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We study the nonlinear evolution of bulk spin waves in a charge-free, isotropic ferromagnetic nanowire with
negligible surface anisotropy, restricted to the modes with no azimuthal dependence. Using a multiple scale
analysis, we find that the magnetization oscillations are always restricted to one particular plane for the Fourier
component p=1, while the Fourier component p=2 comes out of the plane. Moreover, the magnetization
excitations are governed by the cubic nonlinear Schrödinger equation. We also find that the ferromagnetic
nanowire facilitates the propagation of dark solitons with the stable continuous wave.
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I. INTRODUCTION

In recent years, magnetic nanostructures have attracted
much attention as they have potential applications in
ultrahigh-density memory devices and sensors.1,2 The mag-
netic excitations or spin waves of these nanostructures are
best investigated using Brillouin light scattering �BLS�
techniques.3 In particular, the linear and nonlinear evolutions
of magnetostatic spin waves �SWs� in charge-free and isotro-
pic ferromagnetic nanotubes4 have been recently studied. As
a result, the ferromagnetic nanotubes facilitate the propaga-
tion of elliptically polarized waves, which induces soliton
excitations in the medium governed by the cubic nonlinear
Schrödinger �NLS� equation. The stability of soliton excita-
tions is determined by the external field related to the mag-
netized nanotube.

Apart from nanotubes, other forms of nanostructures in-
clude nanowires. Two-dimensional arrays of nickel nano-
wires were fabricated using a two-step electrochemical an-
odization process and pulsed electrodeposition.5,6 These
nanowires are uniform in cross section with lengths of about
1 �m and diameters in the range of 30–55 nm and, hence,
can be realized as infinite in length to excellent approxima-
tion. The diameter range considered for the isolated nano-
wire prompts one to include exchange and dipolar contribu-
tions to the excitation energy.

Recently, the linear theory of spin excitations in ferromag-
netic nanowires with exchange and dipolar contributions has
been studied.7 The bulk standing modes of the nanowires
were obtained by using the general form of magnetic scalar
potential calculated from the Bloch equation of motion with
dipole and exchange fields within the nanowire. It showed
the existence of discrete spin modes due to the quantization
of bulk spin waves accordingly with the usual dipole-
exchange theory, which has been successfully validated
experimentally.8 The boundary conditions generate the mix-
ing of bulk SW with the surface SW. In Ref. 7, this complex

mechanism was taken into account numerically, while Ref. 8
gives approximate analytic expressions. The theory consid-
ered a cylindrical cross section with the magnetization par-
allel to the axis of the wire. A generalization to a magnetiza-
tion not parallel to the axis has been proposed.9 The
continuous description allows one to determine the number
of guided modes.10 Other theoretical approaches have also
been considered; using discrete spin lattices,10–12 the validity
of which has been confirmed experimentally.13 From the
nonlinear viewpoint, the existence of solitons in thin mag-
netic films has been demonstrated long time ago,14 and spin-
wave bullets have been recently observed.15

In the present paper, we study the nonlinear theory of spin
excitations in a long charge-free isotropic cylindrical ferro-
magnetic nanowires by including contributions due to the
dipolar and exchange fields. In Sec. II, we formulate the
model, discuss the various length scales involved by the
problem, and derive the linear propagation modes. Section
III is devoted to the derivation of a nonlinear Schrödinger
equation by means of a multiple scale expansion method, to
the discussion of the existence of solitons, and to the descrip-
tion of the corresponding wave profiles. The results are com-
mented in Sec. IV, while the Appendix contains the details of
the derivation.

