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We study the spectrum and eigenstates of the quantum discrete Bose-Hubbard Hamiltonian in a finite
one-dimensional lattice containing two bosons. The interaction between the bosons leads to an algebraic
localization of the modified extended states in the normal-mode space of the noninteracting system. Weight
functions of the eigenstates in the space of normal modes are computed by using numerical diagonalization and
perturbation theory. We find that staggered states do not compactify in the dilute limit for large chains.
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I. INTRODUCTION

The study of discrete breathers in different physical sys-
tems has had remarkable developments for the past two
decades.1–4 These excitations are generic time-periodic and
spatially localized solutions of the underlying classical
Hamiltonian lattice with translational invariance. Their spa-
tial profiles localize exponentially for short-range interaction.
Recent experimental observations of breathers in various
systems include such different cases as bond excitations in
molecules, lattice vibrations, and spin excitations in solids,
electronic currents in coupled Josephson junctions, light
propagation in interacting optical waveguides, cantilever vi-
brations in micromechanical arrays, cold atom dynamics in
Bose-Einstein condensates loaded on optical lattices, among
others.5–13 In many cases, quantum dynamics is important.
Quantum breathers consist of superpositions of nearly degen-
erate many-quanta bound states, with very long times to tun-
nel from one lattice site to another.4,14–29 Remarkably, quan-
tum breathers, though being extended states in a
translationally invariant system, are characterized by expo-
nentially localized weight functions, in full analogy to their
classical counterparts.

Recently, the application of these ideas to the normal-
mode space allowed us to explain many facets of the Fermi-
Pasta-Ulam �FPU� paradox,30 which consists of the nonequi-
partition of energy among the linear normal modes in a
nonlinear chain. There, the energy is localized around the
initial normal mode which is excited. Introducing the notion
of q-breathers,31–33 which are time-periodic excitations local-
ized in the normal-mode space, the FPU paradox and some
related problems were successfully explained. Despite the
fact that the interaction in the normal-mode space is long
ranged, it is selective and purely nonlinear; thus, q-breathers
localize exponentially in the normal-mode space.

In this paper, we address the properties of quantum
q-breathers. We study a one-dimensional quantum lattice
problem with two quanta. By defining an appropriate weight
function in the normal-mode space, we explore the localiza-
tion properties of the eigenstates of the system. We observe
localization of the weight function as a function of the wave
number, which we interpret as a signature of quantum
q-breather excitations. By using a numerical diagonalization

of the Hamiltonian and nondegenerate perturbation theory,
we find algebraic decay of the weight function in the normal-
mode space, at variance to the exponential decay found for
q-breathers in the case of a classical nonlinear system. An-
other intriguing difference is based on the interference ef-
fects of two interacting quanta. For the general case, the
quantum q-breather states approach the noninteracting eigen-
states in the dilute limit of large chains. However, states with
Bloch momentum close to ±� keep their finite localization in
that limit.

In Sec. II, we describe the model and introduce the basis
we use to write down the Hamiltonian matrix. In Sec. III, we
review results on the properties of two-quanta bound
states—the simplest versions of a quantum breather. In Sec.
IV, we consider the case of extended states. We introduce a
weight function to describe localization in the normal-mode
space, and obtain analytical results using perturbation theory.
We present our numerical results obtained by diagonalization
of the Hamiltonian matrix, comparing them to analytical es-
timations. We conclude in Sec. V.

II. MODEL

We study a one-dimensional periodic lattice with f sites
described by the Bose-Hubbard �BH� model. This is a quan-
tum version of the discrete nonlinear Schrödinger equation,
which has been used to describe a great variety of systems.34

The BH Hamiltonian is given by35

Ĥ = Ĥ0 + �Ĥ1, �1�

where

Ĥ0 = − �
j=1

f

bj
+�bj−1 + bj+1� , �2�

Ĥ1 = −
1

2�
j=1

f

bj
+bj

+bjbj . �3�

Here, bj
+ and bj are the bosonic creation and annihilation

operators which satisfy the commutation relations �bi ,bj
+�

=�ij, �bi
+ ,bj

+�= �bi ,bj�=0. � is the parameter controlling the
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strength of the interaction, and the chain of length f is sub-
ject to periodic boundary conditions. The chain is transla-
tional invariant and the Hamiltonian �1� commutes with the

number operator N̂=� j=1
f bj

+bj, whose eigenvalue is denoted
by n. We consider the simplest nontrivial case of n=2. It is
of direct relevance to studies and observations of bound two-
vibron states.36–47

