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The static and dynamic properties of the anisotropic XY model �s=1/2� on the inhomogeneous periodic
chain, composed of N cells with n different exchange interactions and magnetic moments, in a transverse field
h, are determined exactly at arbitrary temperatures. The properties are obtained by introducing the Jordan-
Wigner fermionization and by reducing the problem to a diagonalization of a finite matrix of nth order. The
quantum transitions are determined exactly by analyzing, as a function of the field, the induced magnetization
1/n�m=1

n �m�Sj,m
z � �j denotes the cell, m the site within the cell, �m the magnetic moment at site m within the

cell� and the spontaneous magnetization 1/n�m=1
n �Sj,m�

x � which is obtained from the correlations �Sj,m
x Sj+r,m

x � for
large spin separations. These results, which are obtained for infinite chains, correspond to an extension of the
ones obtained by Tong and Zhong �Physica B 304, 91 �2001��. The dynamic correlations, �Sj,m

z �t�Sj�,m�
z �0��, and

the dynamic susceptibility, �q
zz���, are also obtained at arbitrary temperatures. Explicit results are presented in

the limit T=0, where the critical behavior occurs, for the static susceptibility �q
zz�0� as a function of the

transverse field h, and for the frequency dependency of dynamic susceptibility �q
zz���.
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I. INTRODUCTION

The one-dimensional XY model introduced by Lieb,
Schultz, and Mattis1 is still one of the few quantum many-
body problems that can be solved exactly. Although almost
45 years have passed since the original solution has been
proposed, this old model continues to provide new informa-
tion on the quantum behavior of magnetic systems.2–6 In
particular, it has shed some light on the quantum phase
transitions,7 since exact results can be obtained for most of
its properties. The model has also been applied in the study
of quantum entanglement, which plays an essential role in
the quantum computation. Important results of this applica-
tion can be found in the recent work by Amico et al.8 and in
the references therein.

In this paper we will consider the anisotropic XY model in
a transverse field on the inhomogeneous periodic �closed�
chain consisting of N cells composed of n sites, whose ver-
sion on the open chain has been recently addressed by
Feldman.9 It has also been studied by Tong and Zhong10 and
Derzhko et al.,11 who have restricted their analysis to the
study of the thermodynamic properties. To the best of our
knowledge, the work by Tong and Liu,12 which concerns the
study of the zeros of the partition function, at T=0, and its
relation to the quantum phase transitions contains the latest
results on the model.

The anisotropic model corresponds to an extension of the
isotropic one recently studied by the authors.13 Its study on
the inhomogeneous periodic chain also corresponds to an
extension of its version on the alternating superlattice,14–19

and, in this work, we will solve exactly the model by con-
sidering n different exchange constants and magnetic mo-

ments. The aim of this work is to present a comprehensive
study of its static and dynamic quantum critical behavior.

In Sec. II we introduce the model and diagonalize its
Hamiltonian. An explicit expression is presented for n=2,
and the results compared to the known ones obtained by
various authors.14–19 We also present the solution of the
model for n=8, which has been obtained numerically.

The induced magnetization Mz and the isothermal suscep-
tibility �T

zz, at arbitrary temperature, are obtained in Sec. III,
and explicit expressions presented for T=0. By analyzing
these quantities, the quantum critical behavior is studied and
the critical exponents associated to the quantum transitions
are obtained.

The spontaneous magnetization Mx is obtained in Sec. IV,
from the two-spin correlation �Sl,m

x Sl+r,m
x �, and the critical be-

havior is also obtained, with high accuracy, numerically, by
means of a nonlinear regression of the data evaluated for
finite values of r. This rather surprising result allows for the
complete determination of Mx as a function of the field, and
to determine the multiple quantum transitions undergone by
the model.

The static and dynamic correlations ��l
z�l+r

z � are presented
in Sec. V and, the dynamic susceptibility �q

zz���, in Sec. VI.
Finally, in Sec. VII, we summarize the main results of the
paper.

II. THE MODEL

We consider the anisotropic XY model �s= 1
2

� on the inho-
mogeneous periodic chain with N cells, n sites per cell, and
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lattice parameter a, in a transverse field, whose unit cell is
shown in Fig. 1, which corresponds to an extension of the
isotropic model recently considered.13 The Hamiltonian is
given by

H = − �
l=1

N ��
m=1

n

�mhSl,m
z

+ 	�
m=1

n−1

Jm�1 + �m�Sl,m
x Sl,m+1

x + Jm�1 − �m�Sl,m
y Sl,m+1

y 

+ Jn�1 + �n�Sl,n

x Sl+1,1
x + Jn�1 − �n�Sl,n

y Sl+1,1
y � , �1�

where the parameters Jl,m are the exchange couplings be-
tween nearest neighbor, �m the magnetic moments, h the
external field, and we have assumed periodic boundary con-
ditions. If we introduce the ladder operators

Sl,m
± = Sl,m

x ± iSl,m
y , �2�

and the generalized Jordan-Wigner transformation,20

Sl,m
+ = exp	i��

l�=1

l−1

�
m�=1

n

cl�,m�
† cl�,m� + i� �

m�=1

m−1

cl,m�
† cl,m�
cl,m

† ,

Sl,m
z = cl,m

† cl,m − 1
2 , �3�

where cl,m and cl,m
† are fermion annihilation and creation op-

erators, we can write the Hamiltonian as21

H = H+P+ + H−P−, �4�

where

H± = − �
l=1

N ��
m=1

n

�mh	cl,m
† cl,m −

1

2



+ �
m=1

n−1 	 Jm

2
�cl,m

† cl,m+1 + cl,m+1
† cl,m�

+
Jm�m

2
�cl,m

† cl,m+1
† + cl,m+1cl,m�
�

− �
l=1

N−1 	 Jn

2
�cl,n

† cl+1,1 + cl+1,1
† cl,n�

+
Jn�n

2
�cl,n

† cl+1,1
† + cl+1,1cl,n�


± 	 Jn

2
�cN,n

† c1,1 + c1,1
† cN,n� +

Jn�n

2
�cN,n

† c1,1
† + c1,1cN,n�
 ,

�5�

and

P± =
I ± P

2
, �6�

with P given by

P = exp	i��
l=1

N

�
m=1

n

cl,m
† cl,m
 . �7�

As it is well known,21–23 since the operator P commutes
with the Hamiltonian, the eigenstates have definite parity,
and P−�P+� corresponds to a projector into a state of odd
�even� parity.