II. SETTING THE PROBLEM

A. Model and dynamical equations

We consider long charge-free isotropic ferromagnetic
nanowire with circular cross section and the magnetization
parallel to the symmetry axis of the nanowire, the z axis. We
consider that both the exchange and dipolar couplings be-
tween the spins are comparable in magnitude, and we use the
same macroscopic approach as in Ref. 7. Although a quan-
tum theory approach could be thought to be more relevant at
the nano scale, the linear theory of spin waves in nanowires
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of Ref. 7 has been found to be in good agreement with
experiment.8 Consequently, we consider that, in the nonlin-
ear regime, the spin excitations in the nanowire are governed
by the Landau-Lifshitz equation,16

�tM = − ��0M ∧ �H + ��M� , �1�

where M is the magnetization of the medium, H the dipolar
field, � the Laplacian operator, � the gyromagnetic ratio, �0
the magnetic permeability in vacuum, �=D /Ms with D be-
ing the exchange stiffness, and Ms the saturation magnetiza-
tion. The quantities M and H are rescaled to M / ���0�,
H / ���0�, so that the coefficient ��0 in Eq. �1� is replaced by
1.

The components of the dipolar field satisfy the magneto-
static Maxwell equations,

� · �H + M� = 0, �2�

� ∧ H = 0. �3�

Within the magnetostatic approximation, the dipolar field can
be expressed as the gradient of the magnetic potential �
according to

H = H0 − �� . �4�

Here, H0 is a uniform applied magnetic field, directed along
the z axis. The magnetization of the nanowire in the absence
of wave is uniform and directed along the symmetry axis, it
is, thus, M0�m= �0,0 ,Ms�. Hence, H0=�m, and � mea-
sures the strength of the applied field in units of Ms.

The boundary conditions are the magnetostatic ones �see
detail in Appendix�. However, since the exchange interaction
is taken into account, we have to consider the pinning con-
ditions describing the behavior of the magnetization at the
surfaces. Using cylindrical coordinates �r ,� ,z�, they read
as7,17

��rM
���r=R� = 0, �5�

��rM
r��r=R� = 	�Mr��r=R�, �6�

where R is the radius of the nanowire, and 	 is the surface
anisotropy parameter.

B. Length scales

The characteristic lengths of the nanowire are its length L,
its radius R, and the exchange length l=�� of the medium.
Typical values are L=10–20 �m, R=15–250 nm,18 and l
=5.8 nm for nickel. Hence l
R and R�L. For spin waves,
typical wavelengths � can range from about
1 nm to 100 �m. Let us consider a typical value about �
=0.5 �m; we have clearly l���L. This is typical for a
long-wave approximation, according to the reductive pertur-
bation method.19 We introduce a perturbation parameter 

such that


 �
l

�
�

�

L
� 1, �7�

and take the exchange length l as a reference length. Hence,
l is of order 
0, while the wavelength �� l /
 is very large,

corresponding to a long wave. The wave profile is accounted
for by introducing the slow space variable,

� = 
�z − Vt� , �8�

which involves a characteristic length l /
, and a velocity V
to be determined, the velocity of the wave pulse.

Then we consider nonlinear and dispersive propagation of
the wave profile on long distances L�� /
� l /
2, or equiva-
lently its evolution on large times t� t0 /
2, where t0 is some
zero-order reference time �typically, 1 / t0 can be the ferro-
magnetic resonance frequency�. The evolution at such times
is accounted for using a slow time variable,

� = 
2t . �9�

Then the derivation operators with respect to x and y remain
unchanged, while the derivation operators with respect to z
and t become

�

�z
= 


�

��
,

�

�t
= − V


�

��
+ 
2 �

��
. �10�

With the above numerical values, we get � / l�86 and
L /��40. According to relation �7�, it allows us to take the
value 
=1/100 for the perturbation parameter. In many situ-
ations, comparison between asymptotic models and numeri-
cal resolution of the full initial set of equations have shown
such a value of the perturbation parameter to be small
enough to ensure the validity of the long-wave approxima-
tion. The latter will obviously be improved if longer nano-
wires are considered.

However, there is some important discrepancy between
the present situation and the usual long-wave approximation.
Consider, indeed, the dispersion relation for the spin waves
in nanowires, as can be found in Ref. 7. As the wave number
k tends to zero, the frequency � tends to a finite limit �, with
� /Ms a few less than 1. For spin waves in nanowires, long
waves does not imply slow oscillations in time. Hence, a
standing carrier exp�i�t� must be introduced, and the long-
wave approximation concerns the slow space-time evolution
of the envelope of the standing carrier.

