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In this work we compare numerically exact quantum Monte Carlo �QMC� calculations and Green function
theory �GFT� calculations of thin ferromagnetic films including second-order anisotropies. Thereby, we con-
centrate on easy-plane systems, i.e., systems for which the anisotropy favors a magnetization parallel to the
film plane. We discuss these systems in perpendicular external field, i.e., B parallel to the film normal. GFT
results are in good agreement with QMC for high enough fields and temperatures. Below a critical field or a
critical temperature, no collinear stable magnetization exists in GFT. On the other hand, QMC gives finite
magnetization even below those critical values. This indicates that there occurs a transition from noncollinear
to collinear configurations with increasing field or temperature. For slightly tilted external fields, a rotation of
magnetization from out-of-plane to in-plane orientation is found with decreasing temperature.

DOI: 10.1103/PhysRevB.75.214401 PACS number�s�: 75.10.Jm, 75.40.Mg, 75.70.Ak, 75.30.Gw

I. INTRODUCTION

The fast development of technological applications based
on magnetic systems in the past years, e.g., magnetic data
storage devices, causes a high interest in thin magnetic films.
One precondition for the technological development is the
investigation of magnetic anisotropies and spin reorientation
transitions connected therewith. Those reorientation transi-
tions can occur from out of plane to in plane or vice versa for
increasing film thickness d,1 temperature T,2–8 or external
field B0.

Quantum Monte Carlo �QMC� calculations give the pos-
sibility to compare numerically exact results with analytical
approximations. In Ref. 9, the authors investigated a ferro-
magnetic monolayer including positive second-order aniso-
tropy �easy axis perpendicular to the film plane�. They dis-
cuss the temperature dependence of the magnetization �Sz�
��T�, as well as field induced reorientation transitions from
out of plane to in plane and compare the QMC results with
Green function theory �GFT�. They found good agreement in
the case of applied external field in the easy direction �here z
axis�. However, their GFT fails for external field applied in
arbitrary direction, especially in the hard direction �within
the film plane�. As shown in Ref. 10, to obtain results closer
to the QMC results for magnetic-field induced reorientation
from out of plane to in plane, a more careful treatment of the
local anisotropy terms is needed. In Refs. 10–13, a decoupling
scheme was presented which yields excellent agreement with
QMC results for out-of-plane systems.

The availability of theories such as GFT and their check
against state-of-the-art numerical algorithms is highly desir-
able because of the size limitations of systems where QMC
can be performed. On the other hand, the extension of GFT
from a monolayer �where it can be compared to QMC as in
the present work� to multilayer systems is a straightforward
task without further approximations.11

Up to now, to our knowledge, there is no comparison
between QMC and approximative theories for easy-plane

systems and it is not obvious that the theory presented in
Refs. 10–13 can reproduce the QMC results for in-plane sys-
tems as accurately as for the out-of-plane case. In contrast to
the easy-axis case where a certain direction is preferred by
the single-ion anisotropy, in easy-plane systems, the full xy
plane is favored and no particular direction is distinguished
within the plane. A magnetic field applied perpendicular to
the plane does not destroy the xy symmetry.

For systems exhibiting this kind of symmetry, it was
shown in a classical treatment that for external fields smaller
than a critical field 0�B�Bcrit �B � z�, stable vortices, i.e., a
noncollinear arrangement of spins, can exist.14–19 These
vortices can undergo a Berezinskii-Kosterlitz-Thouless
transition.19 Depending on the strength of the anisotropy K2,
there might be vortices with or without a finite z component
of magnetization.14 In the small anisotropy case �which is
considered in this work, �K2��0.1J�, there is a finite out-of-
plane component, and for zero field, the two possible direc-
tions of magnetization �±z� are energetically degenerate. For
increasing magnetic field in the z direction, the vortices an-
tiparallel to the field become more and more unstable �heavy
vortices�. However, the so-called light vortices �parallel to
the field� are stable up to a critical field Bz=Bcrit and contrib-
ute a finite z component to the net magnetization of the con-
sidered system.18

The vortices in connection with a finite z component of
the net magnetization emerge because of two reasons: first,
the competition between the anisotropy �favoring an orienta-
tion of the magnetization within the xy plane� and the exter-
nal field �favoring a perpendicular magnetization�, and sec-
ond, the xy symmetry of the system, which does not allow
for a rotated homogeneous phase.

