hamiltonian becomes

H0 = JSz�
k

��k − 1� + JSz�
k

�k��k
†�k + �k

†�k� ,

�3.14�

H1 =
JSz

2S
A�

k
�k��k

†�k + �k
†�k� +

− JSz

2SN
�
1234

�G�1 + 2 − 3

− 4��1�2�3�4 � ��1
†�2

†�3�4B1234
�1� + �−3

† �−4
† �−1�−2B1234

�2�

+ 4�1
†�−4

† �−2�3B1234
�3� + �2�1

†�−2�3�4B1234
�4�

+ 2�−4
† �−1�−2�3B1234

�5� + �1
†�2

†�−3
† �−4

† B1234
�6� + H.c.�� ,

�3.15�

with

A =
2

N
�
k

�1 − �k� . �3.16�

The first term in Eq. �3.15�, known as the Oguchi
correction,21 arises from setting the products of four boson
operators into normal product forms with respect to magnon
operators. For the square lattice, A=0.1579. The second term
represents the scattering of magnons. The momenta
k1 ,k2 ,k3 , . . . are abbreviated as 1,2,3,…. The Kronecker
delta �G�1+2−3−4� indicates the conservation of momenta
within the reciprocal lattice vector G. Explicit expressions
for the B�i�’s in a symmetric parametrization are given by
Eqs. �2.16�–�2.20� in Ref. 23. Here we only write down the
explicit expression for B1234

�3� , which will become necessary in
the next section,

B1234
�3� = 
2−4 + 
1−3x1x2x3x4 + 
1−4x1x2 + 
2−3x3x4 − 1

2 �
2x4

+ 
1x1x2x4 + 
2−3−4x3 + 
1−3−4x1x2x3 + 
4x2

+ 
3x2x3x4 + 
4−2−1x1 + 
3−2−1x1x3x4� . �3.17�

B. Two-magnon operator

Inserting Eqs. �3.1�–�3.4� into Eq. �2.11�, we expand Mq
in terms of boson operators as

Mq = S� 2

N�
�
	�

i�A

�ai
†ai + bi+�

† bi+� + aibi+� + ai
†bi+�

† �eiq·ri

+ �
j�B

�bj
†bj + aj+�

† aj+� + bjaj+� + bj
†aj+�

† �eiq·rj
 . �3.18�

Note that the momentum transfer q is defined in the first BZ,
which is double the first MBZ. When q is outside the first
MBZ, it can be brought back to the first MBZ by a reciprocal
vector G0, that is, q=q0+G0 with q0 being inside the first
MBZ. In this situation, eiq·rj =−eiq0·rj in the second term of
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Eq. �3.18�. Noting this fact and substituting Eq. �3.11� into
Eq. �3.18�, we obtain the expression of Mq as

Mq =� 2

N
�
k

N�q,k���q0+k�
† �−k

† + H.c. + ¯ , �3.19�

with

N�q,k� = Sz��1 ± 
q0
���q0+k�mk + sgn�
G��±1 + 
q0

�m�q0+k��k

+ �
�q0+k� ± sgn�
G�
k�m�q0+k�mk

+ �
k ± sgn�
G�
�q0+k����q0+k��k� . �3.20�

The sign � corresponds to the case that q is inside or outside
the first MBZ. The symbol �q0+k� stands for q0+k reduced
in the first MBZ by the reciprocal lattice vector G, that is,
�q0+k�=q0+k−G, and sgn�
G� denotes the sign of 
G. This
result will be used to calculate Y+−�q ,�� in the next section.
Note that N�q ,k�=0 for q=0 and q= �� ,�� in the square
lattice, indicating that no RIXS signal would be generated. In
light scattering, the total momentum of two magnons is re-
stricted to be zero. Unlike the RIXS case, finite intensities
are expected because of the different matrix elements for the
two-magnon process. See the Appendix for details.