We expand, thus, the magnetization about the uniform
magnetization M0 and the scalar potential representing the
dipolar field in a series of harmonics given by

M = M0 + 
M1�x,y,�,��ei�t + c.c. + �
j�2,p


 jM j
p�x,y,�,��eip�t,

�11�

� = 
�1�x,y,�,��ei�t + c.c. + �
j�2,p


 j� j
p�x,y,�,��eip�t.

�12�

Here, c.c. stands for complex conjugate, 
 is the small pa-
rameter, and � is the frequency of the discrete standing
modes which determine the transverse profile of the the
guided spin waves.

C. Linear modes

The Landau equation �1� at order 
 yields the following
equations.
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i�M1
r = − m�� − ���� −

1

r2		M1
�, �13�

i�M1
� = m�1 + � − ���� −

1

r2		M1
r . �14�

Hence, M1
� and M1

r are eigenfunctions of the operator ���

− 1
r2 �. Contrarily to Ref. 7 which considered the modes with

nonzero azimuthal dependence only, we restrict the study to
the purely radial modes, i.e., we assume that M1

� and M1
r do

not depend on �. With this condition, the eigenfunctions of
���− 1

r2 � are well known, precisely

��� −
1

r2	J1��r� = − �2J1��r� , �15�

for any �, J1 being the Bessel function. We assume � real, so
that J1��r� is regular at r=0 
i.e., J1�0�=0�. The transverse
modes are, thus, given by

M1
r = − m�� + ��2�f��,��J1��r� , �16�

M1
� = i�f��,��J1��r� . �17�

� can be interpreted as a transverse wave vector. Together
with the frequency �, it satisfies the modal dispersion rela-
tion,

�2 = m2�� + ��2��1 + � + ��2� . �18�

It is worth comparing the dispersion relation �18� to the
equivalent relation obtained in Ref. 7 
Eq. �16� in the cited
reference�, which reads, with the notations of the present
paper, as

�2m2��2 + k2�3 + �m2�2 + ����2 + k2�2 + ���1 + ��m2 − �2

− �m2k2���2 + k2� = �m2k2. �19�

It is straightforwardly seen that relation �19� reduces to Eq.
�18� as k=0, which corresponds to the long-wave approxi-
mation we use here. In the case of zero applied magnetic
field, Eq. �17� is similar to Eq. �4� in Ref. 8. It coincides with
the dispersion relation of spin waves in a bulk medium �p. 19
of Ref. 20�, which confirms the interpretation of � as the
transverse wave vector. Assuming azimuthal invariance, we
show from Eq. �A4� that M1

z =0. At this point, the first order

1 of the perturbative scheme, involving the harmonics p
= ±1, has been completed. The evolution law of the function
f�� ,�� will be determined at next order.

Using expressions �16� and �17� of M1
r and M1

� in the
pinning conditions �5� and �6�, we obtain the two conditions

J1���R� = 0, �20�

where the prime denotes the derivative, and

	J1��R� = 0. �21�

Since a Bessel function J1 and its derivative J1� have no zero
in common, we get the condition 	=0 as a solvability con-
dition. In other words, the above ansatz cannot account for
nonlinear spin-wave propagation if surface anisotropy is not

neglected. In real materials, surface anisotropy is not always
negligible. Further, it has been shown that an effective non-
zero pinning parameter may arise in thin stripes, even if the
material itself does not present any exchange surface
anisotropy.21 Moreover, if surface anisotropy is neglected,
only the mode with the lowest azimuthal dependence can be
excited by a uniform microwave field, as it appears from the
linear theory.7 Nevertheless, we assume, thus, a completely
unpinned surface in what follows. The inclusion of surface
anisotropy requires a modification of the ansatz and is left
for further investigation.

III. NONLINEAR ANALYSIS

A. Nonlinear Schrödinger equation

At order 
2, the equations for the fundamental Fourier
component p=1 give the solvability condition necessary to
the determination of the velocity V. The justification is de-
tailed in the AppendixA, together with some further relations
of technical importance. In the frame of the reductive pertur-
bation method for envelope evolution equations, V is the
group velocity of the wave packet. The group velocity vg
=d� /dk is easily computed from Eq. �19�. It is seen that
vg=0 at the limit k=0, this is due to the fact that � has a
finite limit. Hence, v=0 coincides with the value of the
group velocity in the long-wave limit.