In order to describe the quantum states, we use a number
state basis35 ��n�= �n1 ,n2 , . . . ,nf�, where ni represents the
number of bosons at site i �n=�ni�. As an example,
�0200000� corresponds to a state with two bosons on the
second site and zero bosons elsewhere. For a given number
of bosons, each eigenstate is a linear combination of number
states with fixed n. In addition to the number of quanta n,
there are n−1 further quantum numbers which define the
relative distance between the bosons. For n=2 that reduces
to defining one further relative distance j−1 between the two
quanta, which can take �f +1� /2 different values in our case:

��2� = �
j=1

�f+1�/2

v j��2
j � . �4�

Due to translation invariance, the eigenstates of Ĥ are also

eigenstates of the translational operator T̂, where �=exp�ik�
is its eigenvalue with k=2�� / f being the Bloch wave num-
ber and �� �−�f −1� /2 , �f −1� /2�. Due to periodic boundary

conditions, T̂�n1 ,n2 , . . . ,nf�= �nf ,n1 ,n2 , . . . ,nf−1�. For the
sake of simplicity, we deal with an odd number of sites f .
Thus, we can construct number states which are also Bloch
states:

�5�

With this basis, we can derive the eigenenergies for each

given Bloch wave number k from Ĥk��n�=E��n� after com-
puting the eigenvalues of the matrix with the same structure
as in Ref. 35 for the case of the BH system:

Ĥk = −�
� q	2

q*	2 0 q

q* 0 q

� � �

q* 0 q

q* p


 , �6�

with q=1+� and p=�−�f+1�/2+�−�f−1�/2. By varying the Bloch
wave number in its irreducible range, we obtain the eigenen-
ergy spectrum shown in Fig. 1.

III. BOUND STATES: LOCALIZATION IN REAL SPACE

In Figs. 1�a�–1�c�, we show that as the interaction param-
eter is increasing, an isolated ground-state eigenvalue E2�k�
appears for each k that corresponds to a bound state.35 For
this isolated ground state, there is a high probability of find-
ing two quanta on the same site. In the limit f →	, the

bound-state eigenvalue has the analytical expression35,48

E2�k� = − 	�2 + 16 cos2 k/2, �7�

and the corresponding �unnormalized� eigenvector v
= �v1 ,v2 , . . . � is48

v = � 1
	2

,
,
2,
3, . . . � , �8�

where


 = −
�� + E2�k��eik/2

4 cos�k/2�
. �9�

A suitable weight function of this isolated ground state has
the form

Cj 
 �v j�2 = �
�2�j−1� = e2��j−1�, j � 1, �10�

where C1=1/2 and �=ln�
�. Since �
�2
1 for ��0, the
weight function shows exponential decay when the distance
between the two bosons increases. That result corresponds to
the exponential localization of classical discrete breathers.1–4

FIG. 1. Energy spectrum of the Bose-Hubbard model for differ-
ent values of the interaction �: �a� �=0.1, �b� �=1.0, and
�c� �=10. Here, f =101.
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However, note that for �k�→�, we have 
→0 independent
of the value of ��0. Thus, one obtains compact localization.
Note that it is said that a state is compact in a certain basis,
if it occupies a certain subspace, but has exactly zero overlap
with the rest.

The compact localization for �k�→� is not observed in
the classical limit and relies on the fact that the Schrödinger
equation is a linear wave equation which admits �destructive�
interference effects.

