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The thermodynamics of laser cooling of solids is analyzed. Using the general theory of radiation entropy, the
important roles of the optical frequency and the photon distribution function in determining the radiation
entropy are identified. The usefulness of a narrow-band approximation is established for a wide range of
radiant sources. This approximation is then applied to compare the entropies of different light sources, includ-
ing blackbody radiation, lasers, fluorescence, and the emerging class of random lasers. Based on these results,
the Carnot efficiency for laser cooling of solids is determined for emission fields with various entropy char-
acteristics. It is shown that fluorescent emission is the most efficient form of the radiated field for laser cooling
of solids, and cooling schemes based on any stimulated emission process �including random laser action� are
inherently less efficient. The influence of luminescence quantum yield on cooling is also considered.
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I. INTRODUCTION

As formulated by Boltzmann,1 thermodynamic entropy is
determined by simply counting the number of available
states associated with specified degrees of freedom of a sys-
tem. However it is closely related to numerous other proper-
ties of systems such as information content,2,3 temperature,
and perhaps even the structure of matter and space-time
itself,4 because the states in question can be any of a multi-
tude of internal or external degrees of freedom of the objects
of which the system is composed. Entropy analyses can
therefore place stringent limits on physical processes that
alter the state of matter, provided the system is not displaced
too far from thermodynamic equilibrium. For example, it can
describe the evolution of the kinetic temperature during slow
heating or cooling. In this paper, entropy calculations are
used to calculate the effects of various light sources and re-
emission processes on the cooling of condensed matter by
radiation in order to assess their comparative efficacy, by
explicitly accounting for entropy content of the radiation
fields. Just as for laser cooling of gases,5 spontaneous emis-
sion is shown to be important in mediating the irreversibility
needed for laser cooling of solids using very general
arguments.

The concept of optical refrigeration dates back to 1929,
when Pringsheim recognized that thermal energy associated
with the translational degrees of freedom of isolated atoms
could be reduced by the process of anti-Stokes fluorescence.6

In this process, absorption of the red detuned beam occurs
when some fluctuation in the configuration of the atomic
positions in the solid permits it by lowering some electronic
energy level. Subsequent reequilibration raises the atomic
energy level and lowers the total vibrational energy remain-
ing, as shown in Fig. 1. As a result, the system loses an
amount of energy equal to the frequency detuning multiplied
by Planck’s constant, every time a quantum is absorbed and
the atom emits a photon. In gases it is important that this
mechanism is consistent with a net loss of momentum be-
cause on average atoms moving toward the source present a
higher probability for light absorption and are slowed by

momentum transfer during the interaction. The average en-
ergy in a single translational degree of freedom is thereby
reduced. One may refer to this as a reduced, one-dimensional
kinetic temperature defined by 1

2kBT= �Ek�, although the ve-
locity distribution is not likely to be Maxwellian in the pres-
ence of light, and the one-dimensional distribution might
readily be different from the three-dimensional distribution
that defines the equilibrium temperature.5 In solids, although
free translational motion of atoms does not take place, anti-
Stokes fluorescence is also known to occur.7

Historically, it was believed at first that optical cooling by
anti-Stokes fluorescence contradicted the second law of ther-
modynamics. Predictions suggested that the cycle of excita-
tion and fluorescence was reversible, but that optical cooling
would require the transformation of heat into work.8,9 This
issue was cleared up by Landau, who pointed out that en-
tropy must be assigned to the radiation field10 for a consistent
description. Entropy of the radiation field was shown to be
proportional to the frequency bandwidth and also to the solid
angle of the propagating light. Typically, lasers have very
small bandwidths and are highly directional, so their entropy
is low. On the other hand, spontaneous fluorescence tends to
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FIG. 1. �Color online� The principle of laser cooling in rare-
earth ion doped crystal. The electron is excited by absorbing a laser
pumping photon and one or more lattice phonons, and then decays
by emitting a higher energy fluorescence photon. The dashed level
is a vibrational sublevel.