Nonlinear terms are expected to appear at order 
2, for the
Fourier components p=0 and p=2. In fact, the only nonzero
component is here

M2
2,z =

1

2
m�� + ��2�f2�J1��r��2. �22�

At order 
3, for the fundamental Fourier component p=1, we
get after some computation the following equation:

�− �2 + m2�1 + � − ���� −
1

r2		�� − ���� −
1

r2		
M3
1,�

= F , �23�

in which we have set

F = 2�2��fJ1��r� − iC��
2fJ1��r� + G , �24�

C = − �m2�2��� + ��2� −
�

�2	 , �25�

G =
− i

2
�m2�� + ��2�f �f �2Q , �26�

and

Q = − �1 + � − ���� −
1

r2		
�J1
*��J1

2 + ��2J1�J1�2�

+ ��� + ��2�J1
*��J1

2 + �1 + ��2��� + ��2�J1�J1�2.

�27�

The key problem of the derivation is the reduction of Eq.
�23�. We consider the scalar product defined by
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����� = �
0

R

�*�r���r�rdr �28�


� and thus J1��r� are real; hence, the complex conjugate in
�28� has no influence below�. Using the properties of the
Bessel functions, we show that

�J1��r��J1�qr�� = 0, �29�

if q��, and, hence, the eigenmodes J1�qr�, when the qR are
the zeros of J1�, yield an orthogonal family. It is, thus, rea-
sonable to assume that both M3

1,� and the right-hand side
member F of �23� can be expanded on the J1�qr� as

M3
1,� = �

q

XqJ1�qr�, F = �
q

FqJ1�qr� . �30�

Using this expansion, we can show that the solvability con-
dition of Eq. �23� is

�J1��r��F� = 0, �31�

which yields

2i�2��f + C��
2f + Df �f �2 = 0. �32�

The dispersion coefficient C is given by �25� and

D =
1

2
�m2�� + ��2�

�J1��r��Q�
�J1��r��J1��r��

. �33�

Equation �32� is the NLS, which is well known to be com-
pletely integrable by means of the inverse scattering trans-
form method.22 Notice the unusual fact that the NLS equa-
tion is obtained here not as describing envelope solitons but
within a long-wave approximation.

B. Lighthill criterion

Recall that the existence of soliton solutions of the NLS
equation �32� is related to sign of the product CD of the
coefficients, according to the so-called Lighthill criterion: the
�bright� solitons exist if CD�0. In this case, an input con-
tinuous wave suffers the modulational instability of
Benjamin-Feir23 type and breaks down into a train of soli-
tons. On the other hand, if CD�0, an input continuous wave
is stable, while dark solitons can be formed.

It is straightforward that the dispersion parameter C van-
ishes for

� =
2�2�2

�−2 − 2�
, �34�

and is negative for �=0. The sign of the nonlinear coefficient
D is the same as the one of the scalar product �J1��r� �Q�.
According to �27�, the product J1��r�Q is an algebraic ex-
pression involving the Bessel function J1�x� and its deriva-
tives, to be integrated on the interval 
0,�R�, where �R is
some zero of J1�. The integrals can be computed numerically.
For the first zero of J1�, we get

�J1��r��Q� =
1

�
�0.079 65� + 0.020 76��2 − 0.2662�2�4� .

�35�

Hence, D vanishes for a strength of the external field char-
acterized by

� = 38.41
�

R2� �

R2 − 0.023	 . �36�

The sign of the coefficients is shown on Fig. 1, which sum-
marizes the results: it is seen that bright solitons exist for
both the small and the large values of the ratio � /R2. A
domain of existence of dark solitons, and nonexistence of
bright ones, appears for wires of small enough diameter, and
a high enough applied field, with both signs of �. Recall that
a negative � corresponds to a magnetization and field with
opposite directions, which is an unstable configuration in the
bulk but can be eventually stable in nanowires of diameter
small enough with respect to the exchange length, i.e., � /R2