In this paper, we investigate both aspects, i.e., the field vs
anisotropy competition, as well as the symmetry properties
in detail for a quantum-mechanical system. We will compare
the results of QMC and GFT calculations.

As explained in more detail below, the QMC algorithm
used here allows only for an external field applied in the z
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direction. Thus, the xy symmetry cannot be broken and no
comparison between xy symmetric and asymmetric systems
is possible. We will use GFT to clarify the influence of this
symmetry breaking on the homogeneous phase. On the other
hand, the GFT used here is by ansatz limited to the homoge-
neous phase. Therefore, it cannot describe a noncollinear
�e.g., vortex� magnetic phase, which is expected for B � z and
small field strengths. The breakdown of magnetization in
GFT, as well as an exposed maximum in the magnetization
in QMC at certain critical values of the external field or
temperature, gives, however, a clear fingerprint of noncol-
linear configurations, at least if there is no metastable homo-
geneous phase. Below these critical values, there will be a
finite z component in QMC and a vanishing magnetization in
GFT.

For parameters where both theories are applicable, QMC
serves as a test for the approximations needed in GFT.

In this work, we find indications for noncollinear spin
configurations below a critical field or temperature for B � z
by comparing results of QMC and GFT, as explained previ-
ously. Above the critical field, we obtain good agreement
between QMC and GFT results. Breaking the xy symmetry
by adding a small x component to the external field yields a
stable collinear solution in GFT. The z component of the
magnetization in this case is in good agreement with the
QMC results calculated with untilted field. Thus, we can
conclude that except for the restriction to collinear magnetic
states, GFT describes the competition between external field
and anisotropy quite well.

The paper is organized as follows. First, we explain the
basics of the GFT and the QMC calculations. Then, we apply
both approaches to easy-plane systems in external magnetic
fields and report the results of our calculations.

II. THEORY

A. Green function theory

In the following, we present our theoretical approach us-
ing Green function theory. The focus of this work lies on the
translational invariant system of a two-dimensional mono-
layer. Therefore, the following Hamiltonian is used:

H = −
1

2�
ij

JijSiS j − B�
i

Si − K2�
i

�Sz,i�2. �1�

The first term describes the Heisenberg coupling Jij between
spins Si and S j located at sites i and j. The second term
contains an external magnetic field B in arbitrary direction
�the Landé factor gJ and the Bohr magneton �B are absorbed
in B�. The third term represents second-order lattice aniso-
tropy due to spin-orbit coupling. Sz,i is the z component of Si
�the z axis of the coordinate system is oriented perpendicular
to the film plane�. The lattice anisotropy favors in-plane
�K2�0� or out-of-plane �K2�0� orientation. Our Hamil-
tonian is similar to that used in Refs. 10, 11, 13, 20, and 21
for the investigation of the magnetic anisotropy and the field
induced reorientation transition. To simplify calculations, we
consider nearest neighbor coupling only,

Jij = �J for �i�,�j� nearest neighbor

0 otherwise.
	 �2�

The main idea of the special treatment presented in Refs.
10–13 is that, before any decoupling is applied, the coordi-
nate system � is rotated to a new system �� where the new
z� axis is parallel to the magnetization, implying a collinear
alignment of all spins within the layer. Then, a combination
of random-phase approximation22 �RPA� for the nonlocal
terms in Eq. �1� �Heisenberg exchange interaction term� and
Anderson-Callen �AC� approximation23 �AC� for the local
lattice anisotropy term is applied in the rotated system. After
application of the approximation, one gets an effective aniso-
tropy

Kef f�T� = 2K2
1 −
1

2S2 �S�S + 1� − �Sz�
2 ���Sz�

� , �3�

where �Sz�
� is the norm of the magnetization and S is the spin

quantum number, which we have chosen to be S=1 in all our
calculations.