PHYSICAL REVIEW B 75, 214304 �2007�

1098-0121/2007/75�21�/214304�9� ©2007 The American Physical Society214304-1

http://dx.doi.org/10.1103/PhysRevB.75.214304


be broadband and is emitted in all directions. Consequently
its entropy is comparatively high. A consistent description of
optical cooling must include the entropy of the incident and
outgoing radiation fields.

In the present paper the theoretical cooling efficiencies
achievable with ideal laser input and various output light
fields are calculated and compared. First, the general theory
of radiation entropy is reviewed, and a narrow-band approxi-
mation is justified to simplify the entropy calculation. Based
on this approximation, the entropies for a variety of repre-
sentative light fields are calculated and compared. Then, it is
assumed that a single mode laser is used to irradiate a solid
whose emission covers the range from broadband spontane-
ous emission to random laser or diode laser output. Laser
cooling efficiencies are then calculated versus the photon
distribution function, which describes the character of the
output field. In this way it is shown that single mode excita-
tion and fluorescent output optimize the laser cooling process
in solids just as in gases, whereas stimulated emission output
invariably lowers the cooling efficiency.

II. RADIATION ENTROPY

The total power P of a steady, unpolarized beam of light
�not necessarily collimated� crossing a surface A, that lies in
the x-y plane perpendicular to the direction z of propagation,
is given by the integral of the spectral radiance K� over
frequency and solid angle.11 That is,

P = �
A
�

�
�

�

K�d� cos �d�dA , �1�

where � is the optical frequency, � is the solid angle, and �
is the polar angle between the surface normal and the z axis.
The spectral radiance K�, which is the energy per unit time,
area, angular frequency, and solid angle, is related to the
light source characteristics by

K� = ����c
D���n

4�
=

�n�3

4�3c2 . �2�

Here c is the speed of light in vacuum, D��� is the photon
density of states given by D���=�2 / ��2c3�,12 and n is the
photon distribution function. The spectral radiance K� can be
determined in practice with a spectrally dispersed measure-
ment of the absolute intensity of the source, and then the
photon distribution function n can be determined by invert-
ing Eq. �2�. The function n, which specifies how the radiant
energy is distributed among available modes and frequen-
cies, is the key quantity characterizing the nature of a light
source in this paper.

In terms of n, the beam power can be written as

P =
�

4�3c2�
A
�

�
�

�

n�3d� cos �d�dA . �3�

Finding the entropy flow rate of a light beam is not as
straightforward as determining power P, since the gas of
photons is not necessarily in equilibrium. Landau10 was the
first to assign entropy to radiation fields by applying the

Bose statistics to a “photon gas.” A detailed derivation of
entropy for light has been given in Refs. 11, 13, and 14.

We introduce the probability P�N1 ,N2 , . . . ,Nm� of finding
N1 photons in optical mode 1, N2 photons in mode 2, …, and
Nm photons in mode m �m�1�. Here the optical mode refers
to the photon wave vector, and photons sharing the same
wave vector are in the same mode. Then the entropy of the
photon gas is given by1,13

S = − kB�
N1

�
N2

¯ �
Nm

P�N1,N2, . . . ,Nm�ln P�N1,N2, . . . ,Nm� ,

�4�

where kB is the Boltzmann constant. Denoting the probability
of finding Nj photons in mode j �j=1,2 , . . . ,m� by pj�Nj�,
and assuming that pj�Nj� is independent of the occupation of
other modes, the probability becomes

P�N1,N2, . . . ,Nm� = p1�N1�p2�N2� ¯ pm�Nm� , �5�

where normalization requires

�
Nj=1

�

pj�Nj� = 1, �6�

for each mode j. Substituting Eq. �5� into �4�, and using �6�,
one finds

S = − kB�
j=1

m

�
Nj=0

�

pj�Nj�ln pj�Nj� = �
j=1

m

Sj , �7�

where the partial entropy for one mode j is

Sj = − kB �
Nj=0

�

pj�Nj�ln pj�Nj� . �8�

These equations indicate that the total entropy of a multi-
mode field can be decomposed into entropies for each mode.