large enough.
The same discussion can be done for all linear propaga-

tion modes. Recall that we only consider the modes with
zero azimuthal dependence. Among them, each mode is char-
acterized by a zero of J1�, and we will refer to the mode
corresponding to the first of these zeros as the fundamental
one. Figures 2 and 3 present the results of the discussion for
modes 1–4. It is seen that, varying the diameter of the wire
and the applied field strength, it is possible to select one or
several propagation modes for the propagation of bright soli-
tons. There are domains in which only the fundamental mode
can support solitons. For thick nanowires �Fig. 2�, it occurs
at small applied field, � close to 0, and for R / l=15–20, that
is, e.g., in a nickel wire with diameter about 180–240 nm. It
can also occur for thinner nanowires, with R / l=3–7, i.e., a
diameter about 15–40 nm �or R / l=5–7 if negative � are not
allowed�, in a strong enough applied field �Fig. 3�. Assume
that only one mode, say, mode 1, can form bright solitons.
The most general input wave packet will expand on several
modes and then propagate. If we neglect the nonlinear inter-
action between modes, all modes except mode 1 suffer a

FIG. 1. �Color online� The sign of the coefficients of the NLS
equations and the domains were either bright or dark solitons exist
in the � vs � /R2 plane. We consider here the fundamental mode
only �hence, �R is the first zero of J1��.
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nonlinear dispersive effect, and are spread out, while mode 1
forms a bright soliton. Then the final wave packet entirely
belongs to mode 1: the nonlinear effects transforms the mul-
timode waveguide into an effectively monomode one.

In contrast to this situation, the nanowires of large diam-
eter allow, in general, propagation of solitons for any modes.
They are multimode even from the nonlinear point of view.

C. Wave profiles

The expression of the NLS soliton is

f��,�� = p�2C

D
sech p�� − k

C

�2�	ei�k�+�p2−k2�C/�2�+��,

�37�

p, k and � are arbitrary real parameters, which represent the
inverse of the wave duration, proportional to its amplitude, a
wave number, and a phase. For k=0, the modulus �f � ac-
counts for a sech-shaped deformation of the magnetization

and magnetic field which does not propagate, but oscillates
uniformly in time. The exponential factor in �37� corre-
sponds to a frequency shift, such that �=�+C / �d2�2�,
where d=1/ �
p� is the pulse duration in the unit of z.

For nonzero �, slow spatial oscillation adds to the sech
profile, and the pulse propagates with velocity

V =
kC

�2 . �38�

However, the pulse is no merely a sech-shaped envelope
modulating a fast carrier, since the carrier does not evolve
spatially. The wave magnetization can be defined as Mw
=
M1ei�t+c.c. . Its r component, e.g., is

Mw
r = − 
m�� + ��2�J1��r�f��,��ei�t + c.c., �39�

according to �37�, it can be written as

Mw
r = AJ1��r�sech p�� cos�k�� + ��t,��� �40�

where A is the amplitude, �� the slow spatial coordinate in a
frame at the wave velocity, and ��t ,�� a fast varying phase.
Figure 4 shows the � dependency of the wave profile during
one period of ��t ,��, for a few values of k.

IV. CONCLUSIONS

Propagation of spin waves in ferromagnetic nanowires
has been studied, neglecting damping, conductivity, and sur-
face anisotropy, by means of a long-wave approximation. For
the purely radial modes, an asymptotic model of NLS type
has been derived by means of the reductive perturbation
method. From the point of view of asymptotic methods, this
result is unusual since the NLS equation is typically related
to the slowly varying envelope approximation, while the
asymptotic models relevant for long waves are typically of
the same type as the Korteweg–de Vries equation. The exis-
tence of soliton solutions to the NLS is determined by means
of the Lighthill criterion. It depends on two parameters,
which are the radius of the nanowire and the strength of the
external field. We specify the values of these quantities with
respect to the exchange length of the ferromagnetic material
and its saturation magnetization, respectively. Domains in
the space of these parameters where solitons can be formed
have been characterized, for the few first linear guided
modes. Therefore, the mode�s� for which solitons can be
formed can be controlled by means of the two parameters.
Some domains exist where only the fundamental mode al-
lows soliton propagation. In this case, the nanowire would
act nonlinearly as a monomode waveguide, although it is
strongly multimode from the linear point of view. The wave
profile corresponding to the solitons has also been described;
it can be a single hump, or a few-cycle pulse relatively to the
space variable, which oscillates quickly in time.
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FIG. 2. �Color online� The domains where bright solitons exist
in the � vs R / lexch plane, for small applied fields. In each domain,
the numbers indicate the modes which can support bright solitons.
The curve C=0 and D=0 for the jth modes are labeled Cj and Dj,
respectively.