Introducing periodic and antiperiodic boundary conditions
on c’s for H− and H+, respectively, the wave vectors in the
Fourier transform,14

cl,m =
1

�N
�

q

exp�− iqdl�aq,m,

aq,m =
1

�N
�
l=1

N

exp�iqdl�cl,m, �8�

are given by q−= 2l�
Nd , for periodic condition and q+=

��2l+1�

Nd ,
for antiperiodic condition, with l=0, ±1, . . . , ±N /2, and H−

and H+ can be written in the form

H± = �
q±

Hq±, �9�

where

Hq± = − �
m=1

n

�mh	aq±,m
† aq±,m −

1

2

 − �

m=1

n−1
Jm

2
�aq±,m

† aq±,m+1

+ aq±,m+1
† aq±,m + �m�aq±,m

† aq±,m+1
† + aq±,m+1aq±,m��

−
Jn

2
aq±,n

† aq±,1 exp�− idq±� + aq±,1
† aq±,n exp�idq±�

+ �m�aq±,n
† aq±,1

† exp�− idq±� + aq±,1aq±,n exp�idq±��� .

�10�

Although H− and H+ do not commute, it can be shown that in
the thermodynamic limit all the static properties of the sys-
tem can be obtained in terms of H− or H+. However, even in
this limit, some dynamic properties depend on H− and
H+.21–23 Since �Hq± ,H−q±��0, we consider the symmetriza-
tion

H˜q± � Hq± + H−q±, �11�

and the Hamiltonian H± can be written as

FIG. 1. Unit cell of the inhomogeneous periodic chain.
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H± =
1

2�
q±

H˜q±. �12�

By making the identification q±�q, it follows immediately

that �H˜q ,H˜q��=0. Therefore, following the procedure intro-
duced by Lieb, Schultz, and Mattis,1 we can diagonalize the
Hamiltonian H± by introducing the canonical transformation

aq,m = �
k

n 	�q,k,m
* + �q,k,m

*

2
	q,k +

�q,k,m
* − �q,k,m

*

2
	−q,k

† 
 ,

aq,m
† = �

k

n 	�q,k,m + �q,k,m

2
	q,k

† +
�q,k,m − �q,k,m

2
	−q,k
 ,

�13�

where �q,k,m and �q,k,m are the components of the eigenvec-
tors, �q,k and �q,k, of the matrices �Aq−Bq��Aq+Bq� and
�Aq+Bq��Aq−Bq�, with Aq and Bq given by

Aq = −�
�1h

J1

2
0 ¯ 0

Jn

2
exp�iqd�

J1

2
�2h

J2

2
0

0
J2

2
�3h

J3

2
�

�
J3

2
� � 0

0 � �n−1h
Jn−1

2

Jn

2
exp�− iqd� 0 ¯ 0

Jn−1

2
�nh

� , �14�

Bq =�
0 −

J1�1

2
0 ¯ 0

Jn�n

2
exp�iqd�

J1�1

2
0 −

J2�2

2
0

0
J2�2

2
0 −

J3�3

2
�

�
J3�3

2
� � 0

0 � 0 −
Jn−1�n−1

2

−
Jn�n

2
exp�− iqd� 0 ¯ 0

Jn−1�n−1

2
0

� . �15�

The corresponding eigenvalues are Eq,k
2 , the squares of the

fermion energy levels, such that the Hamiltonian H±, given
in Eq. �10�, can be written in the diagonal form

H± = �
q,k

Eq,k�	q,k
† 	q,k − 1

2� , �16�

where for H+�H−� the wave vector q is identical to q+�q−�,
and the spectrum Eq,k of H˜q is determined from the determi-
nantal equation

det��Aq + Bq��Aq − Bq� − Eq
2I� = 0. �17�

Since we are interested in the thermodynamic limit, we
will consider from here on H− only, in all calculations.

ANISOTROPIC XY MODEL ON THE INHOMOGENEOUS… PHYSICAL REVIEW B 75, 214406 �2007�

214406-3



Explicit expressions for the excitation spectrum can be
determined for n equal to 2, 3, and 4, and for n greater than
4, it is determined numerically from Eq. �17�. Since we are

considering the particle-hole representation, this implies that
Eq
0.

Explicitly, for n=2, the excitation spectrum is given by

Eq
2 =

�1 + �2 + ��1 + �2�cos 2q

2
±

1

2
���1 − �2 + ��1 − �2�cos 2q�2 + 4�1

2 + 2
2 + 212 cos�2q�� , �18�

where

�1 = ��1h�2 +
J1

2

4
�1 + �1�2 +

J2
2

4
�1 − �2�2,

�2 = ��2h�2 +
J2

2

4
�1 + �2�2 +

J1
2

4
�1 − �1�2,

�1 =
J1J2

2
�1 + �1��1 − �2� ,

�2 =
J1J2

2
�1 − �1��1 + �2� ,

1 =
J1

2
�1 − �1��1h +

J1

2
�1 + �1��2h ,

2 =
J2

2
�1 + �2��1h +

J2

2
�1 − �2��2h . �19�

For �1=�2=0, the previous result reproduces the excita-
tion spectrum obtained for the isotropic case,13 provided we
consider the particle representation which allows for nega-
tive energies. It also reproduces the result obtained by
Siskens et al.16

As already pointed out, although explicit expressions can
be determined for n equal to 3 and 4, they are not presented
here since they are too cumbersome.

Even in the case where we have identical magnetic mo-
ments, differently from the isotropic case, the effect of the
field does not correspond to a translation of the excitation
spectrum for zero field, since the term of the field does not
commute with the Hamiltonian.