Next assume that the probability of finding one additional
photon in any state is independent of the number already
occupying that state. Thus pj�Nj�	qj

Nj, where qj is a number
between 0 and 1 for all light sources. For example, qj
=exp�−�� j /kBT� for blackbody emission.12 The normaliza-
tion requirement Eq. �6� gives

pj�Nj� = qj
Nj��

l=0

�

qj
l = �1 − qj�qj

Nj �0 
 qj 
 1� . �9�

The distribution function nj of state j, which gives the
weighted occupation of the mode, can therefore be written as

nj = �
Nj=0

�

Njpj�Nj� = �
Nj=0

�

Nj�1 − qj�qj
Nj =

qj

1 − qj
, �10�

Substituting Eqs. �9� and �10� into �7�, the entropy of the
photons can be written in terms of nj as

S = kB�
j=1

m

��1 + nj�ln�1 + nj� − nj ln nj	 , �11�

and the entropy for the mode j becomes
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Sj = kB��1 + nj�ln�1 + nj� − nj ln nj	 . �12�

In much the same way that we have defined the spectral
energy radiance K�, a spectral entropy radiance L� �the en-
tropy per unit time, area, angular frequency, and solid angle�
can also be defined as

L� = Sjc
D���
4�

=
kB
�1 + n�ln��1 + n�	 − n ln n��2

4�3c2 . �13�

In terms of this quantity, the entropy flow rate Ṡ of a light
beam can finally be written as

Ṡ = �
A
�

�
�

�

L�d� cos �d�dA =
kB

4�3c2�
A
�

�
�

�

��1 + n�ln�1 + n� − n ln n	�2d� cos �d�dA . �14�

The quantity Ṡ is suitable for characterizing the degree of disorder of a light beam. However, it is an extensive variable
rather than an intensive variable. For example, if we just double the surface area of a blackbody, the entropy of its radiation
is also doubled, although the radiation is essentially still of the same class. On the other hand, a high-power diode laser beam
might contain the same amount of entropy as a very low-power blackbody radiation, although the nature of the radiation is
very different. Hence, the amount of entropy is always dependent on the beam power, and cannot be used meaningfully on its
own to distinguish or characterize various radiation fields. A more suitable parameter for this purpose is the entropy flow rate
per unit power,

Ṡ

P
=

kB

�

�
A
�

�
�

�


�1 + n�ln��1 + n�	 − n ln n��2d� cos �d�dA

�
A
�

�
�

�

n�3d� cos �d�dA

. �15�

Here Ṡ / P has units of inverse temperature �K−1�, and the
reciprocal of this quantity is often referred to as the “flux
temperature” of the beam in the literature.11,13

The entropy flow rate per unit power Ṡ / P covers many
orders of magnitude for different radiation fields, and in the
present paper represents the beam “quality.” Hence, as will

be seen in Sec. V, Ṡ / P rather than Ṡ is an essential parameter
in calculating the Carnot efficiency for laser cooling.

III. ROLES OF ANGULAR FREQUENCY AND
DISTRIBUTION FUNCTION IN RADIATION ENTROPY

Equation �15� completely describes the roles of distribu-
tion function, area, frequency, and solid angle in the entropy
flow rate per unit power. However, for nonthermal �nonequi-
librium� radiation with arbitrary distribution functions the

calculation of Ṡ / P is laborious. Consequently we proceed
below to examine a useful approximation for the radiance
based on an assumption that the radiation can be treated as
“narrow-band.”

Introducing a central frequency �0, frequency bandwidth
��, and divergence angle � of the beam, we rewrite the
power in a form that is more convenient for analysis. If the
radiation is narrow-band, and isotropic within the circular
cone of half-angle �, the power of the beam can be approxi-
mated as

P = �
A
�

�
�

��

K� cos �d�d�dA = K̄�A��� sin2 � ,

�16�

where K̄� is the mean radiance over the frequency bandwidth
and beam solid angle. Note that in the original spectrum the
frequency runs over the interval 0 to �, while here, we only
consider the range �� given by the full-width at half-
maximum �FWHM�. This assumes that the energy and en-
tropy outside this range can be neglected.