FIG. 3. �Color online� The same as Fig. 2, but for larger field
strength �.
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APPENDIX: MULTIPLE SCALE ANALYSIS

1. Coordinates and boundary conditions

The cylindrical coordinates �r ,� ,z� are defined by x
=r cos �, y=r sin �, and z=z. We denote by ur, u� the radial
and orthogonal components of a vector u. Then the magne-
tostatic boundary conditions in at r=R, where R is the radius
of the nanowire, can be given as

�Hr + Mr��r=R−0� = �Hr��r=R+0�, �A1�

�H���r=R−0� = �H���r=R+0�, �A2�

�Hz��r=R−0� = �Hz��r=R+0�. �A3�

We now substitute the expansions �11� and �12� in the
basic equations �1�, �2�, and �4�, and collect the terms pro-
portional to different powers of 
 and solve the resultant
equations. At order 
0, we find that both the uniform fields
are collinear to each other.

2. Solutions at order �1

At the next order 
1, we obtain the following equations
from Eqs. �1� and �2�, respectively:

FIG. 4. �Color online� The
wave profile corresponding to the
fundamental soliton, for fixed r, as
a function of �, for one period of
the fast oscillating phase �, and
for some value of the wave num-
ber k.
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i�M1
1 = − m ∧ �− ���1 + ���M1� − M1 ∧ ��m� ,

�A4�

and

− ���1 + �� · M1 = 0. �A5�

In order to solve the equations, we assume that the fields
are uniform about z axis and so the operators in Eqs. �A4�
and �A5� take the following form for a given scalar f and a
vector u as

��f =�
�rf

1

r
��f

0
� , �A6�

��u =���� −
1

r2	ur −
2

r2��u�

��� −
1

r2	u� +
2

r2��ur

��uz
� , �A7�

�� · u = �ru
r +

1

r
ur +

1

r
��u�, �A8�

and ��=�r
2+ 1

r �r+ 1
r2��

2.
Assuming azimuthal invariance Eq. �A4� reduces to M1

z

=0 and Eqs. �13� and �14�. The latter are solved to yield the
linear modes, Eqs. �16� and �17�, and the dispersion relation
�18� arises as a solvability condition.

Again with the azimuthal invariance, we find that Eq.
�A5� is satisfied if

�r�1 = M1
r . �A9�

In order to complete our analysis at the first order, we
consider the usual magnetostatic boundary conditions for the
present geometry given in Eqs. �A1�–�A3�, �5�, and �6�. We
find that inside the wire H1

�=0 because of the azimuthal in-
variance, H1

z =0, and from Eq. �A3� it can be shown that
H1

r +M1
r =0, which shows that the magnetostatic boundary

conditions are satisfied at this order of analysis, with a mag-
netic field H��m outside the nanowire.

3. Solutions at order �2

At order 
2, for any Fourier component p, we obtain the
following equations from Eqs. �1� and �2�:

i�M2
p − V��M1

p + ��M0
p = − m ∧ �− ���1

pez − ���2
p

+ ���M2
p�

− �
q+s=p

M1
q ∧ �− ���1

s + ���M1
s�

− M2
p ∧ ��m� , �A10�

in which we have set M1
1=M1

−1*
=M1, �1

1=�1
−1*

=�1, and
M1

p=�1
p=0 for p� ±1, and

− ���2
p + ��M1

p,z + �� · M2
p = 0. �A11�

a. Fourier component p=1: Determination of V. Now we
collect the coefficients of the fundamental Fourier compo-
nent p=1 at the same order 
2. From Eq. �A10�, we find that
M2

1,z=0 and

i�M2
1,r − V��M1

r = − m�� − ���� −
1

r2		M2
1,�,

�A12�

i�M2
1,� − V��M1

� = m�1 + � − ���� −
1

r2		M2
1,r.