The critical fields which characterize the quantum transi-
tions are determined from the excitation spectrum by impos-
ing the condition Eq=0 for q=0 and q=� /d.13 The number
of transitions is highly dependent on the anisotropy and var-
ies from n to 1. In particular, the limit of a single transition
always occurs for the transverse Ising model which corre-
sponds to the �’s equal to 1.

The excitation spectrum for n=8 and identical magnetic
moments is presented in Fig. 2 for identical and different �’s,
where we have considered the lattice spacing a=1. As it can
be seen, the energy of the modes is always positive and the
effect of the spatial variation of the anisotropy is more pro-
nounced in the low energy modes. Since there is no zero
energy excitation, the model is not critical at the considered
value of the transverse field.

III. THE INDUCED MAGNETIZATION AND ISOTHERMAL
SUSCEPTIBILITY �T

zz

From Eqs. �3�, the operator Sl,m
z can be written as

Sl,m
z = − 1

2Al,mBl,m, �20�

with

Al,m � cl,m
† + cl,m,

Bl,m � cl,m
† − cl,m, �21�

which can be expressed, from Eqs. �8� and �13�, as

Al,m =
1

�N
�
q,k

eiqdl�q,k,m�	q,k
† + 	−q,k� ,

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ωωωω

q

FIG. 2. Excitation spectrum for n=8, J1=J6=J8=1.5, J2=3, J3

=1.5, J4=J5=J7=2, h=1, �1= ¯ =�8=1, and �1= ¯ =�8=0.1
�continuous line�, and for �1=0.1, �2=0.2, �3=0.3, �4=0.4,�5

=0.5, �6=0.6,�7=0.7, �8=0.8 �dashed line�.
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Bl,m =
1

�N
�
q,k

eiqdl�q,k,m�	q,k
† − 	−q,k� . �22�

By using Eqs. �20� and �22�, the local magnetization Ml,m
z

can be written as

Ml,m
z � �m�Sl,m

z � = −
1

2N
�
q,k

�m�q,k,m�q,k,m
* �1 − 2nq,k� ,

�23�

where the fermion occupation number nq,k is given by

nq,k =
1

1 + eĒq,k

, �24�

where Ēq,k=�Eq,k�Eq,k /kBT, and the calculation has been
done by considering H=H−,21–23 since we are interested in
the thermodynamic limit.

As in the isotropic model,13 we define an average cell
magnetization operator in the z direction, �l

z, as

�l
z �

1

n
�
m=1

n

�mSl,m
z , �25�

then the induced magnetization per site, Mz, is equal to ��l
z�

and, from Eq. �23�, can be written in the form

Mz � ��l
z� = −

1

2nN
�

q,k,m
�m�q,k,m�q,k,m

* tanh	 Ēq,k

2

 ,

�26�

which at T=0 becomes

Mz = −
1

2nN
�

q,k,m
�m�q,k,m�q,k,m

* . �27�

The isothermal susceptibility can be obtained from Eqs. �26�
and �27� by means of the expression

�T
zz �

1

n

�Mz

�h
, �28�

which must be evaluated numerically.
At T=0, the isothermal susceptibility �T

zz diverges at the
quantum critical points induced by the field. This result can
be seen in Fig. 3 where Mz and �T

zz are presented as functions
of the field h, at T=0, for a chain with n=8, identical �’s,
�=0.1 and 0.15. The magnetization, differently from the iso-
tropic model, does not present plateaus but it does present
inflexion points which induce the divergences of the suscep-
tibility at the quantum phase transitions. As expected, the
results also show that for n even there is the tendency of
formation of a zero magnetization plateau in the limit �
→0, which is not present for n odd as shown in Fig. 4 for
n=5.

At T=0, on the critical region, we have verified numeri-
cally that the isothermal susceptibility presents the behavior

�T
zz � ln�h − hc� �0 � �m � 1� , �29�

as it can be seen in the results presented in Fig. 5, for a chain
with n=4, and identical �’s and �’s.

The transitions belong to the same universality class as
the one in the homogeneous model.24 For T�0 all these
transitions are suppressed by the thermal fluctuations.

As already pointed out, the critical fields are associated
with the zero-energy modes with q=0 and q=� /d, and the

FIG. 3. �a� Magnetization Mz and �b� isothermal susceptibility
�T

zz, at T=0, as functions of the field for n=8, �1= ¯ =�8=1, J1

=J6=J8=1.5, J2=3, J3=1.5, J4= J5=J7=2, �=0.1 �dashed line� and
for �=0.15 �continuous line�.

FIG. 4. �a� Magnetization Mz and �b� isothermal susceptibility
�T

zz, at T=0, as functions of the field for n=5, �1= ¯ =�5=1, J1

=1, J2=1.5, J3=2, J4=2.5, J5=3, �=0.1 �dashed line� and for �
=0.3 �continuous line�.
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number of critical points can vary from one in the transverse
Ising model limit, for �’s equal to 1, to n, provided the �’s
are positive. On the other hand, if we allow the �’s to as-
sume negative values, we can have more than one phase
transition even in the transverse Ising model limit, as has
been shown by Derzhko et al.11

Then, the critical fields can be obtained numerically from
the excitation spectrum and the results are shown in Fig. 6�a�
for a chain with n=4, and identical �’s and �’s. As can be
verified, the number of transitions depends on � and its sig-
nature is present in the behavior of the spontaneous and in-
duced magnetizations. From these results, we can also con-
clude that for n even we have two critical �’s, which can
induce quantum transitions at zero field, whereas for n odd
we have just a single critical �, equal to zero, as in the
uniform model.25 This result is shown in Fig. 7 and, differ-
ently from the isotropic model, it constitutes the main effect
of the cell size on the quantum critical behavior of the
model.