According to Eq. �2�, an estimated or average distribution
function n̄ can be defined that is related to the average radi-
ance K̄� through

K̄� =
�n̄�0

3

4�3c2 . �17�

Note that in this expression the variable � has been replaced
with the central frequency �0 in the optical spectrum. In the
same way that n can be calculated from K� using Eq. �2�, the
average distribution function n̄ can readily be calculated

from the mean radiance K̄� using Eq. �17�.
The entropy flow rate is then approximated in a similar

fashion,

Ṡ =
kB

4�3c2 
�1 + n̄�ln��1 + n̄�	 − n̄ ln n̄��0
2A��� sin2 � .

�18�

Hence the entropy flow rate per unit power reduces to
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Ṡ

P
=

kB

��0

�1 + n̄�ln��1 + n̄�	 − n̄ ln n̄

n̄
. �19�

This expression, while being limited to narrow-band radia-
tion, is much simpler than the general relation in Eq. �15�. It
has the merit of showing that for narrow-band sources the
entropy flow rate per unit power is inversely proportional to
the central frequency �0, and is decreasing with an increas-
ing average distribution function n̄.

To investigate the applicability of the narrow-band ap-
proximation, we now compare results based on Eq. �19� with
exact results based on Eq. �15�. Narrow-band radiation is
considered for which the spectral radiance is described by a
Gaussian distribution

K� = K0 exp�− 
 � − �0

�ln 2��
�2� . �20�

Here K0 is the spectral radiance at the central frequency �0
of the source, and �� is the spectral width. Representative
values for optical sources are K0=60 W/m2-�rad/s�-sr, �0

=1.8850
1015 rad/s �or the central wavelength �0=1 �m�,
and ��=2.5133
1011 rad/s �or ��=0.133 nm�. The corre-
sponding spectral radiance K� and distribution function f are
shown in Figs. 2�a� and 2�b� respectively. The exact entropy
flow rate per unit power, calculated using Eq. �15�, is 5.59

10−12 K−1. To use the narrow-band approximation, the av-
erage radiance is first calculated using

K̄� =

�
��

K�d�

��
, �21�

and then the average distribution function is derived from it
using

n̄ =
4�3c2K̄�

��0
3 . �22�

The results of the narrow-band approximation are given by
the dashed curves in Figs. 2�a� and 2�b�. The approximate
entropy flow rate per unit power calculated using Eq. �19� is
found to be 1.79
10−12 K−1. This value is only one-third of
the exact value. This is an acceptable approximation in cases
where no other highly ordered light source with comparable
entropy is present, as explained below. For example, in laser
cooling of solids considered here, we have three input and
output energy flows: the laser pumping, the fluorescence
emission, and the thermal load. Since the entropy of the laser
pumping is orders of magnitude lower than the other two, a
deviation of 3 times in its entropy will make no difference in
the Carnot efficiency, as will be seen in Sec. V.

To further check the validity of the narrow-band approxi-
mation for a variety of Gaussian sources, we calculated the

exact and approximate entropy flow rate per unit power Ṡ / P
over a wide range of values of K0, �0, and ��. Interestingly,

Ṡ / P is not a function of the bandwidth ��, since �� does
not affect the mean distribution function n̄, for a given K0

and �0. Hence, Ṡ / P is plotted only as a function of K0 and
�0 in Fig. 3. In the figure, it is evident that the approximate
results agree very well with the exact results in the low ra-

diance region. This is because for low radiance Ṡ / P is a
weak function of K0, while for high radiance it decreases
strongly as a function of K0. Hence the approximate ap-
proach agrees best with exact calculations at low radiance.

The narrow-band approximation also works surprisingly
well for some sources of broadband radiation. We show this
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FIG. 2. �Color online� �a� The spectral radiance K� �solid curve�
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by considering an additional case of the blackbody spectral
radiance, which is

K�
0 =

�

4�3c2n0�3, �23�

with n0 being given by the equilibrium distribution function

n0 =
1

e��/kBTb − 1
. �24�

This is the usual Bose-Einstein distribution, and Tb is the
temperature of the cavity which emits the blackbody radia-
tion.