�A13�

We decompose M2
1,r and M2

1,� as

M2
1,r = Br��,��J1��r� + Wr��,�,r� , �A14�

M2
1,� = B���,��J1��r� + W���,�,r� , �A15�

in which Wr and W� may have nonzero component on any
characteristic or eigenspace of the operator ���− 1

r2 �, except
the one which corresponds to the eigenvalue −�2 of the se-
lected mode. Substituting Eqs. �A14� and �A15� in Eqs.
�A12� and �A3� and making use of Eqs. �16� and �17� we
obtain, along this eigenmode J1��R�,

i�Br + m�� + ��2�V��f = − m�� + ��2�B�, �A16�

i�B� − i�V��f = m�1 + � + ��2�B�. �A17�

Eliminating B�, and making use of Eq. �18�, Eqs. �A16� and
�A17� reduce to

− 2i�m�� + ��2�V��f = 0, �A18�

and, hence, the velocity V is zero.
In the hyperplane supplementary to the eigenspace corre-

sponding to −�2, the above substitution gives the equations

i�Wr = − m�� − ���� −
1

r2		W�, �A19�

i�W� = − m�1 + � − ���� −
1

r2		Wr. �A20�

It follows from Eqs. �A19� and �A20� that Wr and W� are
eigenfunctions of ���− 1

r2 �. Let us denote by �−��2� the ei-
genvalue

i�Wr = − m�� + ���2�W�, �A21�

i�W� = − m�1 + � + ���2�Wr, �A22�

and, hence, �� must satisfy the same dispersion relation, Eq.
�18�, as �, with the same frequency �. It follows that ��
=�, which was excluded initially. We conclude that Wr

=W�=0, and M2
1,r and M2

1,� belong to the same transverse
mode as the first-order component M1.

Equations �A16� and �A17� are easily solved to yield

Br��,�� = − g��,��m�� + �k2� , �A23�
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B���,�� = i�g��,�� , �A24�

where g�� ,�� is an arbitrary function. Then from Eqs. �A12�
and �A13�, we obtain

M2
1,r = − m�� + ��2�g��,��J1��r� , �A25�

M2
1,� = i�g��,��J1��r� . �A26�

Since M1
z =0, from Eq. �A11� for the Fourier component p

=1, we find that

�r�2
1 = M2

1,r. �A27�

Also using the same arguments as in the order 
, one can
show that the boundary and the pinning conditions are satis-
fied at order 
2 for p=1, with H��m outside the nanowire.

b. Nonlinear term for Fourier components p=0 and p
=2. For the Fourier component p=0, we find that Eq. �A10�
reduces to

− m�� − ���� −
1

r2		M2
0,� = R0

r , �A28�

m�1 + � − ���� −
1

r2		M2
0,r0 = R0

�, �A29�

R0
z = 0. �A30�

The nonlinear term is

R0 = M1
* ∧ �− ���1 + ���M1� + c.c. . �A31�

Using Eqs. �13� and �14�, it is seen that R0=0 and, hence,
M2

0,r=M2
0,�=0, while M2

0,z remains free. We set M2
0,z=0 for

simplicity.
Similarly, for p=2, we find

2i�M2
2,r = − m�� − ���� −

1

r2		M2
2,� − R2

r , �A32�

2i�M2
2,� = m�1 + � − ���� −

1

r2		M2
2,r − R2

�, �A33�

2i�M2
2,z = − R2

z . �A34�

The nonlinear term is

R2 = M1 ∧ �− ���1 + ���M1� , �A35�

which reduces to

R2 = − m�� + ��2�i�f2�J1��r��2ez. �A36�

Hence, Eq. �A32� and �A34� are homogeneous, and M2
2,r

=M2
2,�=0. From Eqs. �A34� and �A36�, we get the expression

�22� of M2
2,z.