As shown in comparison with an exact treatment of the
local anisotropy term in Ref. 24, this approximation still
holds up to anisotropy strengths K2�1/2J. Therefore, we
restrict ourselves in the following to small anisotropies �K2

�0.1J�, as found in most real materials.25 For a magnetic
field applied in the xz plane �B= �Bx ,0 ,Bz��, our theory gives
a condition for the polar angle � of the magnetization:

sin �Bz − cos �Bx + Kef f sin � cos � = 0. �4�

The uniform magnon energies �q=0� which dominate the
physical behavior of the magnetic system can easily be ex-
tracted from the theory:12,13

Eq=0
2 = �cos �Bz + sin �Bx + Kef f�cos2 � − sin2 ���

��cos �Bz + sin �Bx + Kef f cos2 �� . �5�

This result coincides with the spin-wave result13 if one re-
places �Sz�

� by the spin quantum number S and Kef f by the
bare anisotropy constant K2 in Eq. �5�. For an easy-plane
system �Kef f �0� with external field B in the z direction, the
polar angle � of the magnetization26 is given by

cos � = �− B/Kef f�T� for B � �Kef f�T��
1 otherwise.

	 �6�

By inserting Eq. �6� into Eq. �5�, one immediately gets.

Eq=0
Kef f�0�B� = � 0 for B � �Kef f�T��

B + Kef f�T� otherwise.
	 �7�

For gapless magnon energies Eq=0=0, the magnon occupa-
tion number � diverges ��→	� in film systems with ferro-
magnetic coupling J�0 and the magnetization becomes zero
�Sz�

�=0 in the collinear phase. This can be seen by following
an argument of Bloch27 already given in 1930. Since the
spin-wave dispersion is E�q2 in the vicinity of q=0, the
spin-wave density of states N�E� is independent of E for a
two-dimensional system for E close to zero.28 The excitation
of spin waves at finite temperature leads to a variation of the
magnetization of the order
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m�T� � �
0

	 N�E�dE

exp�E/kBT� − 1
� kBT�

0

	 dx

exp�x� − 1
. �8�

Since the integral in Eq. �8� diverges for T�0 and excited
spin waves lead to a reduction of the magnetization, one can
conclude that the magnetization should be zero at finite tem-
perature. However, for an infinitesimally small contribution
of the external field parallel to the plane, i.e., Bx�0, a finite
gap in the excitation spectrum at q=0 opens. This can be
seen in Fig. 1 where the uniform magnon modes Eq=0�B� are
shown for different orientations �B, where �B is the polar
angle of the external field. The integral in Eq. �8� is now
finite and a stable finite magnetization in the collinear phase
having a well-defined orientation in the xz plane is possible.

Let us now come back to the case where the applied field
is aligned in the z direction. It can be seen from Eq. �7� that
for external field B �B � z� larger than a critical field B
�Bcrit given by

Bcrit=
!

�Kef f�T,B�� , �9�

a stable collinear solution exists. Since Kef f�T� is a decreas-
ing function of temperature T, a transition from noncollinear
to collinear phase with increasing temperature is possible. In
Fig. 2, we show the normalized critical field �Eq. �9��
Bcrit /K2 as a function of temperature T. For a constant mag-

netic field B �B � z� at a temperature T1 with B�Kef f�T1 ,B�,
no stable collinear phase exists. Then, by increasing the tem-
perature up to T2, the effective anisotropy Kef f is sufficiently
reduced such that B�Kef f�T2 ,B�, and the collinear phase
becomes stable. Before we come to the results, let us briefly
sketch the main aspects of the QMC.

B. QMC

In the previous section, we gave a short description of the
theory used to treat a system described by a Hamiltonian of
the form of Eq. �1�. This theory applies to the thermody-
namic limit �films of infinite size� but contains certain ap-
proximations. Additionally, the GFT is restricted to ordered
phases with a collinear alignment of all spins. Therefore, it
would be very useful to have exact results at hand to cross-
check the predictions of GFT. A quantum Monte Carlo
method particularly well suited for spin systems is the sto-
chastic series expansion �SSE� with directed loop update. We
will sketch this method here only briefly as detailed descrip-
tions can be already found elsewhere.29–31

Our starting point is the series expansion of the partition
function

Z = Tr e−�H = �
n=0

	

�
�

�n

n!
����− H�n��� , �10�

where H denotes the Hamiltonian, ����� are basis vectors of a
proper Hilbert space, and � is the inverse temperature. The
Hamiltonian is then rewritten in terms of bond Hamiltonians:

H = − J�
b=1

M

Hb, �11�

where Hb can be further decomposed into a diagonal and an
off-diagonal part:

HD,b = C + Si�b�
z Sj�b�

z + bb�Si�b�
z + Sj�b�

z � + k2b��Si�b�
z �2 + �Sj�b�

z �2� ,

�12�

HO,b =
1

2
�Si�b�

+ Sj�b�
− + Si�b�

− Sj�b�
+ � . �13�

Here, we have renormalized the anisotropy constant k2b and
the magnetic field bb in such a way that Eq. �11� coincides
with Eq. �1�. i�b� and j�b� denote the lattice sites connected
by the bond b and the additional constant C in HD,b will be
chosen such that all matrix elements of this term become
positive, a condition necessary to interpret them as probabili-
ties. Note that for a finite system at finite temperature the
power series of the partition function can be truncated at a
finite cutoff length  without introducing any systematic
error in practical computations.30 Therefore, reinserting
Eq. �11� into Eq. �10� and rewriting the result yields

Z = �
n=0



�
SC

�
�

�n� − n�!
!

���SC
��� . �14�

Here SC
denotes a product of operators �operator string�

consisting of n nonunity operators and �−n� unity opera-

FIG. 1. The energies of the uniform magnon mode Eq=0�B� for
different polar angles �B of the external field. Eq=0 is zero below
B /J�0.03 for �B=0°. The prefactors gJ�B and kB are absorbed in B
and T, respectively. The latter are given in units of the nearest-
neighbor Heisenberg coupling J. Parameters: S=1, K /J=−0.03, and
T /J=10−4.

FIG. 2. The normalized critical field Bcrit /K2 as a function of
temperature. Parameter: S=1.
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tors H0= Id, which were inserted to get operator strings of
equal length .

In fact, it is impossible to evaluate all operator strings in
Eq. �14�. The SSE-QMC replaces such an evaluation, there-
fore, by importance sampling over the strings according to
their relative weight. Hence, an efficient scheme for generat-
ing new operator strings is needed. In the directed loop ver-
sion of the SSE, this is done by dividing the update into two
parts. In a first step, a diagonal update is performed by tra-
versing the operator string and replacing some unity opera-
tors by diagonal bond operators and vice versa �the prob-
abilities for both substitutions have to fulfill the detailed
balance criterion�. Then, the loop update follows in which
new nondiagonal bond operators can appear in the operator
string. For details of the update procedure, we refer the in-
terested reader to the according literature.29–31

A full implementation of the SSE with directed loop up-
date, which we have used for all QMC calculations in this
work, can be found in the ALPS project.31,32 Since the SSE-
QMC used by us is implemented in z representation �spin
quantization axis along the z axis�, in-plane correlation func-
tions, e.g., the in-plane magnetization, are not accessible.
Further, B � z is the only possible field direction in the used
QMC implementation because a traverse field �in-plane field
component� would lead to nonclosing loops �see Ref. 9�.

III. RESULTS

As mentioned in Sec. II A, the results for the in-plane
systems are very sensitive to the effective anisotropy Kef f�T�.
This sensitivity of the anisotropy is less pronounced for out-
of-plane systems �K2�0� since the applied field B �B � z� and
the intrinsic easy axis are parallel. In order to test our decou-
pling scheme �RPA+AC�, we first compare GFT and QMC
for an out-of-plane system.33

In Fig. 3, the magnetization �Sz� as a function of tempera-
ture T is shown. The straight line belongs to the GFT,
whereas the symbols show the result of the QMC for differ-
ent system sizes. Let us first comment on finite-size effects in
the QMC results.

It can be seen in Fig. 3 that the QMC results converge for
increasing system size N2 �for N�N square lattice�. Indeed,
for N�32, the QMC results are unbiased by finite-size ef-
fects and resulting magnetization curves are almost equal for
increasing N�32. Note that we have omitted error bars in
the figures showing QMC results because the relative errors
are of the order of 10−4.

We now compare the GFT with the QMC results �N
=64�. For low temperatures �T /J�0.5�, we obtain excellent
quantitative agreement. This is plausible because in this re-
gion, the GFT result coincides with the result of the spin-
wave theory which is known to be reliable �exact for T=0�
for low temperatures. For the intermediate region T /J
=0.5–1, the RPA slightly underestimates the magnetization,
which was also found in Ref. 9. The opposite is the case in
the region near the extrapolated Curie temperature TC,34

where the magnetization is overestimated. The reason is the
presence of longitudinal fluctuations, which play an impor-
tant role in this region, and it is well known that the RPA
fails to treat them properly.