Blackbody emission is a special case for which an exact

analytical expression for Ṡ / P can be obtained. As this form
of radiation field is uniformly directed in space, its power P
is given by Eq. �1�, i.e.,

P = A�
�

4�3c2�
0

�

n0�3d� = �SBATb
4, �25�

where �SB is the Stefan-Boltzmann constant. The corre-
sponding entropy flow rate is

Ṡ = A�
kB

4�3c2�
0

�


�1 + n0�ln��1 + n0�	 − n0 ln n0�d�

=
4

3
�SBATb

3, �26�

with the result that the entropy flow rate per unit power is

Ṡ

P
=

4

3Tb
. �27�

As a numerical example, consider blackbody emission from
a cavity at room temperature Tb=300 K. The spectral radi-
ance and distribution function are shown in Figs. 4�a� and

4�b� respectively. The exact value of Ṡ / P, calculated using

Eq. �27�, is Ṡ / P=4.44
10−3 K−1, while the approximate
value calculated using Eq. �19� is 4.51
10−3 K−1. The dif-
ference is less than 2% and the approximation is therefore
well justified in this case.

To further check the validity of this approximation for
blackbody sources at a variety of temperatures of interest in
this paper, we calculated the exact and approximate values of

Ṡ / P as a function of temperature. The results are plotted in
Fig. 5. Interestingly, over the entire range the approximation
is in excellent agreement with the exact approach, even
though blackbody radiation is a broadband source. The fun-
damental reason behind this agreement is, in this temperature
range the blackbody source has very low radiance, so that the
entropy is not sensitive to any small error in n̄ introduced by
the averaging process.

The reason the narrow-band approximation works better
than expected can be understood from another perspective.
In this procedure we first truncate the original spectrum and
consider a restricted range of frequency ��. This makes the
approximated spectra narrower than the original ones, and
decreases the degree of disorder. Second, this �� range of

the original spectra is averaged to get the mean spectra, with
the result that the average radiance becomes uniformly dis-
tributed at a lower value than the peak in the original spectra.

Because Ṡ / P depends essentially inversely on n, the degree
of disorder is artificially increased by this procedure. As a

result, whether the approximate value of Ṡ / P is found to be
higher or lower than the exact value is determined by how
well these two steps compensate each other. Overall, our
finding is that this narrow-band approximation works par-
ticularly well for light sources of low radiance, for which

Ṡ / P is a weak function of the mean distribution function.
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IV. ENTROPY OF DIFFERENT LIGHT SOURCES

A comparison of light sources with a wide variety of en-
tropic characteristics is relevant for the evaluation of laser
cooling of solids. Some sources are spectrally broadband and
isotropic in space, such as blackbody sources. Some are
spectrally narrow-band and directional in space, such as la-
sers. These cases are sketched in Fig. 6. To calculate the

corresponding Ṡ / P we only need to know the central fre-
quency �0 and the average distribution function n̄ for each
type of source. The latter can be calculated if the average
spectral radiance is known, and this is facilitated by relating

K̄� to more convenient, measurable parameters. Based on
Eqs. �16� and �17�, the average distribution function n̄ can be
rewritten in terms of power P, bandwidth ��, beam angle �,
and central frequency �0, as

n̄ = K̄�

4�3c2

��0
3 =

P

A��� sin2 �

4�3c2

��0
3 . �28�

Numerical examples for four classes of radiation fields are
presented below, and the associated parameters are listed in
Table I. The central wavelength �0 is chosen to be the same
for the purpose of comparison.