C. Two-magnon correlation function

Defining the two-magnon Green’s function as

F�q0,�;k,k�� = − i� ei�tdt�T��−k�t���q0+k��t���q0+k��
†

�−k�
† �� ,

�3.21�

where T is the time-ordering operator. We rewrite the two-
magnon correlation function Y+−�q ,�� as

Y+−�q,�� =
2

N
�
k

�
k�

N�q,k�N�q,k���− 2�Im F�q0,�;k,k�� .

�3.22�

The two-magnon Green’s function is expanded in terms of
the one-magnon Green’s functions,

G���k,t� = − i�T��k�t��k
†�0��� , �3.23�

G���k,t� = − i�T��k�t��k
†�0��� . �3.24�

The unperturbed ones corresponding to H0 are given by

G��
�0��k,�� = G��

�0��k,�� = �� − �k + i��−1, � → 0+,

�3.25�

where the energy is in units of JSz. Hereafter the energy is
measured in units of JSz.

In the lowest order, the two-magnon Green’s function is
simply given by

F�q0,�;k,k�� = F0�q0,�;k��k,k�, �3.26�

with

F0�q0,�;k� = i� G��
�0���q0 + k�,� + k0�G��

�0��− k,− k0�
dk0

2�

=
1

� − ��q0+k� − �k + i�
. �3.27�

Inserting this relation into Eq. �3.22�, we obtain the correla-
tion function in the lowest order as

Y�0�+−�q,�� = 2�
2

N�
k

N�q,k�2��� − ��q0+k� − �k� .

�3.28�

In the first order in 1/S, the magnon energy �k is changed
to �1+A /2S��k due to the Oguchi correction. Therefore,
F0�q ,� ;k� is modified by replacing ��q0+k� and ��k� in Eq.
�3.27� with �1+A /2S���q0+k� and �1+A /2S��k, respectively.

Let F̄0�q ,� ;k� be the function after this modification. Within
the same order, we have to take account of the magnon-
magnon interaction. Only the terms with the factor B1234

�3� in
Eq. �3.15� are relevant to the present calculation. Consider
the ladder approximation shown in Fig. 3 for the two-
magnon Green’s function. Regarding the dependence on k
and k� in F�q0 ,� ;k ,k�� as a matrix F̂�q0 ,�� with N /2
�N /2 dimensions, we notice that the sum of the ladder dia-
grams is equivalent to the expression

�F̂�q0,��−1�k,k� = F̄0�q0,�;k�−1�k,k�

+
4

2SN
��q0+k���k��q0+k��k�B�q0+k��,k,�q0+k�,k�

�3� .

�3.29�

This is nothing but the eigenvalue equation for two-magnon
excitations, indicating that the ladder approximation together
with the Oguchi correction to the single-magnon energy con-
stitute the first-order correction in the 1/S expansion.

Equation �3.29� is not useful for the actual calculation of
the two-magnon Green’s function, because the matrix with
N /2�N /2 dimensions has to be inverted in order to get

FIG. 3. �a� Ladder diagrams for F�q0 ,� ;k ,k��. Solid lines rep-
resent the single-magnon Green’s function with the magnon energy
including the Oguchi correction. �b� Magnon-magnon interaction in
units of JSz.

TWO-MAGNON EXCITATIONS IN RESONANT INELASTIC… PHYSICAL REVIEW B 75, 214414 �2007�

214414-5



F̂�q0 ,��. We sum up the ladder diagrams exactly, transform-
ing the interaction into a separable form with several chan-
nels,

−
4

2SN
�1�2�3�4B1234

�3� = �
m,n=1

Nc

vm�2,3��mnvn�4,1� .