IV. THE MAGNETIZATION Mx

Since the Hamiltonian is invariant under the transforma-
tion Sl,m

x →−Sl,m
x , which means that the �Sl,m

x � is equal to zero,
we cannot calculate the spontaneous magnetization directly
by using the Hamiltonian shown in Eq. �1�. On the other
hand, the Hamiltonian after the introduction of an external
field along the x direction, which would eliminate the men-
tioned symmetry property, is no more exactly soluble. There-
fore, by using the original Hamiltonian, the spontaneous lo-
cal magnetization, Mm

x , can be determined, from the static
correlation function �Sl,m

x Sl+r,m
x �, by means of the well-known

decomposition26

lim
r→�

�Sl,m
x Sl+r,m

x � = �Sl,m
x ��Sl+r,m

x � . �30�

Then we can write immediately the local spontaneous
magnetization as

10-5 10-4 10-3 10-2
0

2

0.75 0.80 0.85 0.90 0.95 1.00
0

1

2

χχχχ
ΤΤΤΤ

zz

h

hc- h

(b)

0.75 0.80 0.85 0.90 0.95 1.00

0.18

0.20

0.22

0.24

Mz

h

hc=0.9141631...
(a)

FIG. 5. �a� Magnetization Mz and �b� isothermal susceptibility
�T

zz, at T=0 and n=4, �1=�2=�3=�4=1, �1=�2=�3=�4=0.1, as
functions of the uniform field for J1=1, J2=1.5, J3=1.75, J4=2.0.
The logarithmic singular behavior of �T

zz is shown in the inset in �b�
where the horizontal scale is decimal logarithmic.

FIG. 6. �a� Critical lines, at T=0, for n=4, �1=�2=�3=�4=1
and for J1=1, J2=1.5, J3=1.75, J4=2. �b� Spontaneous magnetiza-
tion Mx as a function of the uniform field, for different �, n=4,
�1=�2=�3=�4=1 and J1=1, J2=1.5, J3=1.75, J4=2. The continu-
ous line represents the extrapolation procedure.

FIG. 7. Critical lines, at T=0, for n=5, �1=�2=�3=�4=�5

=1 and for J1=1, J2=1.5, J3=2, J4=2.5, J5=3, where the vertical
scale is decimal logarithmic.
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Mm
x = lim

r→�

��Sl,m
x Sl+r,m

x � , �31�

and from this we obtain the average spontaneous magnetiza-
tion per cell, Mx, given by

Mx =
1

n
�
m=1

n

Mm
x . �32�

Therefore, by using the Eqs. �2�, �3�, and �21�, the corre-
lation �Sl,m

x Sl+r,m
x � can be written as

�Sl,m
x Sl+r,m

x � = 1
4 �Bl,mAl,m+1Bl,m+1Al,m+2

�Bl,m+2 ¯ Al+r,m−1Bl+r,m−1Al+r,m� . �33�

Following Ref. 1 we can write �Sl,m
x Sl+r,m

x �, by using the
Wick’s theorem, in terms of the determinant

�Sl,m
x Sl+r,m

x � =
1

4
det�

�Bl,mAl,m+1� �Bl,mAl,m+2� . . . �Bl,mAl,n� . . . �Bl,mAl+r,m�
�Bl,m+1Al,m+1� �Bl,m+1Al,m+2� . . . �Bl,m+1Al,n� . . . �Bl,m+1Al+r,m�
�Bl,m+2Al,m+1� �Bl,m+2Al,m+2� . . . �Bl,m+2Al,n� . . . �Bl,m+2Al+r,m�

� � � � �
�Bl,nAl,m+1� �Bl,nAl,m+2� . . . �Bl,nAl,n� . . . �Bl,nAl+r,m�

� � . . . � . . . �
�Bl+r,m−1Al,m+1� �Bl+r,m−1Al,m+2� . . . �Bl+r,m−1Al+r,n� . . . �Bl+r,nAl+r,n�

� , �34�

where the static contractions �Bl,mAl�,m��, at arbitrary T, are
given by

�Bl,mAl�,m�� =
1

N
�
q,k

e−iqd�l�−l��q,k,m�q,k,m�
* �2nq,k − 1� .

�35�

Therefore, in order to obtain the average spontaneous mag-
netization per cell, Mx, we must determine the asymptotic
behavior of the determinant shown in Eq. �34�. For finite
temperature, it can be shown that the asymptotic behavior of
the determinant is zero, which corresponds to the limit r
→�, and, as expected, there is no spontaneous magnetiza-
tion at T�0.

On the other hand, at T=0, the asymptotic behavior of the
determinant is different from zero for values of the field
where the ground state is ordered. This asymptotic behavior
of the determinant can be estimated numerically by using the
� algorithm,27 and, by using this method, we have obtained
Mx for a lattice with n=4, identical �’s and �’s. In order to
obtain the estimate of the asymptotic value of the determi-
nant, we have considered a numerical series constructed by
varying r from 56 to 80, and the results are shown in Fig.
6�b�. The behavior of the magnetization close to the transi-
tion points has been obtained by adjusting the reliable nu-
merical results in the critical region to the scaling function

Mx�h� = M0�h − hc��̄. �36�

By considering a nonlinear regression we have been able to
obtain the adjustable parameters of the scaling function,

namely, the critical field hc, the critical exponent �̄ and the
amplitude M0. These results are shown in Table I.

As it can be seen in Table I, the comparison of the nu-
merical results, obtained from the nonlinear regression, with

the exact known ones show that they are extremely precise.
This rather surprising result means that the quantum critical
region can be precisely described numerically by Eq. �36�.

V. STATIC AND DYNAMIC CORRELATIONS Š�l
z�l+r

z
‹

The correlation function �Sl
z�t�Sl+r

z �0��, in the thermody-
namic limit, can be obtained from the expression21–23

�Sl,m
z �t�Sl+r,m�

z �0��

=
Tr�exp�− �H−�exp�iH−t�Sl,m

z exp�− iH−t�Sl+r,m�
z �

Tr�exp�− �H−��
.