Blackbody emission has a high degree of disorder, since it
is equilibrium emission from all possible electronic levels,
and includes both spontaneous and stimulated emission
fields. The average spectral radiance and the distribution
function is determined by temperature alone. For a black-
body at Tb=4395 K, the average distribution function is n̄
=0.0324, and the entropy flow rate per unit power is

�Ṡ / P�b=3.078
10−4 K−1. This is comparable to the entropy
of thermal energy at this temperature, and in this sense
blackbody radiation is considered as “pure heat” or “low-
grade” radiation energy.11

In laser cooling of solids, the radiant output of the system
is typically chosen to be fluorescence. Fluorescence is spa-
tially isotropic spontaneous emission that is usually spec-
trally narrow-band. Using values relevant to laser cooling of
Yb3+:ZBLANP from earlier experiments,15 where the central
frequency and the bandwidth are �0=2�c /�0=1.886

1015 rad/s �as �0=999.3 nm� and ��=2�c�� /�0

2=5.662

1013 rad/s �as ��=35 nm�, respectively, the cooling
power of the system was estimated to be approximately
0.9 mW, and the corresponding fluorescence power P was
60 mW.15 Assuming the fluorescence is emitted homoge-
neously and hemispherically out of the surface of the sample,
the beam divergence is then �=� /2. The sample in Ref. 15
was a cylinder with diameter 170 �m and length 7 mm, giv-
ing the surface area A=3.784
10−6 m2. Hence the average
distribution function n̄ was

n̄ =
P

A� sin2 ���

4�3c2

��0
3 = 1.404 
 10−3. �29�

This determines the entropy flow rate per unit power to be

�Ṡ / P� f =5.36
10−4 K−1.
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FIG. 6. Schematics of the emission bandwidth and solid angle
associated with four different emission sources.

TABLE I. Beam parameters and entropy flow rates per unit power for typical light sources.

Blackbody
emission
�Tb=4,395 K� Fluorescence

Random
laser Diode laser

Beam power P, W 80.05 0.06 0.06 0.06

Central wavelength �0, nm 999.3 999.3 999.3 999.3

Wavelength bandwidth ��, nm 2,223 35 1 0.1331

Central frequency �0, rad/s 1.887
1015 1.887
1015 1.887
1015 1.887
1015

Frequency bandwidth ��, rad/s 2.448
1015 5.666
1013 1.888
1012 2.513
1011

Surface area A, m2 3.784
10−6 3.784
10−6 3.784
10−6 7.854
10−9

Beam divergence �, rad � /2 � /2 � /2 0.001

Average radiance K̄�, W/m2-�rad/s�-sr 2.071
10−9 8.908
10−11 2.672
10−9 9.6763

Average distribution function n̄, 0.0324 1.404
10−3 0.0421 1.525
108

Entropy flow rate per unit power Ṡ / P, K−1 3.078
10−4 5.362
10−4 2.906
10−4 9.030
10−12
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In powder laser samples pumped with high intensity, ran-
dom laser output with the same energy can be achieved.
Emission may be considered to be homogeneous into the
half-space above the emitting surface. Assuming a band-
width of ��=1 nm,16,17 which is much narrower than that of

the fluorescence, one finds n̄=0.0421, and �Ṡ / P�rl=2.906

10−4 K−1.

If the output radiation field were to be in the form of a
diode laser, again operating at 60 mW with a central wave-
length of 999.3 nm, but with a typical beam size of 100 �m
at the source, a bandwidth of 40 GHz and a divergence of

�=1 mrad, one would find n̄=1.525
108 and �Ṡ / P�dl

=9.03
10−12 K−1.
These results for the entropy flow rate per unit power for

various light sources are compared in Fig. 7. It is evident

from the figure that Ṡ / P decreases rapidly with decreasing
beam bandwidth and divergence. If either the bandwidth ��
or the divergence � of the source drops to nearly zero, then

we see from Eq. �18� that Ṡ / P becomes

Ṡ � lim
n̄→�

kBA

4�2c2 ��1 + n̄�ln n̄ − n̄ ln n̄	�0
2�� sin2 � = 0.

�30�

Hence the limiting case of monochromatic or unidirectional
radiation �which is highly ordered� constitutes a source that
carries essentially no entropy.