�3.30�

Here Nc is the channel number. The indices 2 and 3 specify
the incoming magnons while 1 and 4 specify the outgoing
magnons �Fig. 3�b��. The above transformation is exactly
performed by applying the addition theorem of trigonometric
functions to factors such as 
2–4 in B1234

�3� . Explicit forms of
vn�k ,k�� and �mn are given for the square lattice in the next
section. Thereby we obtain the T matrix �,

��q0,�:k,k�� =
2

N
�
m,n

vm�k,�q0 + k��

��mn
eff �q0,��vn�k�,�q0 + k��� , �3.31�

where

�mn
eff �q0,�� = †�1̂ − �̂R̂�q0,���−1�̂‡mn, �3.32�

with

�R̂�q0,���mn =
2

N
�
k

vm�k,�q0 + k��

�F̄0�q0,�;k�vn�k,�q0 + k�� . �3.33�

In Eq. �3.32�, the unit matrix 1̂ and R̂�q0 ,�� are in Nc�Nc

dimensions. We calculate the two-magnon Green’s function
from the T matrix,

F�q0,�;k,k�� = F̄0�q0,�;k���k,k�

+ ��q0,�:k,k��F̄0�q0,�;k��� .

�3.34�

Inserting this equation into Eq. �3.22�, we obtain Y+−�q ,��,
which gives the RIXS intensity as a function of momentum
and energy transferred from the photon.

IV. CALCULATED RESULTS

We apply the formulas in the preceding sections to
La2CuO4, which seems to be a typical two-dimensional
Heisenberg antiferromagnet.37 The ratio of the RIXS inten-
sity in the two-magnon region to that in the charge excitation
region is roughly estimated as �Jc /V�2. For La2CuO4, we
have �Jc /V�2	0.01, because Jc�0.2–0.5 eV and V
�5–10 eV.

A. Incident-photon-energy dependence

The incident-photon-energy dependence is governed by
the factor LB

���i ;��. Since it depends not only on �i but also
on �, the enhancement is different for different �’s. In the
present case, however, we may safely put �=0 in the calcu-
lation of LB

���i ;��, because the energies of two magnons are
much smaller than the energy scale of the 4p band. This
indicates that the RIXS spectra in the two-magnon region are
enhanced by the same factor.

For calculating that factor, we first carry out the band
calculation for La2CuO4 within the LDA. Figure 4�a� shows
the 4p DOS projected onto the pz and px �py� symmetries,
which may correspond to the absorption coefficients for the
photon polarization along the c axis and in the ab plane,
respectively. Next, using the same DOS, we calculate the
enhancement factor ���e�

���LB
���i ;�=0�e�

����2, by assuming
that the incident and scattered photons have the same polar-
ization. Figure 4�b� shows the calculated results for the po-
larization along the c axis and in the ab plane. We find a
strong resonant enhancement as a function of incident pho-
ton energy, which is much stronger for polarization along the
c axis than for that in the ab plane. This is quite different
from light scattering, where the polarization of light is re-
stricted to the ab plane �see the Appendix�.29

B. Momentum dependence as a function of energy loss

We consider the Heisenberg model on a square lattice.
Inserting 
k= �cos kx+cos ky� /2 into the magnon-magnon in-
teraction term B1234

�3� , and applying the addition theorem of
trigonometric functions to factors such as 
2–4 in B1234

�3� , we
obtain the explicit expression for Eq. �3.30� with

FIG. 4. �a� 4p DOS projected onto the pz and px �py� symme-
tries, calculated by the LDA in La2CuO4. The origin of the energy is
the bottom of the 4p band. �b� RIXS intensity proportional to
���e�

���LB
���i ;�=0�e�

����2, with e��� along the c axis and in the ab
plane. The origin of the energy corresponds to the photon energy for
exciting the 1s core electron into the bottom of the 4p band.
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�̂ 
 −
4

2SN�
0 − 1 − 1 2 2 − 1 − 1 0 0 0 0 0 0

− 1 2 0 − 1 0 0 0 0 0 0 0 0 0

− 1 0 2 0 − 1 0 0 0 0 0 0 0 0

2 − 1 0 0 0 − 1 0 0 0 0 0 0 0

2 0 − 1 0 0 0 − 1 0 0 0 0 0 0

− 1 0 0 − 1 0 2 0 0 0 0 0 0 0

− 1 0 0 0 − 1 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 − 1 0 0 0

0 0 0 0 0 0 0 0 2 0 − 1 0 0

0 0 0 0 0 0 0 − 1 0 0 0 1 0

0 0 0 0 0 0 0 0 − 1 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 2 0

0 0 0 0 0 0 0 0 0 0 1 0 2

� , �4.1�

and with the vn�k ,k��’s defined in Table I. The channel num-

ber Nc=13. With these forms, we evaluate R̂�q0 ,�� in Eq.
�3.33� by summing over the k’s on 512�512 meshes in the
first MBZ.