�37�

Therefore, the dynamic correlation between the effective
spins in the field direction,

��l
z�t��l+r

z �0�� =
1

n2 �
m,m�=1

n

�m�m��Sl,m
z �t�Sl+r,m�

z �0�� , �38�

by using Eqs. �3� and �21�, and Wick’s theorem, can be ex-
pressed as

��l
z�t��l+r

z �0�� =
1

4n2 �
m=1

n

�
m�=1

n

�m�m���Al,m�t�Bl,m�t��

��Al+r,m��0�Bl+r,m��0�� − �Al,m�t�Al+r,m��0��

��Bl,m�t�Bl+r,m��0�� + �Al,m�t�Bl+r,m��0��

��Bl,m�t�Al+r,m��0��� , �39�

where the dynamic contractions, obtained from Eq. �22�, are
given by
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�Al,m�t�Al+r,m��0�� =
1

N
�
q,k

e−iqdr�q,k,m�q,k,m�
* �eiEq,ktnq,k

+ e−iEq,kt�1 − nq,k�� ,

�Bl,m�t�Bl+r,m��0�� =
1

N
�
q,k

e−iqdr�q,k,m�q,k,m�
* �− eiEq,ktnq,k

− e−iEq,kt�1 − nq,k�� ,

�Al,m�t�Bl+r,m��0�� =
1

N
�
q,k

e−iqdr�q,k,m�q,k,m�
* �− eiEq,ktnq,k

+ e−iEq,kt�1 − nq,k�� ,

�Bl,m�t�Al+r,m��0�� =
1

N
�
q,k

e−iqdr�q,k,m�q,k,m�
* �eiEq,ktnq,k

− e−iEq,kt�1 − nq,k�� . �40�

Then we can write the dynamic correlation ��l
z�t��l+r

z �0��
in the form

��l
z�t��l+r

z �0�� = ��l
z�2 +

1

4n2N2 �
q,k,m

�
q�,k�,m�

�m�m�e
−i�q−q��dr�q,k,m�q,k,m�

* �q�,k�,m��q�,k�,m
*

��ei�Eq,k+Eq�,k��tnq,knq�,k� + e−i�Eq,k+Eq�,k��t�1 − nq,k��1 − nq�,k��

+ ei�Eq,k−Eq�,k��tnq,k�1 − nq�,k�� + e−i�Eq,k−Eq�,k��t�1 − nq,k�nq�,k��

−
1

4n2N2 �
q,k,m

�
q�,k�,m�

�m�m�e
−i�q−q��dr�q,k,m�q,k,m�

* �q�,k�,m��q�,k�,m
*

��ei�Eq,k+Eq�,k��tnq,knq�,k� + e−i�Eq,k+Eq�,k��t�1 − nq,k��1 − nq�,k��

− ei�Eq,k−Eq�,k��tnq,k�1 − nq�,k�� − e−i�Eq,k−Eq�,k��t�1 − nq,k�nq�,k�� . �41�

For t=0 we obtain the static correlation, which is given by

��l
z�0��l+r

z �0�� = ��l
z�2 +

1

4n2N2 �
q,k,m

�
q�,k�,m�

�m�m�e
−i�q−q��dr�q,k,m�q,k,m�

* �q�,k�,m��q�,k�,m
*

−
1

4n2N2 �
q,k,m

�
q�,k�,m�

�m�m�e
−i�q−q��dr�q,k,m�q,k,m�

* �q�,k�,m��q�,k�,m
* �1 − 2nq,k��1 − 2nq�,k�� . �42�

At T=0, the dynamic and static correlation are given, respectively, by

TABLE I. Numerical results for the fitting, in the scaling region, of the spontaneous magnetization Mx at T=0, as a function of the
uniform field for n=4, �1=�2=�3=�4=1, �1=�2=�3=�4=�, J1=1, J2=1.5, J3=1.75, J4=2 and different �. The parameters shown have

been obtained from the nonlinear regression of the equation Mx�h�=M0 �hc−h��̄.

� hc �exact� M0 hc �calculated� �̄

�=0.1 hc1=0.130554559. . . 0.479�8� 0.13050�1� 0.125�3�
hc2=0.914163156. . . 0.465�4� 0.9142�1� 0.125�2�
hc3=1.310209705. . . 0.436�8� 1.31017�6� 0.125�4�

hc4=1.5922623078. . . 0.395�2� 1.59227�6� 0.126�1�

�=0.15 hc1=0.9541874918. . . 0.488�12� 0.9542�3� 0.125�6�
hc2=1.2687172332. . . 0.465�8� 1.26870�5� 0.125�4�
hc3=1.5905738964. . . 0.423�5� 1.5906�1� 0.125�3�

�=0.5 hc=1.5644253446. . . 0.501�9� 1.5644�2� 0.125�4�
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��l
z�t��l+r

z �0�� = ��l
z�2 +

1

4n2N2 �
q,k,m

�
q�,k�,m�

�m�m�e
−i�q−q��dr�q,k,m�q,k,m�

* �q�,k�,m��q�,k�,m
* �e−i�Eq,k+Eq�,k��t�

−
1

4n2N2 �
q,k,m

�
q�,k�,m�

�m�m�e
−i�q−q��dr�q,k,m�q,k,m�

* �q�,k�,m��q�,k�,m
* �e−i�Eq,k+Eq�,k��t� �43�

and

��l
z�0��l+r

z �0�� = ��l
z�2 +

1

4n2N2 �
q,k,m

�
q�,k�,m�

�m�m�e
−i�q−q��dr�q,k,m�q,k,m�

* �q�,k�,m��q�,k�,m
*

−
1

4n2N2 �
q,k,m

�
q�,k�,m�

�m�m�e
−i�q−q��dr�q,k,m�q,k,m�

* �q�,k�,m��q�,k�,m
* . �44�

As in the homogeneous model,25 the asymptotic behavior
of the static correlation ��l

z�0��l+r
z �0��, at T=0, as a function

of r, can be oscillatory or monotonic depending on the values
of the interaction parameters. For arbitrary n, these regions
are separated by hypersurfaces in the parameter space and
are called disordered surfaces, which collapse into disorder
lines for identical �’s. For n=4, these disorder lines and the
critical lines are shown in Fig. 8. Independently of the num-
ber of sites in the unit cell, in the plane ��h, the disorder
lines are given by the equation

h2 + �2hjc
2 = hjc

2 , �45�

where hjc is a critical field. Along these curves the aniso-
tropic model is equivalent to an effective isotropic model.25

For n=2, this equivalence is shown in the Appendix, and for

n�2 it has been verified numerically. It is also shown that
along this curve, the effective isotropic model is in a disor-
dered state, which corresponds to the magnetization plateaus
for the case where we have identical �’s.