V. CARNOT COOLING EFFICIENCY VERSUS EMISSION
ENTROPY

Now consider a control volume that is to be cooled radia-
tively. This volume is labelled “optical refrigerator” in Fig. 8.
The power flow in and out of this region reflects the balance
of the pump laser, the external thermal load, and the fluores-
cence emission.

According to the first law of thermodynamics, we have

Pout = Pin + Qc. �31�

The cooling efficiency is defined in the customary way for a
refrigerator,18 namely

� =
Qc

Pin
. �32�

The maximum value of � is the Carnot limit �C determined
by the second law of thermodynamics. The entropy carried
by the fluorescence cannot be less than the sum of the en-
tropy withdrawn from the cooling sample and the entropy
transported in by the pump laser. That is,

Ṡout � Ṡin + Ṡc, �33�

where Ṡin, Ṡout, and Ṡc are the entropy flow rates for the
absorbed irradiation, the output emission, and the thermal
load. This equation can also be written as

Pout
 Ṡ

P
�

out
� Pin
 Ṡ

P
�

in
+

Qc

T
, �34�

where T is the temperature of the thermal load. The revers-
ible Carnot limit is obtained by choosing the equality sign in
Eq. �34�. By substituting Eqs. �31� and �32� into Eq. �34� to
eliminate Pin, Pout, and Qc, we find the Carnot efficiency to
be

�C =
��Ṡ/P�out − �Ṡ/P�in	T

1 − �Ṡ/P�outT
. �35�

Thus the cooling power and the total output power are

Qc = �CPin �36�

and

Pout = �1 + �C�Pin. �37�

Equation �35� indicates that small �Ṡ / P�in and large

�Ṡ / P�out are desirable to enhance �C, and that it is important
to control the characteristics of both the input and output

fields. A pumping source with the smallest possible �Ṡ / P�in,
corresponding to a monochromatic, unidirectional, single-

mode laser, is desired since �Ṡ / P�in=0. The emitted field
could be in the form of fluorescence, random laser emission,
or monomode laser quality emission, via appropriate selec-
tions of pumping level, sample, and feedback structures. It is
therefore useful to know how the cooling efficiency can be
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FIG. 7. �Color online� Variation of the entropy flow rate per unit
volume as a function of the average distribution function n̄ and
central frequency �0, which characterizes different light sources.
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FIG. 8. �Color online� A control volume showing various input
and output processes that control the energy balance during laser
cooling of a solid.
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influenced by controlling the radiation character of the emis-
sion fields. Under the condition of single-mode laser pump-
ing, Eq. �35� becomes

�C =
�Ṡ/P�outT

1 − �Ṡ/P�outT
. �38�

Using Eq. �38�, the Carnot efficiency can be calculated as
a function of the entropy flow rate per unit power, or as a
function of the average distribution function. The result is
shown in Fig. 9. This figure indicates that fluorescent sys-
tems have the highest cooling efficiency. In the example of
laser cooling of Yb3+:ZBLANP discussed earlier,11 the en-
tropy flow rate per unit power of the fluorescence emission

was found to be �Ṡ / P�out=5.36
10−4 K−1. Correspondingly,
the Carnot efficiency of this optical cooler is found to be
about 20% at room temperature. If stimulated emission is
employed in the system, the Carnot cooling efficiency is
lower. One finds �=0.11 for random laser emission and �
=2.7
10−9 for diode laser emission, respectively. Fields of
this nature are far less efficient than fluorescence emission.

Also using Eq. �38�, the cooling efficiency as a function

of temperature is shown in Fig. 10, for �Ṡ / P�out=5.36

10−4 K−1. It diminishes approximately linearly to zero as
T→0. Note that here we do not include the dependence of

�Ṡ / P�out on the fluorescence power and sample temperature,
since there are not sufficient experimental data to make these
calculations. When these effects are included, the cooling
efficiency is still expected to diminish to zero, but at a
slightly different rate.