Figure 5 shows the calculated RIXS intensity Y+−�q ,��
scaled by �Sz�2 as a function of energy loss � for several
typical values of q. The lowest-order value
Y�0�+−�q ,�� / �Sz�2 is independent of S, corresponding to S
=
. The effect of the magnon-magnon interaction becomes
weaker with increasing S, and the spectra approach the
lowest-order values. As already pointed out, no RIXS inten-

sity comes out at the � point and at q= �� ,��. Deviating
from these points, RIXS intensities come out with the lower
bound of spectra deviating from �=0. When q is close to the
� point �Fig. 5�a��, a sharp peak is found for �	JSz, which
is slightly modified in the presence of the magnon-magnon
interaction. When q is at the boundary of the first MBZ
�Figs. 5�b� and 5�c��, a sharp peak found in the lowest-order
approximation is smeared out to be a broad peak due to the
magnon-magnon interaction. The center of the shape remains
nearly the same after taking account of the interaction. In
contrast to these cases, when q is outside the first MBZ �Fig.
5�d��, a sharp peak found in the lowest-order approximation
is changed into a broad peak with its center considerably

TABLE I. Definition of the coefficients vn�k ,k��.

n vn�k ,k��

1 1

2
�k�k�xk

2 1

2
�k�k� cos kx

3 1

2
�k�k� cos ky

4 1

2
�k�k�xk� cos�kx−kx��

5 1

2
�k�k�xk� cos�ky −ky��

6 1

2
�k�k�xkxk� cos kx�

7 1

2
�k�k�xkxk� cos ky�

8 1

2
�k�k� sin kx

9 1

2
�k�k� sin ky

10 1

2
�k�k�xk� sin�kx−kx��

11 1

2
�k�k�xk� sin�ky −ky��

12 1

2
�k�k�xkxk� sin kx�

13 1

2
�k�k�xkxk� sin ky�

FIG. 5. RIXS intensity Y+−�q ,�� scaled by �Sz�2 as a function
of � /JSz for typical values of q. The bold and thin solid lines stand
for Y+−�q ,�� / �Sz�2 with S=1/2 and 1, respectively. The broken
lines represent Y�0�+−�q ,�� / �Sz�2, which correspond to S→
.
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shifted to the lower-energy region due to the magnon-
magnon interaction.

Figure 6 shows the RIXS spectra as a function of energy
loss with changing momenta along several symmetry lines
�S=1/2�. Along the zone boundary of the first MBZ �Fig.
6�b��, the spectra have large widths around �=3J. The spec-
tra obtained here seem to be different from the results of van
den Brink,18 who made the moment analysis. We find no
long-lived virtual bound state of two magnons, which has
been predicted from the phonon-assisted light absorption
spectra.35 Note that the matrix elements for creating two
magnons in RIXS are different from those in light
scattering.36 Since the spectral shape depends strongly on the
matrix elements, the direct comparison of the two spectra
may be less useful. The present formalism recovers the re-
sults of light scattering �at q=0� by Canali and Girvin,33 as
shown in the Appendix.

The exchange coupling constant J in La2CuO4 is esti-
mated as J=135 meV by comparing the spin-wave velocity
calculated in the first order of 1 /S with the experiment.39

Therefore, the broad peaks are located around �=400 meV
for q at the boundary of the first MBZ. Unfortunately, at
present, no experimental data are published on such a low-
energy region in La2CuO4. Our result will provide the guide
to forthcoming experiments.