We consider now the case of in-plane systems �K2�0�
and applied field in the hard direction �B � z�. As already men-
tioned, there is no “collinear” magnetization in the GFT for
Bz� �Kef f�T��. In Fig. 4, the z component of the magnetiza-
tion is shown as a function of the external field B for a
constant temperature T /J=0.4. As in Fig. 3, we see that the
QMC results for N�64 are almost converged and the finite
size of the calculated system in QMC should not influence
the results anymore. The dotted line marks a critical field
Bcrit. For magnetic fields larger than the critical one, B
�Bcrit, we obtain good agreement between QMC and GFT
results. Below the critical field, B�Bcrit, GFT does not yield
a stable homogeneous magnetization. However, the QMC
results show that there is a finite z component of the magne-
tization in the considered system for 0�B�Bcrit.

In order to compare QMC with GFT results, we have
tilted the magnetic field by �B=0.5° which corresponds to
Bx�10−2Bz in the GFT. As explained before, any symmetry
breaking field Bx�0 leads to a stable homogeneous magne-

FIG. 3. �Color online� Magnetization vs temperature for an out-
of-plane easy-axis system �K2�0�. Straight line: GFT �RPA
+AC� result; symbols: QMC results for different system sizes N2.
Parameters: S=1, B /J=0.01�B � z�, and K2 /J=0.01.

FIG. 4. �Color online� z component of magnetization as a func-
tion of external magnetic field for fixed temperature T /J=0.4. In
contrary to the GFT the magnetization obtained by QMC remains
finite for all fields. The QMC results are converged for N�64.
Parameters: S=1, K2 /J=−0.06 and �B=0°.
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tization with well-defined orientation in the xz plane. How-
ever, such a small contribution of the external field within the
plane should hardly influence the z component of the mag-
netization. This is confirmed by Fig. 5 where we show QMC
results �N=128, �B=0°�, as well as the corresponding GFT
results with �B=0° and �B=0.5°. As expected for �B��Bcrit,
the two solutions in the GFT are nearly the same and agree
well with QMC. Below the critical field, only the solution
with the slightly tilted field yields a stable homogeneous
magnetization and its z component compares well with the
QMC result in the untilted case.

The above results can be interpreted within a semiclassi-
cal picture of noncollinear vortex configurations which are
stable below a critical field Bcrit in the z direction and con-
tribute a finite z component to the magnetization in the case
of an applied field.18 Despite the lack of direct, quantitative
access to such states �or corresponding physical in-plane ob-
servables� within the QMC algorithm, they are included in
principle and one can observe their consequences, namely, a
finite z component of the magnetization below the critical
GFT field. On the other hand, GFT can only describe homo-
geneous collinear configurations of spins, therefore showing
a breakdown of magnetization. However, by applying a
small field in the x direction, the xy symmetry is broken and
the spins rotate in the field direction �the vortices vanish� and
the collinear phase is retrieved. Our results corroborate this
interpretation based on the classical picture. Let us empha-
size that both, GFT for slightly tilted field and QMC for B �z,
describe the competition between the external field �which
favors magnetization parallel to z� and the anisotropy �which
favors in-plane magnetization�. Comparing the z components
of the magnetization for both cases, one can conclude that
the ratio of the competing forces is comparable for QMC and
GFT. This indicates that this competition is correctly taken
into account in GFT.

In Fig. 6, the same field dependence of the z component
of the magnetization is shown for different temperatures. We
have plotted the result for the tilted field in the case of GFT;
the point of breakdown in the untilted case is indicated by

the dotted line. It can be seen that for higher temperatures, no
breakdown of collinear magnetization occurs, meaning that
the condition for the critical field �B� �Kef f�T ,B��� is never
fulfilled in this case. The discrepancies at intermediate tem-
peratures �T=0.9–1.2� are due to the RPA decoupling in the
GFT, as was discussed already.