VI. COOLING EFFICIENCY FOR REAL SYSTEMS
INCLUDING LUMINESCENCE QUANTUM YIELD

In real systems, the luminescence quantum yield is less
than unity, and the energy loss during any internal relaxation
process is irreversible, from a thermodynamic point of view.
When considering such losses caused by nonradiative decay,
it is helpful to account for the associated heat load explicitly

by dividing the cooling load channel shown earlier in Fig. 8
into two parts. In Fig. 11 the cooling load channel is now
considered to be the reversible part of the refrigerator cycle.
No entropy is generated, and the cooling load is still given
by Eq. �36�. In the figure, the new heat generation channel
corresponds to the irreversible losses from internal relax-
ation, and the entropy production for this channel, also for
the entire cooling cycle, is

�Ṡ = Ṡout + Ṡh − Ṡin − Ṡc = Ṡh − Qh
 Ṡ

P
�

out

= Qh� 1

T
− 
 Ṡ

P
�

out
� . �39�

Here, the irreversibility is considered to be introduced when
part of the fluorescence output is turned into heat. The rela-
tions between the powers are

Pout + Qh = Pin + Qc, �40�

Qc = �CPin, �41�

Pout

Pout + Qh
= �q, �42�

where �q is the luminescence quantum yield. The net cooling
power is then the difference between the cooling load and the
heat generation, or

Q = Qc − Qh = Pin��C − �1 + �C��1 − �q�	 , �43�

and the cooling coefficient of performance is
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FIG. 9. Variation of the Carnot efficiency with respect to the
average distribution function for the output emission fields. Three
typical emission fields are marked.
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entropy flow rates. Laser pumping �in�, fluorescence output �out�,
cooling �c�, and heat generation �h�.
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� =
Q

Pin
= �C − �1 + �C��1 − �q� . �44�

Using Eq. �44� along with Eq. �35�, the cooling coefficient
may be plotted as a function of the luminescence quantum
yield �q, as shown in Fig. 12. The cooling coefficient has a
linear relationship with the luminescence quantum yield. If
the luminescence quantum yield is 1, the reversible cycle
discussed in the preceding section is recovered, and the cool-
ing coefficient is the Carnot efficiency. In the other extreme,
if the luminescence quantum yield is zero, the cooling coef-
ficient becomes −1, indicating that all the laser pumping en-
ergy is turned into thermal energy and deposited into the
cooling element. There exists a critical luminescence quan-
tum yield �q,c below which the cooling effect is eliminated.
For example, �q,c is 0.83 at room temperature, if the pump-
ing is an ideal laser source and the fluorescence has an en-
tropy flow rate per unit power of Ṡ / P=5.36
10−4 K−1.

VII. DISCUSSION

The above analysis indicates that the limiting efficiency of
laser cooling of solids can be as high as 20%. However, the

cooling efficiency achieved to date is only around 3%.19

Hence a significant amount of irreversibility must be present
in the experiments. An existing strategy is to use a longer
pumping wavelength to obtain higher cooling efficiency, but
in practice the absorption coefficient drops more rapidly than
the rise in efficiency beyond an optimum detuning. Also,
trace impurity absorption eventually dominates over the de-
sired Yb3+ absorption, causing heating. While the sample
could be purified to suppress trace absorption, it seems that
new methods would be more useful. For example, the Yb3+

absorption coefficient could be increased by enhancing the
electron-phonon interaction.20

The results of this paper show that since current experi-
ments already focus on the use of incident pump sources
with zero entropy and spontaneous emission output, no im-
provements can be expected by resorting to other forms of
output. For example, monomode pumping together with ran-
dom laser output is inherently less efficient than monomode
pumping with spontaneous emission output, other things be-
ing equal. In the framework of fluorescence, one should ex-
plore ion-host combinations which can emit fluorescence
with larger entropy flow rate per unit power. Higher lumines-
cence quantum yield is essential, along with higher radiative
decay rates �though the latter is only important close to satu-
ration�. In summary, improvements are most likely to come
from enhanced luminescence quantum yield, enhanced ab-
sorption through manipulation of the electron-phonon inter-
action, improved emission rates, or from altogether new
methods.
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