V. CONCLUDING REMARKS

We have formulated the two-magnon spectra of RIXS in
antiferromagnets by developing the formalism of Nomura
and Igarashi. The 1s core-hole potential causes a change in
the exchange coupling between 3d electrons, resulting in
two-magnon excitation. This is analogous to the conven-
tional RIXS process where the charge excitation is created
due to the screening of the core-hole potential. The intensity
of two-magnon RIXS is estimated to be less than 0.01 of the
intensity coming from the charge excitation.

In the present formalism, the factor describing the
incident-photon-energy dependence is separated from the
factor describing the dependence on the momentum and en-
ergy transferred from photon. We have calculated the former
factor using the 4p DOS for La2CuO4 within the LDA. We
have predicted a strong enhancement of the intensity at the K
edge for the polarization along the c axis. The latter factor is
given by the two-magnon correlation function. We have cal-
culated the correlation function up to first order of 1 /S in the
square lattice, systematically applying the 1/S expansion.
We have exactly summed up the ladder diagrams by trans-
forming the magnon-magnon interaction into a separable
form with 13 channels. The spectral shape as a function of
energy loss is strongly modified by the magnon-magnon in-
teraction. On the boundary of the first MBZ, for example, the
sharp peaks found in the lowest-order approximation have
been considerably broadened. We hope the spectra obtained
in this paper will be compared with experimental data in
future.

No AF long-range order could exist at finite temperatures
in purely two-dimensional Heisenberg models. In the ab-
sence of AF order, however, it is known from a nonlinear �
model analysis40 that the spin-spin correlation length is
rather long, up to T�J /kB. Spin-wave-like excitations could
exist in such a situation.41–43 Therefore, the present analysis
of the RIXS spectra at zero temperature may have relevance
to the spectra at finite temperatures. The analysis of tempera-
ture effects is left for future study.
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APPENDIX: TWO-MAGNON LIGHT SCATTERING

We summarize the two-magnon excitation of light scatter-
ing to compare the result obtained by the present formalism
with previous studies in two dimensions.

Since the wavelength of light is much longer than the
lattice spacing, the intensity is independent of the directions
of the incident and scattered light. The interaction of light
with spins is described by29

HR = �
j�

�A�ei · ���e f · �� + B�ei · e f� + Cei
zef

z��S j · S j+�� ,

�A1�

where � is a unit vector in the direction joining the nearest-
neighbor pairs and A, B, and C are real constants. The terms
with B and C cannot cause scattering, since they are propor-
tional to � j�S j ·S j+� and commute with the magnetic Hamil-
tonian. For the polarization picking up the A1g mode, ei= �x̂
+ ŷ� /�2, e f = �x̂+ ŷ� /�2, there is no intensity for the same
reason �x̂ and ŷ are unit vectors pointing to the x and y axes�.
For the polarization picking up the B1g mode, ei= �x̂+ ŷ� /�2,
e f = �x̂− ŷ� /�2, we have

FIG. 6. RIXS intensity Y+−�q ,�� / �Sz�2 along the symmetry
lines for q within the first order of 1 /S �S=1/2�.
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HR = A�
j

�S j · S j+x̂ − S j · S j+ŷ� . �A2�

Expanding this in terms of magnon operators, we obtain

HR = ASz�
k


k
d

�k
��k

†�−k
† + H.c. + ¯ � , �A3�

where 
k
d = �cos kx−cos ky� /2. The scattering intensity I���

from this interaction is given by

I��� � �ASz�2 �
k,k�

	
k
d
k�

d

�k�k�

�− 2�Im F�q = 0,�;k,k�� .

�A4�

We calculate F�q=0,� ;k ,k�� by summing up the ladder
diagrams including the Oguchi correction within the present
formalism. We obtain a spectrum identical to that of Canali
and Girvin, which is formed by a single peak at �=3.38 for
S=1/2.33
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