In Figs. 7–9, the z-component of the magnetization is
plotted as a function of temperature obtained by GFT
�straight line RPA+AC�, as well as QMC �symbols� for dif-
ferent system sizes and a constant applied magnetic field.

Let us first discuss the qualitative behavior of the magne-
tization as a function of temperature which is found in all
three figures. For high T �T�Tcrit�, the magnetization is re-
duced by thermal fluctuations �where the tail of the curve
above T /J�1.5 is due to the applied external field�. In the
vicinity of Tcrit, T−Tcrit→0+, a competition between two ef-
fects sets in and has a pronounced influence on the magne-
tization. On the one side, the effective anisotropy acts against
the external field �Bef f =B− �Kef f�T��, �B �z��. The effective
anisotropy Kef f�T� is reduced with increasing temperature T
and thus the effective field Bef f increases with T. This effect
tends to enhance the magnetization with T. On the other side,

FIG. 5. �Color online� z component of magnetization vs external
field for T /J=0.4 with slightly tilted field ��B=0.5° � in the GFT
result �solid line�. The dotted line shows GFT result for ��B=0° �.
Other parameters are as in Fig. 4.

FIG. 6. �Color online� z component of magnetization vs external
field for different temperatures T /J and fixed system size N2 �N
=128�. Solid lines: GFT ��B=0.5° �; dashed lines: GFT ��B=0° �.
Other parameters are as in Fig. 4.

FIG. 7. �Color online� The z component of magnetization as
function of temperature for a fixed external field. Below a critical
temperature Tcrit, there is a breakdown of magnetization in GFT
where there is none in QMC. Parameters: B /J=0.03, S=1, and
K2 /J=−0.06.
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thermal fluctuations suppress the magnetization with increas-
ing T. The flattening of the magnetization curve near Tcrit is
a result of this competition. For low temperatures T�Tcrit,
the effective anisotropy in the GFT cannot be overcome by
the external field �B� �Kef f�T��, �B �z��. Therefore, the collin-
ear magnetization in our approximation vanishes due to the
mentioned gapless excitations, in contrast to QMC which
yields again a finite magnetization because noncollinear
states are taken into account, as discussed above. The reduc-
tion of the z component of magnetization in QMC below Tcrit
can be pictured classically as the spins being in a noncol-
linear phase with an angle � with respect to the z axis. Since,
in general, anisotropy effects �which favor in-plane magne-
tization� increase when temperature is lowered, the z compo-
nent of the magnetization decreases.

Now we discuss the three figures in detail. In Fig. 7, we
have plotted QMC results for different system sizes showing
again that these are well converged for N�64. Thus, we
conclude that the striking difference between GFT and QMC
is not a mere finite-size effect. The breakdown of magneti-
zation in GFT occurs at a critical temperature Tcrit /J=0.5,
whereas no such breakdown exists in QMC. However, the

exposed maximum of the magnetization in QMC lies near
the breakdown point. The differences between QMC and
GFT in the temperature range T /J�0.3–1.3 are due to the
decoupling of the exchange and anisotropy term in GFT, as
also seen in Fig. 3. It is worth mentioning that the value of
the z component of the magnetization is nearly the same at
the breakdown point in GFT and the maximum in the QMC.
Thus, we have the result that although GFT cannot describe
the noncollinear phase by ansatz, its breakdown coincides
rather well with the onset of this phase, which we attribute to
the maximum of the QMC curve. Figure 8 shows the same
situation for a different anisotropy constant K2=−0.04. The
critical temperature is lower than in Fig. 7 since the ratio
Bz /K2 becomes larger. The tilted field case is also shown for
the GFT results. Again, the qualitative agreement of the z
component of magnetization with QMC is good. To confirm
this point, we have plotted the temperature dependence for
another set of parameters in Fig. 9. There is good qualitative
agreement of the two approaches. Additionally, one gets a
finite component in the x direction in GFT, which is also
plotted in the figure. The two effects of the external field vs
anisotropy competition are nicely to be seen: a noncollinear
state for B �z �z component only in QMC but not in GFT� and
rotation of magnetization for slightly tilted external field
�seen only in GFT�. The ratio of the competing forces agrees
well again in both treatments.