IV. QUANTUM q-BREATHERS: LOCALIZATION IN
NORMAL-MODE SPACE

All the other states �except the bound state� form the two-
quanta continuum. Their energies for �=0 correspond to the
sum of two single-particle energies with the constraint that
the sum of their momenta equals the Bloch momentum k.
One arrives at

Ek,k1

0 = − 2�cos�k1� + cos�k1 + k�� , �11�

where k1=��1 / ��f +1� /2�−k /2 is the conjugated momentum
of the relative coordinate �distance� of both quanta
and �1=1 , . . . , �f +1� /2. Ek,k1

0 has a finite spread at fixed k
�see Fig. 1�. However, for k= ±�, the spectrum becomes
degenerate. Thus, for �k±���1, the eigenenergies are very
close �almost degenerate�. Remarkably, the bounds of the
spectrum for ��0 are very well described by the �=0 result.
Increasing � at fixed k, the eigenenergies will slightly move,
but never cross. Thus, a continuation of an eigenstate at
�=0 to ��0 will preserve its relative ordering with respect
to the other eigenenergies.

For ��0, these quantum q-breather states will be de-
formed. In analogy to the study of the fate of normal modes
in classical nonlinear systems,31–33 we will study the changes
of the two-quanta continuum. For finite f and �, the new
states will be spread in the basis of the �=0 continuum. For

f →	, one expects that the new states become again identical
with the �=0 states, since the two quanta will meet on the
lattice with less probability as f increases. Thus, we will test
the compactification of the new states in the �=0 eigenstate
basis both for �→0 and for f →	.

We compute the weight functions in the normal-mode
space in order to probe the signature of quantum q-breathers.
For this purpose, we start by using perturbation theory to set
up these weight functions, where H1 is the perturbation. We
fix the Bloch momentum k and choose an eigenstate ��

k̃1

0 � of

the unperturbed case �=0. Upon increase of �, it becomes a
new eigenstate ��k̃1

�, which will have overlap with several
eigenstates of the �=0 case. We expand the eigenfunction of
the perturbed system to the first-order approximation

��k̃1
� = ��

k̃1

0 � + � �
k1��k̃1

��k1�
0 �Ĥ1��

k̃1

0 �

E
k̃1

0
− Ek1�

0 ��k1�
0 � . �12�

The perturbation of strength � is local in the matrix repre-
sentation �6�; thus, the relevant perturbation parameter is
� / f . This has to be compared to the typical spacing of un-
perturbed eigenenergies. For Bloch wave numbers far from
±�, the spacing is of order 1 / f , so the approximation should
work for �
1. For Bloch wave numbers close to ±�, the
approximation breaks down if ���− �k�.

The off-diagonal �k1� k̃1� weight function at the first or-
der is given by

C�k1; k̃1� 
 ���k1

0 ��k̃1
��2 =

���k1

0 �Ĥ1��
k̃1

0 ��2

�E
k̃1

0
− Ek1

0 �2
. �13�

Ek1

0 and E
k̃1

0
are the eigenenergies of the unperturbed system.

With �=k1− k̃1, the weight function can be rewritten in the
following form:

C�k1; k̃1� =
A2�2

64�f + 1�2 cos2� k

2
�sin2��

2
��sin�2k̃1 + k

2
�cos��

2
� + cos�2k̃1 + k

2
�sin��

2
��2 , k1 � k̃1, �14�

where A is a constant. For �=0, ��k̃1
�= ��

k̃1

0 �, and the weight function is compact. For ����1,

C�k1; k̃1� �
�2

�f + 1�2�2

2
cos2� k

2
��sin�2k̃1 + k

2
� +

�

2
cos�2k̃1 + k

2
��2 , k1 � k̃1. �15�
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From this formula, we obtain several interesting results.
First of all, the decay of the weight function with increasing
� means that we have localization in the normal-mode space.
For 2k̃1+k�0,2�, we have

C �
�2

�f + 1�2

1

�2 . �16�

We find algebraic decay �1/�2 of the weight function, and
for �→0 or f →	, the weight function compactifies. For

2k̃1+k=0,2�, we have

C �
�2

�f + 1�2

1

�4 . �17�

Here, we find algebraic decay �1/�4 of the weight function
that also compactifies when �→0 or f →	. Finally, for k
close to ±� and large f , C��2 /�2. Thus, we find that the f
dependence drops out for staggered states �k±���1, and
these states do not compactify for f →	. That is a remark-
able quantum interference property, since both simple intu-
ition �see above� and classical theory predict the opposite.