The asymptotic behavior of the static correlation function,
also for n=4 and at T=0, as a function of the distance r
between cells, is presented in Fig. 9 for various values of h
and � in the different regions shown in Fig. 8. As can be
seen, the behavior, as expected, alternates between oscilla-
tory and monotonic.

At the critical point, as in the homogeneous case, the di-
rect static correlation behaves asymptotically as r−2.25 This
behavior is shown in Fig. 10�a�, for n=4, and different criti-
cal fields. However, at the disorder line, differently from the
homogeneous model where the direct static correlation is

FIG. 8. Disorder lines �continuous line� and critical �dashed
line�, at T=0, for n=4, �1=�2=�3=�4=1 and for J1=1, J2=1.5,
J3=1.75, J4=2, where the vertical scale is decimal logarithmic. The
asymptotic behavior alternates between monotonic and oscillatory
as we go from region I to region V.

10 20 30 40 50 60 70 80
10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

h=1.6

< ττ ττ
z jττ ττz

j+
r>-
< ττ ττ

z j>2

r

h=1.34

III: h=1.32
III: h=1.34
IV: h=1.35
IV: h=1.58
V: h=1.6

γ =0.05

h=1.35

h=1.58

h=1.32

FIG. 9. Static correlation function in the field direction, at T
=0, for n=4, �1=�2=�3=�4=1 and for J1=1, J2=1.5, J3=1.75,
J4=2, as function of r �distance between cells� for values of the
field belonging to different regions shown in Fig. 8, where the ver-
tical scale is decimal logarithmic.
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zero, it behaves asymptotically as �−r, where � is a function
of the field and of the interaction parameters, as shown in
Fig. 10�b�, for identical �’s and different values of the field.

The real and imaginary parts of the dynamic correlation
for a chain with n=4 and uniform �’s, at T=0, are presented
in Fig. 11 for values of the field greater, smaller and equal to
the critical field. As in the isotropic case, apart from the
asymptotic behavior, no noticeable difference is observed in
the dynamic correlation at different values of the field.

VI. DYNAMIC SUSCEPTIBILITY

From the dynamic correlation ��l
z�t��l+r

z �0��, Eqs. �41�, we
can obtain the time Fourier transform of dynamic correlation
��l

z�l+r
z �� from the equation

��l
z�l+r

z �� =
1

2�
�

−�

�

��l
z�t��l+r

z �0��ei�tdt , �46�

which is given by

��l
z�l+r

z �� = �����l
z�2 +

1

4n2N2 �
q,k,m

�
q�,k�,m�

�m�m�e
−i�q−q��dr�q,k,m�q,k,m�

* �q�,k�,m��q�,k�,m
*

���� + Eq,k + Eq�,k��nq,knq�,k� + �� − Eq,k − Eq�,k���1 − nq,k��1 − nq�,k��

+ �� + Eq,k − Eq�,k��nq,k�1 − nq�,k�� + �� − Eq,k + Eq�,k���1 − nq,k�nq�,k��

−
1

4n2N2 �
q,k,m

�
q�,k�,m�

�m�m�e
−i�q−q��dr�q,k,m�q,k,m�

* �q�,k�,m��q�,k�,m
*

���� + Eq,k + Eq�,k��nq,knq�,k� + �� − Eq,k − Eq�,k���1 − nq,k��1 − nq�,k��

− �� + Eq,k − Eq�,k��nq,k�1 − nq�,k�� − �� − Eq,k + Eq�,k���1 − nq,k�nq�,k�� . �47�

By introducing the spatial Fourier transform

��q
z�−q

z �� = �
r

��l
z�l+r

z ��eidrq, �48�

in the previous expression, we can write immediately
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2)1/2

γ=0.1

γ=0.15

10 100
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10-6

10-5

10-4

10-3

< ττ ττ
z jττ ττz

j+
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< ττ ττ

z j>2
< ττ ττ

z jττ ττz
j+
r>-
< ττ ττ

z j>2
(a)

r

r

γ=0.1
hc1=0.13055...
hc3=0.91416...
hc4=1.31020...

hc1

hc3

hc4

<τzjτ
z
j+r>-<τzj>

2~cr-2

FIG. 10. Asymptotic behavior of the direct static correlation
function in the field direction, at T=0, for n=4, �1=�2=�3=�4

=1 and for J1=1, J2=1.5, J3=1.75, J4=2, as a function of r �dis-
tance between cells� for values of the field belonging to the critical
lines �a�, where the scales are decimal logarithmic, and disorder
lines �b�, where the vertical scale is also decimal logarithmic.

FIG. 11. �a� The real and �b� imaginary parts of the dynamic
correlation function ��l

z�t��l+1
z �0��, at T=0 for n=4, �1=�2=�3

=�4=1 and J1=1, J2=1.5, J3=1.75, J4=2, as function of time t.
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��q
z�−q

z �� = Nq,0�����l
z�2 +

1

4n2N
�

q�,k,m,k�,m�

�m�m��q�,k,m�q�,k,m�
* �q�−q,k�,m��q�−q,k�,m

*

���� + Eq�,k + Eq�−q,k��nq�,knq�−q,k� + �� − Eq�,k − Eq�−q,k���1 − nq�,k��1 − nq�−q,k��

+ �� + Eq�,k − Eq�−q,k��nq�,k�1 − nq�−q,k�� + �� − Eq�,k + Eq�−q,k���1 − nq�,k�nq�−q,k��

−
1

4n2N
�

q�,k,m,k�,m�

�m�m��q�,k,m�q�,k,m�
* �q�−q,k�,m��q�−q,k�,m

*

���� + Eq�,k + Eq�−q,k��nq�,knq�−q,k� + �� − Eq�,k − Eq−q�,k���1 − nq�,k��1 − nq−q�,k��

− �� + Eq�,k − Eq�−q,k��nq�,k�1 − nq�−q,k�� − �� − Eq�,k + Eq�−q,k���1 − nq�,k�nq�−q,k�� . �49�

The dynamic susceptibility �q
zz��� can be obtained by using the expression28

�q
zz��� = − �

�

� �1 − e−��/kBT���q
z�−q

z ���d��

� − ��
, �50�

and from this we obtain

�q
zz��� = −

1

4n2N
�

q�,k,m,k�,m�

�m�m��Pq�,k,m,q�−q,k�,m� − Qq�,k,m,q�−q,k�,m��

�	 1

� + Eq�,k + Eq�−q,k�
−

1

� − Eq�,k − Eq�−q,k�

�nq�,k + nq�−q,k� − 1�

−
1

4n2N
�

q�,k,m,k�,m�

�m�m��Pq�,k,m,q�−q,k�,m� + Qq�,k,m,q�−q,k�,m��

�	 1

� + Eq�,k − Eq�−q,k�
−

1

� − Eq�,k + Eq�−q,k�

�nq�,k − nq�−q,k�� , �51�

where

Pq�,k,m,q�−q,k�,m� = �q�,k,m�q�,k,m�
* �q�−q,k�,m��q�−q,k�,m

* , �52�

Qq�,k,m,q�−q,k�,m� = �q�,k,m�q�,k,m�
* �q�−q,k�,m��q�−q,k�,m

* , �53�

and we have used the identity

1 − nq,k = e�Eq,knq,k. �54�

It should be noted that the previous result reduces to the known one for the isotropic model.13

The static susceptibility �q
zz�0� is obtained by making �=0 in Eq. �51�, and is given by

�q
zz�0� = −

1

2n2N
�

q�,k,m,k�,m�

�m�m��Pq�,k,m,q�−q,k�,m� − Qq�,k,m,q�−q,k�,m��	 1

Eq�,k + Eq�−q,k�

�nq�,k + nq�−q,k� − 1�

−
1

2n2N2 �
q�,k,m,k�,m�

�Pq�,k,m,q�−q,k�,m� + Qq�,k,m,q�−q,k�,m��	 1

Eq�,k − Eq�−q,k�

�nq�,k − nq�−q,k�� . �55�
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The isothermal susceptibility can also be obtained by us-
ing the dynamic correlation given in Eq. �41�, and can be
written as29

�T
zz = �

r
�

0

�

���l
z�− i���l+r

z �0�� − ��l
z�2�d� , �56�

where, as defined previously, �=1/kBT. From this it can be
shown that the isothermal susceptibility in the field direction
is equal to the uniform static one �0

zz�0�.
At T=0, the dynamic and static susceptibilities given in

Eqs. �51� and �55� can be explicitly written as

�q
zz��� =

1

4n2N
�

q�,k,m,k�,m�

�m�m��Pq�,k,m,q�−q,k�,m�

− Qq�,k,m,q�−q,k�,m�� �57�

�	 1

� + Eq�,k + Eq�−q,k�
−

1

� − Eq�,k − Eq�−q,k�

 �58�

and

�q
zz�0� =

1

2n2N
�

q�,k,m,k�,m�

�m�m��Pq�,k,m,q�−q,k�,m�

− Qq�,k,m,q�−q,k�,m��	 1

Eq�,k + Eq�−q,k�

 . �59�

The static susceptibility �q
zz�0�, at T=0 and for n=4, as a

function of the field is presented in Fig. 12. For q=0, as
expected, it diverges at the critical fields and it tends to zero
as h→�, which corresponds to the saturation of the model.
However, for q�0 differently from the isotropic model, no
divergence is present, even for a wave vector at the zone
boundary.

The real and imaginary parts of �q
zz��� are obtained by

considering �q
zz��− i�� in the limit �→0 in Eqs. �51� and

�55�. The results, at T=0 and for n=4, are shown in Fig. 13
for different wave vectors, as functions of �. As expected,
since the Hamiltonian of the model preserves the symmetry
of the spin interactions of the homogeneous one, the diver-
gences in the real part, for any wave vector, correspond to
square-root singularities in the imaginary part.

VII. CONCLUSIONS

In this work we have considered the anisotropic XY model
on the inhomogeneous periodic chain with N cells and n sites
per cell. The model has been exactly solved, at arbitrary
temperature, for the general case where we have n different
exchange constants and n different magnetic moments. The
number of branches of the excitation spectrum is equal to n,
and analytical results can be found for n�4. For n=2, ex-
plicit expressions are presented for the excitation spectrum,
and, for n=8, it is obtained numerically.

The induced magnetization Mz and the isothermal suscep-
tibility �T

zz are also given by explicit expressions at arbitrary
temperature. At T=0, where the quantum transitions induced
by the transverse field occur, the spontaneous magnetization
Mx is written in terms of the asymptotic behavior of the
determinant of a Toeplitz matrix which corresponds to the

FIG. 12. Static susceptibility in the field direction, �q
zz�0�, at T

=0, as a function of the field for n=4, �1=�2=�3=�4=1, J1=1,
J2=1.5, J3=1.75, J4=2, �=0.1 and different values of q.

FIG. 13. �a� The real and �b� imaginary parts of the dynamic
susceptibility �q

zz���, at T=0, for n=4, �1=�2=�3=�4=1, J1=1,
J2=1.5, J3=1.75, J4=2,h=0.5, and �=0.1, as function of frequency
� and for different values of q.
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static two-spin correlation in the x direction, at large separa-
tion. The critical behavior is determined, in high numerical
accuracy, by adjusting the numerical results obtained for fi-
nite Toeplitz matrices by using a nonlinear regression of the
scaling relation and the � algorithm. This is a rather remark-
able result since it allows us to determine very precisely the
critical behavior of the system within a numerical approach.
As expected, we have shown from these results that the in-
homogeneous model belongs to the same universality class
of the homogeneous one.

For n�1, the system can present multiple phase transi-
tions and it is shown that the divergence of the isothermal
susceptibility �T

zz, which is associated to inflection points in
the induced magnetization, is also a signature of the quantum
transitions. These critical points, as usual, correspond to the
points where the spontaneous magnetization, which is the
order parameter characterizing the quantum transition, goes
to zero.