In Fig. 7, we have plotted the results of a different decou-
pling scheme of the anisotropy terms �namely, a mean-field
decoupling, dashed line in Fig. 7�. Although the overall char-
acteristic resembles the RPA+AC result �breakdown of mag-
netization�, the mean-field results differ extremely from the
QMC for a large range of temperature and underestimates
the magnetization. This demonstrates the reliability of the
Anderson-Callen treatment of the local anisotropy terms pre-
sented in Refs. 10, 12, and 13.

The extension of the GFT method to multilayer films is
straightforward.11 We have also included results for a two-
layer film in Fig. 8 for the same parameters as in the mono-
layer case. One finds that for a double layer, magnetism is
stabilized, which can be attributed to the increased coordina-
tion number and thus higher exchange energy. Just like for a
monolayer, one observes a breakdown of collinear magneti-
zation at some critical temperature. This is due to the fact
that the same reasoning regarding the vanishing excitation
gap also applies for multilayer �slab� systems.35 The effective
anisotropy per layer is essentially the same as for a single
layer, thus, the critical �Sz� value �magnetization at critical
field Bcrit� is practically the same. The critical temperature is
higher than that of a monolayer due to the increased mag-
netic stiffness of the double layer.

IV. SUMMARY AND CONCLUSIONS

Using GFT and QMC calculations, we studied easy-plane
systems, as well as easy-axis systems with an external field
applied perpendicularly to the film. The GFT treatment of the
Hamiltonian in Eq. �1� consists of a RPA decoupling for the
nonlocal terms and an AC decoupling for the local terms
performed in a rotated frame, where the new z� axis is par-

FIG. 8. �Color online� Same situation as in Fig. 7 for K2 /J
=−0.04 �other parameters as in Fig. 7�. The result for a two-layer
film treated by GFT is also plotted �dashed-dotted line�.

FIG. 9. �Color online� Same situation as in Fig. 7 for K2 /J=
−0.01, B /J=0.005, and slightly tilted field ��B=0.5° � for the GFT
results.
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allel to the magnetization. For the QMC calculations, we
have used the SSE with directed loop updates, which is well
suited for spin systems.

We have calculated the magnetization as a function of
the external field, as well as temperature. We found a critical
field and critical temperature, respectively, below which
there is no magnetization in GFT whereas there is one in
QMC. By tilting the field slightly in GFT so that it has
a small component in the x direction, we get a stable
magnetization even below the critical field or temperature.
The z component of the magnetization in this case coincides
well with the z component obtained by QMC for the untilted
field, confirming that GFT and QMC agree well in the de-
scription of the external field vs anisotropy competition.
However, this comparison can be only somewhat indirect,
since QMC has access to the noncollinear �B �z� state only,
while GFT is limited to collinear ferromagnetic states �ro-
tated homogeneous magnetization� found for slightly tilted
external fields.

For parameters that are accessible by both QMC and GFT
�B �z ;B�Bcrit�T��, QMC and GFT are in good agreement.
Thus, one can conclude that the GFT is applicable to the
homogeneous phases of systems described by Eq. �1� and
can also be used for system configurations not accessible by
QMC due to the too large system size, e.g., multilayer sys-
tems.

It would be an interesting task for a succeeding work to
extend the GFT in order to get a deeper insight into the
noncollinear configurations also.

APPENDIX: MAGNETIZATION ANGLE

Here we will discuss the second mathematical solution
which occurs besides Eq. �6�. For an external field in the z
direction, the angle dependent part of the free energy includ-
ing second-order anisotropy can be expanded as1,36

F = − MzBz cos � − K̃2 cos2 � ,

where Mz is the z component of the magnetization and K̃2 is
the first nonvanishing coefficient in an expansion of the free
energy for a system with second-order anisotropy. For the
equilibrium angle, one gets

�F���
��

= MzBz sin � + 2K̃2 cos � sin �=
!

0. �A1�

Therefore, one gets two solutions for in-plane systems �K̃2

�0�. For sin ��0, one gets immediately the solution of Eq.

�6� if 2K̃2 /Mz�Kef f holds. This is the stable solution. The
trivial �second� solution sin �=0 is unstable for Bz� �Kef f�
because

� �2F���
��2 �

sin �=0
= ��0 for Bz � �Kef f�

�0 otherwise
	 �A2�

holds. For a detailed discussion of stability conditions in film
systems, we refer to Refs. 1 and 36.
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