In Fig. 2, we show numerical results obtained by diago-

nalization of the Hamiltonian for different values of �. We
find localization in the normal-mode space, which can be
interpreted as a quantum q-breather. When increasing �, the
quantum q-breather becomes less localized, and for large
values of the interaction �from �=10 onward�, results do not
change. The dashed lines are the results using formula �14�
with A2=3.8, a value that was obtained by fitting the numeri-
cal results for the lowest � �=0.001�. We can see good agree-
ment with numerical results up to �=1, beyond which per-
turbation theory does not fit anymore. In Fig. 3, we show that
the weight function is more localized for k=0 and less local-
ized for k→−�.

While probing the influence of the size of the nonlinear
quantum lattice on the localization phenomenon, we find in
Fig. 4 that as the size increases, the states compactify as we
expected. In Fig. 5, we see the 1/�2 decay for eigenstates

fulfilling 2k̃1+k�0,2� �k=0�, and in Fig. 6 the 1/�4 decay

for eigenstates fulfilling 2k̃1+k=0,2� �also k=0�. Both re-
sults agree with the analytical results using perturbation
theory.

In Fig. 7, we observe the predicted independence of the
localization phenomenon from the size of the system when k

FIG. 2. �Color online� Weight function for different values of

the interaction �. Here, f =101, k=0, and k̃1= 2
3�. Dashed lines are

results using formula �14� with A2=3.8.

FIG. 3. �Color online� Weight function for different values of

the Bloch wave number k. Here, �=0.1, f =101, and k̃1+k /2= 2
3�.

Dashed lines are results using formula �14� with A2=3.8.

FIG. 4. �Color online� Weight function for different sizes of the

system. Here, �=0.1, k=0, and k̃1� 2
3� for all curves. Dashed lines

are results using formula �14� with A2=3.8.

FIG. 5. �Color online� The same as in Fig. 4 in log-log scale.
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is close to −�. It is interesting that in this case, the weight
function does not compactify in the dilute limit f →	 as one
would expect from simple grounds. The reason is that the
larger f , the closer we can tune the Bloch wave number to
±�, where the perturbation expansion breaks down.

V. CONCLUSIONS

In this work, we studied the properties of quantum
q-breathers in a one-dimensional chain containing two
quanta modeled by the Bose-Hubbard Hamiltonian. To ex-
plore localization phenomena in this system, we computed
appropriate weight functions of the eigenstates in the
normal-mode space using both perturbation theory and nu-
merical diagonalization. We observe localization of these
weight functions that is interpreted as a signature of quantum
q-breathers. The localization is stronger when the size of the
system increases. Unlike the classical case where the local-
ization is exponential, we found here algebraic localization.
This is a long-range behavior, which follows from the fact
that the interaction � induces a linear perturbation of the
eigenstates which is local in real space and also local in the
matrix representation in Eq. �6�. That induces a mean-field-
type interaction between the normal modes and naturally
leads to algebraic localization. Note that the matrix �6� is
formally analogous to a semi-infinite tight-binding chain
with a defect at one end. Nevertheless, it appears in our
context when starting with a translationally invariant system,
but with many-particle states which include interaction.

Since the effective interaction strength drops in the dilute
limit of large chains, we observe stronger localization �ex-
cept for the case of staggered states�. The crucial difference
to the classical model is that while the linear classical dy-
namics coincides with the single-particle quantum problem,
nonlinearity in the classical model effectively deforms the
single-particle dynamics �and adds many other features such
as chaos, etc�. The interaction in the quantum problem takes
the wave function into the new Hilbert space of many-body
wave functions, which is still a linear space, but higher di-
mensional. Another feature of that quantum interaction is the
fact that staggered states do not compactify in the dilute limit

of large chains. That property is based on the interference of
quantum states and is not observed in the corresponding clas-
sical nonlinear equation. A similar �yet weaker� signature of
quantum interference is the observed change of the power of
the algebraic decay from 2 �generic� to 4 when choosing
particular values of the wave number k1, which depend on
the Bloch wave number k. And yet another signature of
quantum q-breathers is the fact that they keep a finite local-
ization in the limit �→	 as seen in Fig. 2 and at variance to
their classical counterparts, which turn from exponentially
localized to completely delocalized in that limit. The reason
is that in this strong-interaction limit, extended two-boson
states correspond to their noninteracting counterparts which
are projected onto the basis space which does not contain
doubly occupied chain sites, while strong nonlinearity in the
classical problem completely deforms periodic orbits of the
noninteracting system.