The divergence equation �A11� yields

�r�2
p = M2

p,r, �A37�

for p=2 and 0, and hence �2
0=�2

2=0. As the only nonzero
component of M2

2 and M2
0 is parallel to the wire axis z, the

boundary conditions do not produce a nonzero correction to

the magnetic field outside the wire at this order.

4. Solutions at order �3

Collecting the coefficients of 
3, we obtain the following
equations from the Landau-Lifshitz equation �1� and the
magnetostatic equation �2�, respectively,

i�M3
1 − V��M2

1 + ��M1 = − m ∧ 
− ���2
1ez − ���3

1

+ ����M3
1 + ��

2M1��

− �
q+s=p

M1
q ∧ �− ���1

sez − ���2
s

+ ���M2
s� − �

q+s=p

M2
q ∧ �− ���1

s

+ ���M1
s� − �M3

p ∧ m , �A38�

and

− ��
2�1 − ���3

1 + ��M2
1,z + �� · M3

1 = 0. �A39�

a. Nonlinear term for Fourier component p= ±1. Using
the expressions �16�, �17�, �A25�, and �A26� of the compo-
nents of M1 and M2

1 �and M1
z =M2

1,z=0�, we can reduce Eq.
�A38� for the fundamental Fourier component p=1 to the
following set:

i�M3
1,r + ��M1

r = m���� −
1

r2	M3
1,� − m�M3

1,�

+ m���
2M1

� − N3
1,r, �A40�

i�M3
1,� + ��M1

� = m��3
1 − m���� −

1

r2	M3
1,r + m�M3

1,r

− m���
2M1

r − N3
1,�, �A41�

i�M3
1,z + ��M1

z = − N3
1,z. �A42�

The nonlinear term N3
1 is defined by

N3
1 = M1 ∧ �− ���2

0 + ���M2
0� + M1

* ∧ �− ���1
2ez − ���2

2

+ ���M2
2� + M2

0 ∧ �− ���1 + ���M1�

+ M2
2 ∧ �− ���1

* + ���M1
*� . �A43�

Using the results of previous orders, it reduces to

N3
1 =

m

2
�� + ��2�f �f �2
J1

*��J1
2P + J1�J1�2T� , �A44�

with

P = �� − i�

m�� + ��2�
0

� , �A45�

T = � − i���2

m�1 + ��2��� + ��2�
0

� . �A46�

Since N3
1,z=0 and M1

z =0, we obtain from Eq. �A42� that
M3

1,z=0. The divergence equation �A39� reduces to
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− ��
2�1 + ��r +

1

r
	�r�3

1 + ��r +
1

r
	M3

1,r = 0. �A47�

We observe that

�1 =
− 1

�2 ��r +
1

r
	M1

r , �A48�

which solves �A47� as

M3
1,r = �r�3

1 −
1

�2��
2M1

r . �A49�

The remaining harmonics p=0,2 ,3 of order 
3 can be
useful to derive higher-order evolution equations, which can
be expected in the present case to be higher-order NLS ones.
However, such a derivation would necessitate the introduc-
tion of higher-order slow time variables, which are not
present in Eqs. �8� and �9�. Anyways, the computation of the
higher harmonics do not yield additional conditions at the
order considered.

5. Nonlinear Schrödinger equation

Substituting Eq. �A49� into Eq. �A41�, we get Eq. �23�,
with the right-hand-side member:

F = − i���M1
� + m�1 + � − ���� −

1

r2		
� 
− ��M1

r + m���
2M1

� − N1
1,r�

+ i�m� 1

�2 − �	��
2M1

r − i�N3
1,�. �A50�

Using expressions �16� and �17� of M1, the expression �A50�
of F is reduced to formulas �24�–�27�.

Then Eq. �23� is solved using expansion �30�. We get

Xq =
Fq

− �2 + m2�1 + � + �q2��� + �q2�
, �A51�

for q�� and

0 . X� = F�. �A52�

Since F�= �J1��r� �F�, condition �A52� is nothing else than
Eq. �31�.

To reduce the coefficients, the following formula is use-
ful:

�J1��r��J1��r�� =
R2

2
�1 −

1

�2R2	�J1��R��2. �A53�
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