Explicit results are presented for n=4 and n=5, where we
show that, differently from the isotropic model where we
always have n transitions, the number of quantum transitions
is dependent on the values of the anisotropy parameters �.
We have also concluded that, for n even, there are two criti-
cal �’s, whereas, for n odd, there is just one critical � equal
to zero, and this constitutes the main effect of the cell size on
the critical quantum behavior of the anisotropic model.

It has also been shown that the static two-spin correlation
in the z direction, as in the homogeneous model, can present
oscillatory or monotonic behavior depending on the values
of �’s and the field. The limiting surfaces, in the parameter
space, which separates the two regimes, are the so-called
disorder surfaces. For the special case when we have differ-
ent J’s and identical �’s, the disorder surfaces collapse into
disorder lines and, in this case, they have been determined
analytically. In particular, for n=2, it has been proven ex-
actly that these lines correspond to regions where the model
can be mapped onto an equivalent isotropic model. It should
be noted that along the disorder lines the direct static
correlation ��l

z�0��l+r
z �0��− ��l

z�2 presents an exponential
asymptotic behavior, differently from the homogeneous
model where it is equal to zero.

We have also obtained the static and dynamic correlation
on the field directions and, from these results, we have de-
termined the dynamic wave-vector dependent susceptibility
�q

zz���. Finally, we have shown that, as in the homogeneous
model, the static susceptibility �0

zz�0� is equal to the isother-
mal one �T

zz.
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APPENDIX

In this appendix we present analytically the mapping of
the anisotropic model onto the isotropic one, for a given set

of parameters, for a chain with n=2. This mapping will be
obtained, as in the homogeneous model,25 by imposing that
the isotropic and the anisotropic models have the same spec-
trum. As it will be shown, this equivalence is only possible
when �1=�2.

Therefore, let us consider the matrices Aq and Bq, given
by Eqs. �14� and �15�, which in this case are explicitly given
by

Aq = −� �1h
J1

2
+

J2

2
exp�− i2q�

J1

2
+

J2

2
exp�i2q� �2h � ,

�A1�

Bq = −� 0
J1�1

2
−

J2�2

2
exp�− i2q�

−
J1�1

2
+

J2�2

2
exp�i2q� 0 � .

�A2�

From these results we obtain the matrix �Aq+Bq� �Aq−Bq�,
whose eigenvalues, determined from Eq. �17�, which consti-
tute the two branches of the spectrum of the chain, are given
by

Eq,k=1,2
2 = 1

2 ��1 + �2 + �c1 + c2�cos 2q� ± 1
2 ��1 + �2 + �c1

+ c2�cos 2q�2 − 4���1 + c1 cos 2q���2 + c2 cos 2q�

− �2 − 2 − 2� cos 2q��1/2, �A3�

where

�1 � �1
2h2 + a1

2 + b2
2, �2 � �2

2h2 + a2
2 + b1

2,

a1 �
J1

2
�1 + �1�, a2 �

J2

2
�1 + �2� ,

b1 �
J1

2
�1 − �1�, b2 �

J2

2
�1 − �2� ,

c1 �
J1J2

2
�1 + �1��1 − �2�, c2 �

J1J2

2
�1 − �1��1 + �2� ,

� � ��1b1 + �2a1�h,  � ��1a2 + �2b2�h . �A4�

From the previous result we can obtain the spectrum of the
isotropic chain, with parameters �1�h�, �2�h�, J1�, J2�, by mak-
ing �1=�2=0 and from this we can write

�q,k=1,2
2 =

1

2
���1�

2 + �2�
2�h�2 +

J1�
2

2
+

J2�
2

2
+ J1�J2� cos 2q�

±
1

2
��1� + �2��h�

����1� − �2��
2h�2 + J1�

2 + J2�
2 + 2J1�J2� cos 2q .

�A5�
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By imposing the equivalence of the two spectra we conclude
immediately that we should have c1=c2�c, which implies
that �1=�2��. Introducing these conditions in Eq. �A3� we
obtain

Eq,k=1,2
2 = 1

2 ��1 + �2 + 2c cos 2q�

± 1
2
���1 − �2�2 + 4��2 + 2� + 8� cos 2q ,

�A6�

and by comparing it with Eq. �A5� we can write immediately
the mapping relations

��1�
2 + �2�

2�h�2 +
J1�

2

2
+

J2�
2

2
= ��1

2 + �2
2�h2 +

�J1
2 + J2

2�
2

�1 + �2� ,

�A7�

J1�J2� = J1J2�1 − �2� , �A8�

��1�
2 − �2�

2�2h�4 + h�2��1� + �2��
2�J1�

2 + J2�
2�

= ��1
2 − �2

2�2h4 + �2�J1
2 − J2

2�2

+ �J1
2 + J2

2����1 + �2�2h2 − �2��1 − �2�2h2� , �A9�

��1� + �2��
2h�2J1�J2� = J1J2���1 + �2�2h2 − �2��1 − �2�2h2� .

�A10�

This set of equations is not independent, and this means that
the parameters of the equivalent isotropic model are not

uniquely determined. Moreover, we can show that Eqs.
�A7�–�A10� can only present a solution if the parameters of
the anisotropic model satisfy the equation

�J1
2 − J2

2�2�1 − �2�2 − 8�1�2h2�J1
2 + J2

2��1 − �2� + 16�1
2�2

2h4

= 0. �A11�

This expression is obtained after some lengthy but straight-
forward algebra, by using the result

��1� + �2��
2h�2 =

��1 + �2�2h2 − �2��1 − �2�2h2

1 − �2 ,

�A12�

which is obtained from Eqs. �A7� and �A10�, and Eqs. �A7�,
�A8�, and �A12�. The solution of Eq. �A11� gives the result

h = ±
�J1 ± J2��1 − �2

2��1�2

� h˜c
�1 − �2, �A13�

where h˜c are the critical fields of the anisotropic model in the
limit �→0. Although this result, for the disorder lines, is
restricted to n=2, we have verified numerically that, for
identical �’s, it is still valid for arbitrary n. In particular, for
n=4, the numerical verification of Eq. �A13� is shown in Fig.
8.
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