We are aware of the fact that the quantum problem stud-
ied here is a linear one �in terms of differential equations�. Its
correspondence to a classical nonlinear system can be ob-
served in the limit of many bosons when treating the many-
particle quantum states within a Hartree approximation,
which projects onto product states. Often the classical de-
scription is also achieved using suitable �e.g., coherent state�
representations. The presented results have an unambiguous
meaning in the chosen basis of the noninteracting system.
Yet, they will of course in general depend on the chosen
basis. Therefore, it remains a puzzling question how to re-
store exponential localization of classical q-breathers from
the algebraic decay of quantum q-breathers with two bosons
in the limit of larger numbers of bosons. The fate of quantum
q-breathers in higher dimensional lattices is another interest-
ing open question, which will be left to future work.
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FIG. 6. �Color online� Weight function for eigenstates with dif-

ferent k̃1. Here, �=0.1, f =101, and k=0.

FIG. 7. �Color online� Weight function for different sizes of the
system close to the band edge k=−�. Here, �=0.001 and

k̃1+k /2= 2
3�. The dashed line is the result using formula �14� with

A2=3.8.

QUANTUM q-BREATHERS IN A FINITE BOSE-… PHYSICAL REVIEW B 75, 214303 �2007�

214303-5



1 S. Flach and C. R. Willis, Phys. Rep. 295, 181 �1998�.
2 D. K. Campbell, S. Flach, and Y. S. Kivshar, Phys. Today 57�1�,

43 �2004�.
3 A. J. Sievers and J. B. Page, in Dynamical Properties of Solids

VII, Phonon Physics: The Cutting Edge, edited by G. K. Horton
and A. A. Maradudin �Elsevier, Amsterdam, 1995�, p. 137.

4 S. Aubry, Physica D 103, 201 �1997�.
5 U. T. Schwarz, L. Q. English, and A. J. Sievers, Phys. Rev. Lett.

83, 223 �1999�.
6 M. Sato and A. J. Sievers, Nature �London� 432, 486 �2004�.
7 B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P.

Shreve, A. R. Bishop, W.-Z. Wang, and M. I. Salkola, Phys. Rev.
Lett. 82, 3288 �1999�.

8 E. Trias, J. J. Mazo, and T. P. Orlando, Phys. Rev. Lett. 84, 741
�2000�.

9 P. Binder, D. Abraimov, A. V. Ustinov, S. Flach, and Y. Zolota-
ryuk, Phys. Rev. Lett. 84, 745 �2000�.

10 H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J.
S. Aitchison, Phys. Rev. Lett. 81, 3383 �1998�.

11 J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N.
Christodoulides, Nature �London� 422, 147 �2003�.

12 M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic, D. A. Czaplewski,
and H. G. Craighead, Phys. Rev. Lett. 90, 044102 �2003�.

13 B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein,
K.-P. Marzlin, and M. K. Oberthaler, Phys. Rev. Lett. 92,
230401 �2004�.

14 V. Fleurov, Chaos 13, 676 �2003�.
15 A. C. Scott and J. C. Eilbeck, Phys. Lett. A 119, 60 �1986�.
16 L. Bernstein, J. C. Eilbeck, and A. C. Scott, Nonlinearity 3, 293

�1990�.
17 L. J. Bernstein, Physica D 68, 174 �1993�.
18 E. Wright, J. C. Eilbeck, M. H. Hays, P. D. Miller, and A. C.

Scott, Physica D 69, 18 �1993�.
19 W. Z. Wang, J. T. Gammel, A. R. Bishop, and M. I. Salkola, Phys.

Rev. Lett. 76, 3598 �1996�.
20 S. Aubry, S. Flach, K. Kladko, and E. Olbrich, Phys. Rev. Lett.

76, 1607 �1996�.
21 S. Flach and V. Fleurov, J. Phys.: Condens. Matter 9, 7039

�1997�.
22 V. Fleurov, R. Schilling, and S. Flach, Phys. Rev. E 58, 339

�1998�.
23 G. Kalosakas, A. R. Bishop, and V. M. Kenkre, J. Phys. B 36,

3233 �2003�.
24 J. Dorignac, J. C. Eilbeck, M. Salerno, and A. C. Scott, Phys.

Rev. Lett. 93, 025504 �2004�.
25 J. C. Eilbeck and F. Palmero, Phys. Lett. A 331, 201 �2004�.
26 R. A. Pinto and S. Flach, Phys. Rev. A 73, 022717 �2006�.
27 L. S. Schulman, D. Tolkunov, and E. Mihokova, Phys. Rev. Lett.

96, 065501 �2006�.
28 L. S. Schulman, D. Tolkunov, and E. Mihóková, Chem. Phys.

322, 55 �2006�.
29 L. Proville, Physica D 216, 191 �2006�.
30 E. Fermi, J. Pasta, and S. Ulam, Los Alamos Report No. LA-

1940, 1955 �unspecified�, in Collected Papers of Enrico Fermi,
edited by E. Segre �University of Chicago Press, Chicago,
1965�, Vol. II, pp. 977–978; in Many Body Problems, edited by
D. C. Mattis �World Scientific, Singapore, 1993�.

31 S. Flach, M. V. Ivanchenko, and O. I. Kanakov, Phys. Rev. Lett.
95, 064102 �2005�.

32 M. V. Ivanchenko, O. I. Kanakov, K. G. Mishagin, and S. Flach,
Phys. Rev. Lett. 97, 025505 �2006�.

33 S. Flach, M. V. Ivanchenko, and O. I. Kanakov, Phys. Rev. E 73,
036618 �2006�.

34 A. C. Scott, Nonlinear Science �Oxford University Press, Oxford,
1999�.

35 A. C. Scott, J. C. Eilbeck, and H. Gilhøj, Physica D 78, 194
�1994�.

36 M. H. Cohen and J. Ruvalds, Phys. Rev. Lett. 23, 1378 �1969�.
37 J. C. Kimball, C. Y. Fong, and Y. R. Shen, Phys. Rev. B 23, 4946

�1981�.
38 L. J. Richter, T. A. Germer, J. P. Sethna, and W. Ho, Phys. Rev. B

38, 10403 �1988�.
39 P. Guyot-Sionnest, Phys. Rev. Lett. 67, 2323 �1991�.
40 D. J. Dai and G. E. Ewing, Surf. Sci. 312, 239 �1994�.
41 R. P. Chin, X. Blase, Y. R. Shen, and S. G. Louie, Europhys. Lett.

30, 399 �1995�.
42 P. Jakob, Phys. Rev. Lett. 77, 4229 �1996�.
43 P. Jakob, Appl. Phys. A: Mater. Sci. Process. 75, 45 �2002�.
44 V. Pouthier, J. Chem. Phys. 118, 9364 �2003�.
45 H. Okuyama, T. Ueda, T. Aruga, and M. Nishijima, Phys. Rev. B

63, 233404 �2001�.
46 V. Pouthier, Phys. Rev. E 68, 021909 �2003�.
47 J. Edler, R. Pfister, V. Pouthier, C. Falvo, and P. Hamm, Phys.

Rev. Lett. 93, 106405 �2004�.
48 J. C. Eilbeck, in Localization and Energy Transfer in Nonlinear

Systems, edited by L. Vazquez, R. S. MacKay, and M. P. Zor-
zano �World Scientific, Singapore, 2003�, p. 177.

NGUENANG, PINTO, AND FLACH PHYSICAL REVIEW B 75, 214303 �2007�

214303-6


